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Abstract: It is of great significance to apply the object detection methods to automatically detect
boulders from planetary images and analyze their distribution. This contributes to the selection of
candidate landing sites and the understanding of the geological processes. This paper improves the
state-of-the-art object detection method of YOLOv5 with attention mechanism and designs a pyramid
based approach to detect boulders from planetary images. A new feature fusion layer has been
designed to capture more shallow features of the small boulders. The attention modules implemented
by combining the convolutional block attention module (CBAM) and efficient channel attention
network (ECA-Net) are also added into YOLOv5 to highlight the information that contribute to
boulder detection. Based on the Pascal Visual Object Classes 2007 (VOC2007) dataset which is widely
used for object detection evaluations and the boulder dataset that we constructed from the images
of Bennu asteroid, the evaluation results have shown that the improvements have increased the
performance of YOLOv5 by 3.4% in precision. With the improved YOLOv5 detection method, the
pyramid based approach extracts several layers of images with different resolutions from the large
planetary images and detects boulders of different scales from different layers. We have also applied
the proposed approach to detect the boulders on Bennu asteroid. The distribution of the boulders on
Bennu asteroid has been analyzed and presented.

Keywords: planetary exploration; Bennu asteroid; boulder detection; YOLOv5; boulder distribution;
attention mechanism; planetary image

1. Introduction

With the development of science and technology, more and more probes are launched
to explore the planets. The probes take lots of images of the planets and provide valuable
data for scientists. Because there are some typical objects such as the craters and boulders
on the surfaces of planets, it is of great significance to detect these objects from planetary
images and analyze their distribution. This will contribute to the selection of candidate
landing sites and the understanding of the geological processes [1–5]. Among these objects,
boulders are the frequent features on the surfaces of solid planets, especially for asteroids.
For example, the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and
Security-Regolith Explorer) mission confirmed that Bennu asteroid (101955) is a rubble
pile dominated by boulders [6]. In light that the boulders are usually large in number and
diverse in scale, it is beneficial to apply the object detection methods to detect the boulders
in images of the planetary surface automatically.

In recent years, lots of novel object detection methods have been presented to detect
objects from images with the tremendous success of deep learning. Generally, these
methods can be divided into two categories: two-stage and single-stage. The two-stage
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detection methods firstly extract the regions of interest (ROI) from the input images,
and then carry out bounding box regression and classification within these ROIs. The
single-stage detection methods view the object detection as a regression problem and do
the localization and classification in the same stage. The two-stage detection methods
have achieved good results in detection accuracy but have lower real-time performance.
Meanwhile, the single-stage detection methods have slightly lower accuracy but higher
detection speed. Thus, these single-stage detection methods are widely used in many
studies. Among them, YOLOv5 [7] has achieved the state-of-the-art performance.

However, it is challenging to apply the object detection methods such as YOLOv5
directly to detect the boulders from the planetary images. First, the images of the planetary
surface are often large in size, but the images fed into the YOLOv5 usually have a much
smaller size. The large images of the planets need to be cut into smaller slices. This may
lead to the large boulders being cut into several parts which are located in different slices.
As a result, one boulder is wrongly recognized as several boulders. Second, the images
returned by probes are often gray in color and the boulders in the images are blurred
with the background due to the lack of contrast. Specifically, the boulders always pile up
together. These also affect the performance of the object detection methods in detecting the
boulders, particularly the small boulders from planetary images.

