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Abstract: Building extraction from airborne Light Detection and Ranging (LiDAR) point clouds
is a significant step in the process of digital urban construction. Although the existing building
extraction methods perform well in simple urban environments, when encountering complicated
city environments with irregular building shapes or varying building sizes, these methods cannot
achieve satisfactory building extraction results. To address these challenges, a building extraction
method from airborne LiDAR data based on multi-constraints graph segmentation was proposed in
this paper. The proposed method mainly converted point-based building extraction into object-based
building extraction through multi-constraints graph segmentation. The initial extracted building
points were derived according to the spatial geometric features of different object primitives. Finally, a
multi-scale progressive growth optimization method was proposed to recover some omitted building
points and improve the completeness of building extraction. The proposed method was tested and
validated using three datasets provided by the International Society for Photogrammetry and Remote
Sensing (ISPRS). Experimental results show that the proposed method can achieve the best building
extraction results. It was also found that no matter the average quality or the average F1 score, the
proposed method outperformed ten other investigated building extraction methods.

Keywords: airborne LiDAR; building extraction; graph segmentation; object primitive; geometric
feature

1. Introduction

A building is an essential component of urban construction. The extraction and
reconstruction of buildings has been a critical step for many applications, such as urban
planning, disaster assessment, cadastral management and so on [1,2]. Airborne LiDAR
is an active remote sensing technology which has developed very rapidly in the recent
years [3–6]. This technology has become an attractive choice for building extraction [7,8],
due to its high efficiency and measuring accuracy, less interference by external environment
and strong initiative [9,10].

1.1. Related Works

Currently, building extraction methods can be classified into two categories, including
the machine learning methods and the classic methods. In the machine learning methods,
the acquired raw data are first transformed into a multidimensional feature space. Then,
an optimal feature space is estimated by a learning classifier to map the features into
desired outputs [11]. Ni et al. [12] first proposed a stepwise point cloud segmentation
method to extract three kinds of segments, including planar, smooth and rough surfaces.
Random Forest (RF) was then employed to select features and classify the afore-mentioned

Remote Sens. 2021, 13, 3766. https://doi.org/10.3390/rs13183766 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1377-2558
https://orcid.org/0000-0002-9940-1845
https://doi.org/10.3390/rs13183766
https://doi.org/10.3390/rs13183766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183766
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183766?type=check_update&version=2


Remote Sens. 2021, 13, 3766 2 of 21

segments. Finally, semantic rules were used to optimize the classification result. The
experimental results showed that this method was effective for small scale targets. Nahhas
et al. [13] proposed a deep learning method to detect buildings by fusing the LiDAR data
and orthophotos. In this method, features were first extracted by object-based analysis.
The low-level features were transformed into compressed features with a feature-level
fusion and an autoencoder-based dimensionality. After that, the compressed features were
transformed into the high-level features using a Convolutional Neural Network (CNN)
to classify the objects into buildings and background. Maltezos et al. [11] also adopted
a CNN model in their method. Firstly, a multi-dimensional feature vector was created
using the raw LiDAR data and seven additional features. Experimental results showed
that this algorithm could extract buildings with 85% completeness, and the correctness
reached 93%, at per-area level. Huang et al. [14] fused high-resolution aerial images
and LiDAR points for building extraction with an end-to-end trainable gated residual
refinement network. The modified residual learning network was applied as the encoder
part of network to learn multi-level features from the fusion data. A gated feature labeling
unit was introduced to reduce unnecessary feature transmission and refine classification
results. Zhang et al. [7] developed a hybrid attention-aware fusion network based on a
novel hybrid fusion architecture to extract the buildings from high-resolution imagery
and LiDAR data. Li et al. [15] first split the raw preprocessed LiDAR data into numerous
samples to fed into CNNs directly. Then, the graph geometric moments CNNs were
proposed to train and recognize building points. Finally, the test scenes were fed into the
framework to extract the building points. Wen et al. [6] first proposed a graph attention
convolution module. This module could examine spatial relationship among all points
and determine the convolution weights. Then, a global-local graph attention CNN was
designed to classify the airborne point clouds using multiscale features of the point clouds.
Yuan et al. [16] proposed a fully CNN based on the residual network. The training pattern
for multi-modal data was provided by combining the advantage of high-resolution aerial
images and LiDAR data. Obviously, for the CNN models, the precise labelled point clouds
are generally necessary. Zolanvari et al. [17] provided a publicly available annotated
benchmark dataset for training and testing. Moreover, they also tested three well-known
CNN models, including PointNet, PointNet++ and So-Net on the benchmark. In addition
to the geometric features built for the machine learning techniques, some researchers try to
calculate the statistical characteristics of the point cloud distribution to realize unsupervised
segmentation [18]. For instance, Crosilla et al. [19] proposed a filtering and classification
technique for LiDAR points by calculating the statistical features, including skewness and
kurtosis iteratively. Specifically, the skewness and kurtosis are third- and fourth-order
moments about the mean.

Although the machine learning methods can realize building extraction, these methods
unavoidably involve some limitations. For instance, high-quality training data are required,
and the differences in the data distribution between the training data and the experiment
scenes lead to low accuracy [20]. To avoid these problems, some authors work on the
classic methods. In terms of input data, methods can be further classified as two categories,
including building extraction based on LiDAR points and based on multi-source data
fusion [15]. In the first type of methods, LiDAR points are the only data source for building
extraction. In these methods, building points are extracted by relying mainly on their
geometric morphological features that are different from other objects. Dorninger et al. [21]
proposed a building extraction method based on plane segmentation detection. The
hierarchical clustering algorithm was used to obtain the initial candidate seed points. Then,
they extracted the buildings with the iterative region growing algorithm. Poullis et al. [22]
used the object-based region growing algorithm to detect the building points and refined
the boundary with a polygon Boolean operation to achieve better building extraction
results. In Sun et al. [23], point cloud data were divided into ground and non-ground
points with a graph cut-based method where a novel hierarchical Euclidean clustering
method was used to extract rooftop patches. Finally, a region growing-based segmentation
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method was presented to detect all building points with each rooftop patch. Awrangjeb
and Fraser [24] separated the raw LiDAR points into two groups and formed a “building
mask” with the group containing the ground points. The group that contains non-ground
points was segmented into individual building or tree objects using the building mask.
During the segmentation, the planar roof segments were extracted and refined based on
the rules, such as the coplanarity, locality and height difference of points. The experimental
results showed that this method offered a high successful rate for building detection and
roof plane extraction. Fan et al. [25] realized the building extraction based on the fact that
each roof can be composed of gabled roofs and single flats. The algorithm Random Sample
Consensus (RANSAC) was then used to detect roof ridges. Then, the points on the two
roof flats along a roof ridge were identified based on their connectivity and coplanarity.
Sampath et al. [26] first analyzed point characteristics to exclude the nonplanar points. The
authors used the fuzzy k-means algorithm to cluster the planar points. To extract complete
buildings, the clustered points were merged into the integrated rooftop according to the
breaklines. Zou et al. [27] proposed a strip strategy-based method to filter the building
points and extract the edge point set from LiDAR data. The point cloud was segmented
into several data strips. After that, building points were filtered from the data strips with
an adaptive-weight polynomial. Finally, building edges were extracted by a modified
scanline method. This method is usually suitable for urban areas where buildings were
densely distributed. Cai et al. [28] introduced a coarse-to-fine building detection method
that was based on semi-suppressed fuzzy C-means and restricted region growing. After a
minimum bounding rectangle was adopted to refine the detection results, the method could
offer an excellent performance for building detection with over 89.5% completeness and a
minimum 91% correctness. In Wang et al. [29], a semantic-based method was employed to
extract building points with contexts. A Markov random field optimization model was
constructed for postprocessing and segmentation results refinement.

Although the building extraction methods using only LiDAR data can achieve good
extraction results, these methods unavoidably have some practical limitations. For instance,
the laser pulses emitted by airborne LiDAR system often have a certain tilt angle, resulting
in the absence of points in some areas [30]. These data gaps will result in incomplete
building extraction. Although LiDAR data provide accurate three-dimensional coordinates,
they lack texture information that is very important for identifying buildings with special
shapes [31]. To overcome these enumerated limitations, some authors integrate multi-
source data to achieve high accuracy. Authors such as Awrangjeb et al. [32] proposed an
automatic three-dimensional roof extraction method by combining LiDAR data and multi-
spectral orthoimages. In their study, the Normalized Difference Vegetation Index (NDVI)
from multi-spectral orthoimages and the entropy images from grayscale orthoimage were
first used to generate a Digital Elevation Model (DEM). Afterwards, the DEM was used to
separate ground and non-ground points, while the NDVI and entropy images were used
to classify the structure lines extracted from grayscale images. Structural lines belonging
to the building class were then used to extract the plane and edge of the roof. Finally, the
roof planes and boundaries were extracted using the lines belonging to the building class.
They further added texture information from the orthoimage and used an iterative region
growing algorithm to extract the complete roof plane, which improved the completeness of
building extraction [33]. Qin et al. [34] combined the high-resolution remotely sensed
image and Digital Surface Model (DSM). The morphological index was first used to
detect shadows and correct the NDVI. Then, the NDVI was incorporated through the
reconstruction of the DEM using the top-hat algorithm to obtain the initial building mask.
Finally, the building segments with high probability were consolidated by a graph cut
optimization based on modified superpixel segmentation. The experimental results showed
that this algorithm could extract buildings efficiently with 94% completeness, and the
87% correctness indicating its potential for many practical applications. Gilani et al. [35]
developed a methodology using features from point cloud and orthoimage to extract and
regularize the buildings. Vegetation elimination, building detection and extraction of their
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partially occluded parts were achieved by synthesizing the entropy, NDVI and elevation
difference. Results indicated that the per-area completeness achieved was between 83% to
93%, while the per-area correctness was above 95%. Siddiqui et al. [36] transformed the
LiDAR height information into intensity and then analyzed the gradient information in the
image. In addition, a local color matching approach was introduced as a post-processing
step to eliminate trees. Lai et al. [37] proposed a building extraction method by fusing the
point cloud and texture features. The texture features were acquired using an elevation
map. Chen et al. [38] also integrated high spatial resolution images and LiDAR point
cloud data. In their method, an adaptive iterative segmentation method was adopted to
effectively avoid over-segmentation or under-segmentation.

1.2. Motivation

Although more accurate building extraction results can be achieved by fusing multi-
source remote sensing data, pre-registration is generally required [39]. Registration errors
often exist during the fusion process, and how to provide registration accuracy remains
an unsolved problem [40]. Therefore, building extraction with only LiDAR points is still a
mainstream focus. Today, although the machine learning methods have been successfully
applied for building extraction, large numbers of sample labeling are generally a prereq-
uisite for the success of this kind of methods. Obviously, the sample labeling is always
cumbersome. Thus, how to realize building extraction by classic methods is still in the
focus of researchers. However, the classic building extraction methods based solely on
airborne LiDAR points still involve the following difficulties and challenges:

i. The point-based building extraction methods generally involve high computation
costs. Thus, it is difficult to process a large amount of LiDAR points.

ii. When encountering with different building environments, the performance of the
methods generally varies greatly. The robustness of the building extraction methods
is not good.

iii. The vegetation points adjacent to buildings are easily misclassified as building
points, which results in low correctness of building extraction.