To address these challenges, this paper improves YOLOv5 detection methods with at-
tention mechanism and proposes a pyramid based approach to detect multi-scale boulders
from the planetary images. The attention mechanism is a way that enforces the learning
process to focus on the important regions of the input objects such as the images by ad-
justing the weights to different regions. It is often used to obtain more critical information
from the input objects. In our experiment, the input objects refer to the Bennu images or
VOC2007 images to be detected. By introducing attention mechanism into YOLOv5 model,
our aim is to enable the detection method to focus on the regions of interest in the images
and enhance its performance in boulder detection. At the same time, the pyramid based
approach aims to extract different layers of images with different resolutions from the large
planetary image and detect the boulders of different scales from different layers. The main
contributions of this paper are as follows:

• The YOLOv5 detection methods are improved by applying the attention mechanism.
Besides three feature fusion layers which aggregate the feature maps of different levels
to obtain more contextual information, an additional shallow layer is added to obtain
more feature information of the small boulders. In addition, inspired by the idea of
residual networks, new connections have been added to bring feature information
from backbone network into these feature fusion layers to further reduce the feature
information loss of the small boulders. Moreover, the attention modules implemented
by combining the CBAM [8] and ECA-Net [9] attention mechanisms have been added
into each feature fusion layer to highlight the information that contributes to the boul-
der detection. The evaluations have shown that these improvements have increased
the performance of YOLOv5 by 3.4% in precision.

• A pyramid based approach is designed to detect multi-scale boulders. From the
input large image, the proposed approach obtains several layers of images with
lower resolution through downsampling. Then, these layers of images are cut into
small slices which are fed into the improved YOLOv5 detection methods for boulder
detection. Afterwards, the detection results of different layers are relocated to the
original large image, and the non-maximum value suppression (NMS) [10] is used to
filter the duplicate results. We have applied the proposed boulder detection approach
to detect the boulders on the Bennu asteroid. The distribution of the boulders on
Bennu asteroid has been also analyzed and presented.

The rest of the paper is organized as follows. Section 2 introduces the detection
methods including the improved YOLOv5 and the pyramid based approach. Section 3
describes the datasets and the results, while Section 4 discusses the feasibility of the
proposed approach. Section 5 is a summary of our work.
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2. The Methods

In this section, we present the detection methods that we propose for detecting
boulders from planetary images. We first give a brief introduction about the state of the
art of the object detection methods based on deep learning, and then detail the YOLOv5
detection method and our improvements. Finally, the pyramid approach for detecting
boulders from large planetary images is described.

2.1. The State of Art Object Detecting Methods Based on Deep Learning

As stated before, recent object detection methods can be divided into two categories:
two-stage and single-stage. Typical two-stage object detection methods include R-CNN [11],
SPP-Net [12], Fast R-CNN [13], Faster R-CNN [14], etc. R-CNN uses convolutional neural
network for object detection. It uses the selective search algorithm to extract candidate
frames, takes CNN to extract features from these candidate frames, and finally applies SVM
classifier for classification. Although the detection accuracy is greatly improved compared
to the traditional object detection methods, the method is more complicated and costs more
time. In order to reduce the amount of calculation, Kaiming He et al. proposed SPP-Net,
which introduced spatial pyramid pooling. It can extract features from arbitrary regions,
making the network capable of detecting objects from the input images of various sizes.
Later, the author of R-CNN designed Fast R-CNN, which adopted the idea of SPP-Net
to segment the feature maps using rectangular boxes of specific size to obtain features
in different regions, and used softmax [15] instead of SVM to classify the objects. In the
same year, S. Ren et al. designed the Faster R-CNN network. Faster R-CNN proposed an
anchor frame mechanism to generate the candidate frames and achieved faster candidate
frame generation.