To solve these enumerated problems, a building extraction method from airborne
LiDAR points based on multi-constraints graph segmentation was proposed in this pa-
per. In the proposed method, the graph structure was first constructed based on the
three-dimensional spatial features of points. Then, the graph segmentation was achieved
by setting constraint conditions. In doing so, the point-based building extraction was
transformed into the object-based building extraction to reduce the computation cost and
improve the efficiency of the method. Subsequently, the initial building points were ex-
tracted by calculating the geometric morphological features of each segmented object. To
improve the completeness of building extraction, this paper also proposed a multi-scale
progressive growing optimization method to recover the omitted building points. Three
publicly available datasets were adopted for testing the performance of the proposed
method. The experimental results showed that the proposed method can achieve very
good building extraction results.

2. Methodology

The flowchart of the proposed method is shown in Figure 1. In this paper, an im-
proved morphological filtering method based on kriging interpolation proposed by Hui
et al. [41] was first adopted to remove ground points. This filtering method can be seen
as a hybrid model, which combined the morphology-based and the interpolation-based
filtering methods. By removing objects and generating rough ground surface progressively,
the terrain details can be protected successfully. Subsequently, the multi-constraints graph
segmentation method was proposed to segment the non-ground points to obtain the ob-
ject primitives. Hereafter, the point-based building extraction was transformed into the
object-based building extraction, which reduced the computational cost and improved the
implementation efficiency of the proposed method. Here, the initial building points are
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acquired by calculating the spatial geometric features of each object primitive. To improve
the completeness of building extraction, this paper proposed a multi-scale progressive
growth optimization method. This method was used to extract complete buildings by
continuously recovering the omitted points that meet the setting rules. Detailed description
of the proposed method is described in the subsequent sections as follows: Section 2.1,
multi-constraints graph segmentation; Section 2.2, initial building points extraction based
on spatial geometric features; and Section 2.3, building points optimization based on
multi-scale progressive growing.
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results.

2.1. Multi-Constraints Graph Segmentation

To reduce the computation costs and improve the efficiency of the proposed method,
this paper first transforms the point-based building extraction method into an object-
based building extraction method. In this paper, the transformation is realized based on
multi-constraints graph segmentation. Generally, the graph structure can be defined as
Equation (1) [42]:

G = (V, E) (1)

where G represents the graph, V is the set of nodes (vi) and E denotes the corresponding
edges (ei,j). In this paper, vi is made up of all points (pi, i = 1, 2, . . . , N) in the point cloud,
while the edge ei,j connects the pair of neighboring points (pi,pj).

Today, with the fast development of the LiDAR system, the density of the LiDAR
points can reach hundreds of points per square meter. For instance, the average point
density of the acquired aerial LiDAR datasets of Dublin city center is 348.43 points/m2 [17].
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As a result, a huge amount of LiDAR data generally needs to be processed. If the graph is
constructed using edges between every point, the built graph will be very complex and
cost lots of computer memory. Moreover, it will also not be conducive to subsequent graph
segmentation. To simplify the graph, this paper proposed several constraints for building
the graph. The first constraint is that the edge ei,j only exists among neighboring points.
This can be defined as Equation (2):

ei,j =

{
1 , i f pj ∈ Setpi

0 , otherwise
(2)

where Setpi is k nearest neighbors of point pi. In Equation (2), it can be deduced that only if
pj is an adjacent point to pi, there will be an edge connection between two points. k is a
constant which represents the number of neighboring points. If the number of points is
massive or the calculating capability of computer hardware is limited, k should not be set
too large. Otherwise, the computation costs will increase. In this paper, k is set to 10.

Aiming at achieving the accurate building object primitives, two other constraints
were set after the graph construction. On the one hand, the points within an identical
object primitive should own similar normal vectors. That is, the edge between pi and pj
can be reserved only if the angle between the normal vectors of the two points is less than
a threshold. This can be defined as Equation (3):

ei,j =

{
1 , i f θ

(
pi, pj

)
≤ ς

0 , otherwise
(3)

where θ
(

pi, pj
)

is the angle between the normal vectors of pi and pj. The normal vector
of a point can be estimated from the covariance matrix of its neighboring points using
Principal Component Analysis (PCA). The eigenvector corresponding to the minimum
eigenvalue of the covariance matrix is treated as the normal vector at the point. ς is the
angle threshold. In this paper, ς is set to 5◦ to maintain the similarity of points within the
same object primitives.

When the normal vector constraint is applied, the points located on the same plane
will be divided into the same object primitives, such as the building roofs, as shown
in Figure 2a. Conversely, some adjacent points that are not in the same plane will be
divided into multiple object primitives, such as vegetation. However, if only the normal
vector constraint is adopted, some vegetation points that are adjacent to buildings will be
misclassified as building points, as shown in Figure 2b,c. It is because the normal vectors
of these vegetation points may be similar to the ones of the building points, which may
lead to misjudgment. To solve this problem, the third constraint of graph segmentation
that is the longest edge constraint is defined as Equation (4):

ei,j =

{
1 , i f Dist

(
pi, pj

)
≤ mean

(
Dist

(
Setpi

))
+ std

(
Dist

(
Setpi

))
0 , otherwise

(4)

where Dist
(

pi, pj
)

is the Euclidean distance between pi and pj. mean
(

Dist
(
Setpi

))
repre-

sents the mean distance from point pi to all its neighbors. std
(

Dist
(
Setpi

))
is the standard

deviation of the distance from point pi to all its neighbors. This constraint will limit the
range of the longest edge and avoids the problem that some adjacent vegetation points can
be misclassified as building points.
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2.2. Initial Building Points Extraction Based on Spatial Geometric Features

As shown in Figure 2a, the point cloud is divided into multiple object primitives after
the multi-constraints graph segmentation. Since the angle of normal vectors and the longest
edge constraints were adopted in the multi-constraints graph segmentation, the building
roofs can be correctly divided into independent object primitives, as shown in Figure 2b,c.
However, some other objects without similar normal vectors, such as bushes, vegetation
and fences, are generally divided into multiple small object primitives, which will lead
to “over-segmentation”. According to this characteristic, the initial building points can
be extracted based on the spatial geometric features of the extracted object primitives. In
this paper, the roughness and size of object primitives were selected to extract the initial
building point cloud.

In this paper, the object primitive roughness (roughnessobji ) is defined as the mean
distance residual between the point and the best-fit plane of the points within the same
object primitive. This has been defined in Equation (5) as: roughnessobji =

n
∑

i=1
roughnesspi

n

roughnesspi =
|Axpi+Bypi+Czpi+D|√

A2+B2+C2

(5)

where roughnesspi is the roughness of pi in an object primitive obji. roughnesspi is defined
as the distance residual between the point to the fitting plane (Ax + By + Cz + D = 0).

Generally speaking, for a relatively flat roof, the object primitive roughness of a
building tends to be smaller than that of the pseudo plane generated by dense vegetation
points. Compared with the over-segmented object primitives, building object primitives
often contain more points. Meanwhile, the non-building object primitives are generally
divided into several small object primitives since the direction of their normal vectors are
not consistent. Therefore, the non-building object primitives can be removed by limiting
the size of object primitives to further improve the accuracy of the initial building points
extraction.

2.3. Building Points Optimization Based on Multi-Scale Progressive Growing

Although most of the building points can be correctly extracted based on the spatial
geometric features of the object primitives, there are still some omitted building points,
which will cause larger omission error. As shown in Figure 3, the omitted building points
are mainly located on the ridge and edge area of the roof. These points are easily divided
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into different object primitives after multi-constraints graph segmentation since their spatial
geometric features are generally quite different from their adjacent points. As a result,
these ridge or edge points are wrongly eliminated, which can result in low completeness of
building extraction.
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To improve the completeness of the building points extraction, this paper proposed
a building points optimization method based on multi-scale progressive growing. The
pseudocode of the proposed method is presented in Algorithm 1.

Algorithm 1. Building points optimization based on multi-scale progressive growing.

Input:
Initial building points: Point_set =

{
pi|pi ∈ U ‖ pi ∈ {U

}
, i = 1, 2, · · · , N

pi is a random point, U is the building point set, {U is the complementary set, which
represents a non-building point set.
Scale sets: s = {s1, s2, · · · , sK}, s1 > s2 > · · · > sK

for iter = 1 to K
s = siter
for i = 1 to N

if pi ∈ U
Find the neighboring point set of pi under the scale of s:

Setpi =
{

pj

∣∣∣Dist‖pj, pi‖ ≤ s, j = 1, 2, · · · , M
}

for j = 1 to M
if pj ∈ Setpi &&pj ∈ {U

Calculate the distance (distpj ) between pj and the fitting plane of the object
primitives where pi is

Calculate the angle (θ
(

pj, pi

)
) between the normal vector of pj and pi

if distpj ≤ th1 || θ
(

pj, pi

)
≤ ξ

pj ∈ U
Update building point set U and non-building point set {U

end
Output: Building points set U

From Algorithm 1, it can be found that this paper mainly adopted a multi-scale
progressive strategy to gradually optimize the building points extraction results. Through
experimental analysis, three fixed scales are enough to acquire complete building points.
In doing so, not only the problem of overgrowth can be solved but also the implementation
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efficiency can be improved. In this paper, the scale sets are defined as s1 (2 m), s2 (1.5 m) and
s3 (0.5 m), respectively. In each step, the neighboring points set of each point is obtained
within the current scale. If pj is a non-building point in the neighboring points set (Setpi )
of pi, the distance residual (distpj ) between pj and the fitting plane of the object primitive
should be calculated. If pj is an omitted building point, the distance residual will be less
than the threshold th1, which is set to 0.3 m in this paper. In addition, building point clouds
often have consistent normal vectors. Thus, if pj is an omitted building point, the angle
between the normal vectors of pj and pi should be less than the angle threshold ξ which is
set to 10◦ in this paper.

3. Experimental Results and Analysis
3.1. Experimental Datasets

To evaluate the performance of the proposed method, three publicly available datasets
provided by ISPRS were tested [43]. The datasets were obtained by Leica ALS50 with a
45◦ field of view and a 500 m mean flight height above the ground. The obtained points’
accuracy is approximately 0.1 m in horizontal and vertical directions. The average strip
overlap is 30%, and the average point density is 4–7 points/m2. The three datasets are
located in Vaihingen and contain three areas (Area1, Area2, Area3). As shown in Figure 4,
the main objects in the three areas are powerline, low vegetation, impervious surfaces,
car, building, shrub, tree and fence and so on. The buildings in Area1 are with complex
shapes and different sizes as shown in Figure 4a. Thus, Area1 can be used to test the
extraction accuracy of the proposed method on complex buildings. Area2 is characterized
by buildings surrounding with dense vegetation (Figure 4b). Adjacent vegetation often
causes great interference on the building extraction. Therefore, Area2 can verify whether
the proposed method effectively eliminates the interference of adjacent vegetation or not.
In Area3, as shown in Figure 4c, low vegetation is the main challenge to the building
extraction. How to eliminate the pseudo planes formed by the low vegetation is still
an unresolved problem. Thus, it can be concluded that the three datasets are a good
representation for testing the effectiveness and robustness of the proposed method for
building extraction in different environments.
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3.2. Experimental Results and Analysis

Figure 5 shows the building extraction results using the proposed method. From
Figure 5, most of the buildings can be extracted correctly so as to achieve good building
extraction accuracy in the three experimental areas. As shown in Figure 5a,d, although
there are many buildings with complex shapes and different sizes in Area1, the proposed
method can extract them correctly. Thus, it can be concluded that the proposed method
is robust towards building with different shapes and sizes. However, there are still some
omitted building points in Area1 (the blue points in Figure 5a,d), which are mainly located



Remote Sens. 2021, 13, 3766 10 of 21

at the edge of the building. It is because these buildings are generally with low elevation.
Due to the height difference, the low buildings cannot form a complete object primitive
along with the adjacent buildings but form an independent object primitive. Since the size
constraint of object primitives is adopted in the initial building extraction step, these small
object primitives will be wrongly removed. Although there is dense adjacent vegetation in
Area2, the proposed method effectively eliminates its interference on building extraction.
However, there are still some points that are wrongly classified as buildings, as shown by
the red points in Figure 5b,e. It is because the buildings in Area2 are stacked and the facades
of some buildings are connected with the roofs. As a result, they are easily misclassified as
roof points. The building extraction accuracy of the proposed method in Area3 is relatively
high due to the simple features of the buildings in it. Some omitted points are located
near the chimneys because of the spatial differences among the chimneys with the roof
(Figure 5c,f).
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Figure 5. Building extraction results of the proposed method. (a) Extraction results for Area1; (b) extraction results for
Area2; (c) extraction results for Area3; (d) the extraction results of Area1 integrating with the corresponding orthophoto
image; (e) the extraction results of Area2 integrating with the corresponding orthophoto image; (f) the extraction results
of Area3 integrating with the corresponding orthophoto image. Yellow represents correctly extracted buildings (TP), red
represents wrongly extracted buildings (FP), and blue represents omitted buildings (FN).

For quantitative evaluation, four indicators proposed by Rutzinger et al. [44] were
adopted to evaluate the precision of the building detection results at both pixel-based and
object-based levels. They are completeness (Comp), correctness (Corr), quality (Quality)
and F1 score (F1).

Completeness represents the percentage of buildings in the reference that were de-
tected. Correctness indicates how well the detected buildings match the reference. Com-
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pleteness tends to evaluate the ability of building detection, while correctness evaluates
the correct detection ability of the proposed method. Quality and F1 score are another two
indicators, which can integrate completeness and correctness to reflect the effectiveness of
the method. The definitions of the above four indicators are defined in Equations (6)–(9):

Comp =
TP

TP + FN
(6)

Corr =
TP

TP + FP
(7)

Quality =
Comp× Corr

Comp + Corr− Comp× Corr
(8)

F1 =
2× Comp× Corr

Comp + Corr
(9)

This paper evaluated the performance of the proposed method at pixel-based and
object-based levels, respectively. In the pixel-based evaluation, TP represents the number
of correctly extracted building points, FN is the number of omitted building points, FP
represents the number of wrongly detected building points. In the object-based evaluation,
the object can be accepted as TP if it has a 50% minimum overlap with the reference data.
FN represents the number of omitted building objects, FP is the number of objects whose
overlap ratio is less than 50% with the reference data [45].

To evaluate the performance of the proposed method objectively, this paper selected
other ten methods that have also used these public datasets provided by ISPRS for com-
parative analysis. Among the ten methods, the first three methods belong to the kind of
machine learning method, while the other seven methods belong to the kind of classic
methods. Maltezos et al. [11] first created a multi-dimensional feature vector using the
raw LiDAR data and the seven additional features. Then, a CNN was used to nonlinearly
transform the input data into abstract forms of representations. After that, a training set
was used to learn the parameters of the CNN model to perform the building extraction.
Doulamis et al. [46] developed a radial base function kernel Support Vector Machine (SVM)
classifier. The classifier adopted an efficient recursive weight estimation algorithm to make
the network response adaptive. Protopapadakis et al. [47] proposed a nonlinear scheme of
a typical feed-forward artificial neural network with a hidden layer. When the appropriate
features were fed to the detection model, the optimal parameters of the detector structure
were selected by an island genetic algorithm. Awrangjeb and Fraser [24] formed a “building
mask” using the ground points, and then extracted building and vegetation objects with
the co-planarity between adjacent points. After that, vegetation plane primitives were
removed by using the information of area and neighborhood characteristics to complete
the building extraction. Nguyen et al. [45] presented an unsupervised classification method
called super-resolution-based snake model to extract buildings by combining the spectral
features of images and LiDAR point cloud. Niemeyer et al. [48] established the classifica-
tion model with a conditional random field approach. This method utilized a nonlinear
decision surface to separate the object clusters in feature space reliably, and then extracted
buildings. Wei et al. [49] presented an integrated method to comprehensively evaluate
the feature relevance of point cloud and image data. Firstly, point cloud and image data
were co-registered. After that, all data points were grid-fitted to facilitate acquiring spatial
context information per pixel/point. Then, spatial-statistical and radiometric features
could be extracted using a cylindrical volume neighborhood of point. Finally, the AdaBoost
classifier combined with contribution ratio was used to label the points. Moussa and EI-
Sheimy [50] fused the aerial images data with single return LiDAR data to extract buildings
for an urban area. Then, they segmented the entire DSM data into objects based on height
variation. After that, the area, average height, and vegetation index of each object were
adopted to exactly classify the objects. Yang et al. [51] defined the Gibbs energy model
of building objects within the framework of reversible-jump Markov Chain Monte Carlo



Remote Sens. 2021, 13, 3766 12 of 21

to describe the building points. Then, they found an optimal energy configuration using
simulated annealing. Finally, the detected building objects were refined to eliminate false
detection. Gerke and Xiao [52] introduced a new segmentation approach by making use
of geometric and spectral data. They quantified the point cloud into voxels according to
the geometric and textural features of optical images, and then, buildings are extracted
from voxels by using the supervised classification method based on random forest. Note
that the methods proposed by Maltezos et al. [11], Doulamis et al. [46] and Protopapadakis
et al. [47] only provide the completeness, correctness and quality at per-area level. The F1
score can be calculated according to Equation (9). Thus, in Tables 1–3, we only compared
their building performance at per-area level. It is the same with Figures 6 and 7, only the
average quality and F1 score of the three methods at per-area level were compared with
other methods.

Table 1. Accuracy comparison of building extraction in Area1. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area1

Maltezos et al. (2019) 79.80 91.50 74.40 85.25 × × × ×
Doulamis et al. (2003) 68.80 94.00 65.90 79.45 × × × ×

Protopapadakis et al. (2016) 92.20 68.00 64.30 78.27 × × × ×
Awrangjeb and Fraser (2014) 92.70 88.70 82.90 90.66 83.80 96.90 81.61 89.88

Nguyen et al. (2020) 90.42 94.20 85.65 92.27 83.78 100.00 83.78 91.17
Niemeyer et al. (2012) 87.00 90.10 79.40 88.52 83.80 75.60 65.96 79.49

Wei et al. (2012) 89.80 92.20 83.46 90.98 89.20 97.10 86.89 92.98
Moussa and EI-Sheimy (2012) 89.10 94.70 84.87 91.81 83.80 100.00 83.80 91.19

Yang et al. (2013) 87.90 91.20 81.03 89.52 81.10 96.80 78.98 88.26
Gerke and Xiao (2014) 91.20 90.30 83.06 90.75 86.50 91.40 79.99 88.88
The proposed method 93.04 91.61 85.74 92.32 97.22 90.34 88.07 93.65

Table 2. Accuracy comparison of building extraction in Area2. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area2

Maltezos et al. (2019) 87.70 96.00 84.60 91.66 × × × ×
Doulamis et al. (2003) 83.10 92.30 77.60 87.46 × × × ×

Protopapadakis et al. (2016) 90.80 90.50 82.90 90.65 × × × ×
Awrangjeb and Fraser (2014) 91.50 91.00 83.90 91.25 85.70 84.60 74.20 85.15

Nguyen et al. (2020) 93.47 94.75 88.87 94.11 78.57 100.00 78.57 88.00
Niemeyer et al. (2012) 93.80 91.40 86.19 92.58 78.60 52.40 45.86 62.88

Wei et al. (2012) 92.50 93.90 87.26 93.19 78.60 100.00 78.60 88.02
Moussa and EI-Sheimy (2012) 93.20 95.40 89.19 94.29 78.60 100.00 78.60 88.02

Yang et al. (2013) 88.80 94.00 84.04 91.33 78.60 100.00 78.60 88.02
Gerke and Xiao (2014) 94.00 89.00 84.22 91.43 78.60 42.30 37.93 55.00
The proposed method 96.86 92.93 90.21 94.85 93.33 96.55 90.32 94.91
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Table 3. Accuracy comparison of building extraction in Area3. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area3

Maltezos et al. (2019) 88.20 93.70 83.20 90.87 × × × ×
Doulamis et al. (2003) 82.90 92.90 78.00 87.62 × × × ×

Protopapadakis et al. (2016) 96.70 84.50 82.20 90.19 × × × ×
Awrangjeb and Fraser (2014) 93.90 86.30 81.70 89.94 78.60 97.80 77.23 87.16

Nguyen et al. (2020) 91.00 93.02 85.18 92.00 83.93 97.92 82.46 90.39
Niemeyer et al. (2012) 93.80 93.70 88.24 93.75 82.10 90.20 75.38 85.96

Wei et al. (2012) 86.80 92.50 81.09 89.56 75.00 100.00 75.00 85.71
Moussa and EI-Sheimy (2012) 87.00 95.20 83.34 90.92 66.10 100.00 66.10 79.59

Yang et al. (2013) 85.20 89.50 77.46 87.30 73.20 97.60 71.91 83.66
Gerke and Xiao (2014) 89.10 92.50 83.10 90.77 75.00 78.20 62.30 76.57
The proposed method 91.54 97.59 89.52 94.46 92.16 94.09 87.12 93.12
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Figure 6. Average quality comparison between the proposed method and ten other methods. (a) Per-area level; (b) per-object
level. The average qualities of the ten methods are obtained from the corresponding references. The methods proposed by
Maltezos et al. (2019), Doulamis et al. (2003) and Protopapadakis et al. (2016) do not provide the quality at per-object level.
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Tables 1–3 show the accuracy comparison of the proposed method with the ten
methods described above in the three areas (Area1, Area2 and Area3) at per-area and
per-object levels. From the comparison, it can be found that the satisfying results in the
three areas are obtained by the proposed method. All the four indicators (completeness,
correctness, quality and F1 score) of the proposed method of the three testing areas are
higher than 85%, and most of them are higher than 90%. The results indicate that the
proposed method can obtain highly desirable accuracy in different environments and can
robustly extract buildings. In the three areas, the proposed method achieved the best on six
out of eight indicators with four indicators at per-area and per-object levels, respectively.
Therefore, compared with the other investigated methods, the proposed method has the
best building extraction performance. In Area1, the proposed method achieved the highest
completeness (Table 1) at both per-area and per-object levels, which demonstrates that
the proposed method has a strong capability of building detection. Compared with the
other two areas, the proposed method performed best in Area2, and all indicators were
higher than 90%, as shown in Table 2. Especially in the per-object evaluation, the quality
of the proposed method (90.32%) is significantly better than the other methods. This
indicates that the proposed method can effectively overcome the interference caused by
dense vegetation around buildings, and can achieve the correct extraction of buildings.
In Area3, the per-area correctness of the proposed method can reach 97.59% (Table 3). It
shows that the proposed method can detect buildings correctly. Overall, the completeness
and correctness of the proposed method are relatively balanced, which indicates that the
proposed method can extract as many buildings as possible while ensuring the correctness
of the extraction results.

Figures 6 and 7 show the comparison of average quality and average F1 score of
the proposed method with the other ten methods in the three study areas. In terms of
the average quality, the proposed method achieved the best results in both per-area and
per-object evaluations. Especially, at per-object level, the average quality of the proposed
method is obviously better than that of the other seven methods. In addition, the proposed
method also obtained the highest average F1 score. Both at per-area and per-object levels,
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the average F1 score of the proposed method is more than 90%. Consequently, the proposed
method performed well in the three kinds of building environments and thus can be
considered as relatively robust.

4. Discussion

In the multi-constraints graph segmentation, two parameters are involved, namely
the number of neighboring points k and the angle threshold ς. The number of neighboring
points determines the size of neighboring set (Equation (1)), while the angle threshold
(Equation (2)) directly affects segmentation results. These two parameters determine the
selection of edges directly and have a distinct influence on the results of graph construction.
Concretely, the larger the k value, the more edges will be accepted, thereby complicating the
graph, increasing the computational costs, and reducing the efficiency of the method. In the
last two decades, some techniques have been proposed to determine the k neighbors, such
as the lowest entropy or highest similarity [53]. In terms of the lowest entropy, the Shannon
entropy has to be calculated for every point. The optimal radius can be determined by
calculating the lowest entropy. In terms of the highest similarity, a similarity index is
defined as the ratio of neighbors whose dimensionality labelling is same with that of the
center point. The optimal radius can be obtained by finding the highest similarity index for
each point. Although these optimal radius selection techniques can help to determine the
k neighbors, it will involve too much calculation. Obviously, the computational burden
will increase greatly and the optimal radius selection process will be time consuming. To
facilitate the implementation of the proposed method, this paper set a fixed value for the
neighbors. Through experimental analysis, the graph complexity and the efficiency can be
balanced when the value of k is set to 10.

The angle threshold ς was set to divide the points on the same plane into the same
object primitives, while the points on different planes were split into multiple object
primitives. Figure 8a–c shows the results of multi-constraints graph segmentation results
with ς taken as 1◦, 10◦ and 15◦, respectively. Figure 8d shows the reference segmentation
results. Although vegetation points were divided into multiple object primitives, the same
building roof was also separated into several small object primitives when ς was set to
1◦, as the black rectangle shown in Figure 8a. This over-segmentation phenomenon is not
conducive to the subsequent extraction of initial building points which are based on the
size of object primitives. When ς was set to 10◦, some points on different roof planes of the
building failed to be separated into different object primitives, as shown in Figure 8b as blue
rectangle. When the value of ς continues to increase (ς = 15◦), a more under-segmented
roof planes were observed, as shown in Figure 8c. If the points from different roof planes
are segmented into same object primitives, there will be a large fitting error in calculating
the roughness of each object primitive. Consequently, it will be difficult to discriminate
buildings from other object primitives (such as dense vegetation). The experimental results
showed that the proper segmentation results can be achieved when the angle threshold ς is
set to 5◦, as shown in Figure 2a. In this case, not only the vegetation points can be divided
into multiple object primitives, but also the building points from the same plane can be
separated into the same object primitives.
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Figure 8. Graph segmentation results with different ς. (a) ς= 1◦; (b) ς= 10◦; (c) ς= 15◦; (d) the reference segmentation
results. Different object primitives are colored with different colors.

Another important parameter involved in this paper is the threshold for the object
primitive roughness, which was set in the step of initial building extraction. Figure 9a–c are
the initial building extraction results for Area3 with the roughness thresholds of 0.02, 0.04
and 0.06, respectively. In Figure 9a, it can be found that when the value of this threshold
was too small, many independent buildings were not successfully detected. It is because
that part of the points located at the boundary of buildings were omitted, resulting in
the low completeness of the initial building points. Figure 9b shows the initial buildings
extracted in this paper with the roughness threshold of 0.04. It illustrates that, with the
proper value of the threshold, more buildings could be detected, and the misclassification
of some non-building points can be avoided. When the threshold is set too large, it can
be found that mainly dense vegetation points are misclassified as buildings, as shown in
Figure 9c. Therefore, setting a too large roughness threshold will reduce the correctness of
the result.
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Figure 9. Initial building points extraction results with different roughness threshold. (a) The threshold is 0.02; (b) the
threshold is 0.04; (c) the threshold is 0.06. Yellow represents correctly extracted buildings (TP), red represents wrongly
extracted buildings (FP), and blue represents omitted buildings (FN).
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To validate the applicability of the proposed method, two other public datasets pro-
vided by OpenTopography were selected for further testing [54]. The datasets are located in
the north of Palmerston, New Zealand, with a point density of 22 points/m2. The ground
objects include buildings, impervious surface, low vegetation, trees and shrubs and so
on, as shown in Figure 10. Figure 10a is the true-color image of the first dataset named
as S1. It can be seen that the buildings in S1 are densely distributed with regular shapes,
surrounded by dense vegetation. Figure 10b is the point cloud data of this area. Figure 10c
is the true-color image of the second dataset named as S2, which contains many buildings
with complex shapes and large sizes. Figure 10d shows the corresponding point cloud data
of this area.
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which is colored according to different labels; (c) the true-color image of S2; (d) the point cloud data of S2, which is colored
according to different labels.

The building extraction results of the two areas mentioned above are shown in
Figure 11. Figure 11b,d are the reference building extraction results from the orthophoto
images of S1 and S2, respectively. It can be found that the proposed method can achieve
satisfying results in both areas (S1 and S2) because most of the building points were ac-
curately extracted. However, there still exist some points on the roof plane that were not
effectively detected as shown as blue points in the black rectangle of Figure 11a. It is
mainly because there are some small roof planes in S1, which makes the object primitives
formed by these blue points smaller so that they cannot be effectively identified in the
initial building extraction. As shown in Figure 11c, there are a few wrongly detected points
in S2, such as the red points in the black rectangle. It is caused by the overlapping of some
high vegetation and buildings. A small number of vegetation points around the edge of
buildings are divided into the same object primitives with their adjacent buildings, thereby
being misclassified. Table 4 shows the quantitative evaluation results of the two areas.
All the indicators are higher than 90%. Especially, the completeness and F1 score of the
proposed method are higher than 95%. Thus, it can be concluded that the proposed method
can effectively detect buildings with different sizes and shapes.



Remote Sens. 2021, 13, 3766 18 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 22 
 

 

  
(a) (b) 

  

 

(c) (d)  

Figure 11. Building extraction results of OpenTopography datasets. (a) The building extraction result for S1; (b) the ref-

erence building extraction results of S1 from orthophoto image; (c) the building extraction result for S2; (d) the reference 
building extraction results of S2 from orthophoto image. Yellow represents correctly extracted buildings (TP ), red rep-
resents wrongly extracted buildings ( FP ), and blue represents omitted buildings ( FN ). 

Table 4. Accuracy of building extraction in OpenTopography datasets. 

 Per-area (%) Per-object (%) 

Comp Corr Quality F1 Comp Corr Quality F1 

S1 96.54 99.28 95.87 97.89 98.25 98.61 96.90 98.43 

S2 96.09 98.34 94.56 97.20 100.00 91.43 91.43 95.52 

5. Conclusions 

Building extraction from airborne LiDAR point clouds is a significant step in the 
applications of point cloud post-processing, such as urban three-dimensional model 

construction and digital urban management. To solve the problems existing in the build-
ing extraction, such as huge computational cost, poor adaptability to different building 
environments and the interference of adjacent vegetation, this paper proposed a build-

ing extraction method from airborne LiDAR data based on multi-constraints graph seg-
mentation. In this paper, the graph structure of the point cloud was first built. After-

wards, the object primitives were obtained based on the multi-constraints graph seg-
mentation. In doing so, the point-based building extraction is transformed into the ob-
ject-based building extraction to improve the efficiency of the method. After that, the ini-

tial building point cloud is extracted based on the different spatial geometric features of 
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Yellow represents correctly extracted buildings (TP), red represents wrongly extracted buildings
(FP), and blue represents omitted buildings (FN).

Table 4. Accuracy of building extraction in OpenTopography datasets.

Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

S1 96.54 99.28 95.87 97.89 98.25 98.61 96.90 98.43
S2 96.09 98.34 94.56 97.20 100.00 91.43 91.43 95.52

5. Conclusions

Building extraction from airborne LiDAR point clouds is a significant step in the appli-
cations of point cloud post-processing, such as urban three-dimensional model construction
and digital urban management. To solve the problems existing in the building extraction,
such as huge computational cost, poor adaptability to different building environments and
the interference of adjacent vegetation, this paper proposed a building extraction method
from airborne LiDAR data based on multi-constraints graph segmentation. In this paper,
the graph structure of the point cloud was first built. Afterwards, the object primitives were
obtained based on the multi-constraints graph segmentation. In doing so, the point-based
building extraction is transformed into the object-based building extraction to improve
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the efficiency of the method. After that, the initial building point cloud is extracted based
on the different spatial geometric features of each object primitive. To improve the com-
pleteness of building extraction, this paper proposed a multi-scale progressive growth
optimization method to recover some omitted building points located on the ridge and
edge areas. Three public datasets with different building environments provided by ISPRS
were adopted for the testing. The experimental results showed that the proposed method
can achieve good building extraction performance in all the three testing areas. Compared
with other ten famous building extraction methods, the proposed method also performed
the best. Two other publicly available datasets provided by the OpenTopography were
also used for further testing. The experimental results showed that the proposed method
has strong robustness and promising performance in building extraction. In addition, the
completeness and correctness achieved by this method were relatively high and balanced.
It reveals that the proposed method can detect more buildings while ensuring the accuracy
of the results. However, the implementation of the proposed method needs setting of
some parameters, such as the number of neighboring points k and the angle threshold
ς. To ease the implementation of the proposed method, this paper set fixed values for
the parameters. However, to obtain better building extraction results, it is necessary to
adjust the parameters according to the point clouds with different densities. In future work,
we will try to improve the automation of the proposed method to make the parameters
adjusting automatically according to the particularity of each point cloud.
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