Typical single-stage object detection methods include the series of SSD detection
methods and the series of YOLO detection methods. The series of SSD detection methods
include SSD [16], DSSD [17], ESSD [18], MDSSD [19], etc., and the series of YOLO detection
methods include YOLO [20], YOLOv2 [21], YOLOv3 [22], YOLOv4 [23], and YOLOv5 [7].
In 2015, Joseph R et al. proposed YOLO. The core idea is to segment each image into
7× 7 sized squares. Each square is responsible for detecting and classifying the objects in
that region. YOLO discards the step of generating suggestion boxes, reducing calculation
and time-consumption. Since only the last layer of feature maps is used, the model
has a poor detection performance on small objects. To improve the detection accuracy,
Liu et al. in 2016 introduced an anchor frame mechanism in SSD while using VGG-16 [24]
as a feature extraction network and designed an image pyramid structure so that the
shallow feature maps and the high-level feature maps are used to detect small and large
objects respectively. YOLOv2 and YOLOv3 also use an anchor frame mechanism, which
improves the precision and detection speed at the same time. YOLOv2 uses Darknet-
19, which borrows a priori frame from the RPN network [25], to maintain the detection
speed while improving the accuracy of the model. YOLOv3 uses a 53-layer convolutional
network for feature extraction to obtain three different sizes of feature maps. In 2017,
Liu et al. proposed the DSSD object detection network. It uses ResNet101 [26] as a
feature extraction network to extract deeper features, replaces the traditional bilinear
interpolation upsampling with deconvolution, and introduces a residual module in the
prediction phase. The detection accuracy is improved, but the speed shows a decline. In
2018, ESSD and MDSSD introduced high-level semantic information into shallow detail
features and improved detection precision through multi-scale feature fusion. YOLOv4
uses CSPDarknet53 [22] as the backbone network and CIOU_LOSS [27] for prediction
boxes screening, which improves the detection accuracy. YOLOv5 also uses CSPDarknet53,
but the neck network has adopted the feature pyramid network(FPN) [16] and the pixel
aggregation network (PAN) [28] structures. With a lightweight model size, it is comparable
to YOLOv4 in terms of accuracy but superior to YOLOv4 in speed.
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2.2. The YOLOv5 Method

The architecture of YOLOv5 is shown in Figure 1. It can be seen that YOLOv5 network
consists of three parts: backbone part for feature extraction, neck part for feature fusion,
and output part for object detection.

Figure 1. The architecture of the YOLOv5 method. The network consists of three main parts:
backbone, neck, and output. Backbone part focuses on extracting feature information from input
images, neck part fuses the extracted feature information and generates three scales of feature maps,
and the output part detects the objects from these generated feature maps.

The backbone network is a convolutional neural network which extracts feature maps
of different sizes from the input image by multiple convolution and pooling [29]. As shown
in Figure 1, there are four layers of feature maps generated in the backbone network. The
sizes of them are: 152 × 152 pixels, 76 × 76 pixels, 38 × 38 pixels, and 19 × 19 pixels. With
these feature maps of different size, the neck network fuses the feature maps of different
levels to obtain more contextual information and reduce the information loss. In the fusion
process, the feature pyramid structures of FPN and PAN are used. The FPN structure
conveys strong semantic features from the top feature maps into the lower feature maps. At
the same time, the PAN structure conveys strong localization features from lower feature
maps into higher feature maps. The two structures jointly strengthen the feature fusion
capability of the neck network. Specially, it can be seen that there are three feature fusion
layers which generate three scales of new feature maps with the sizes of 76 × 76 × 255,
38 × 38 × 255, and 19 × 19 × 255, where 255 indicates the number of channels. The smaller
the size of the feature maps, the larger the area of the image that each grid unit in the
feature map corresponds to. This indicates that it is suitable to detect large objects from the
19 × 19 × 255 feature maps, while the 76 × 76 × 255 feature maps are suitable for detecting
small objects. From these new feature maps, the output network part performs object
detection and classification.

In the architecture, the focus module slices the images and concatenates them, whose
purpose is to better extract the features during downsampling. The CBL module consists
of the modules of convolution, normalization, and Leaky_relu activation function [30].
Obviously, there are two kinds of cross-stage partial network (CSP) [31] in YOLOv5. One is
used in backbone network and the other in neck. With cross-layer connectivity to connect
the front and back layers of the network, CSP network aims to improve the inference
speed while maintaining the precision by reducing model size. The two kinds of CSP
networks have small difference in the structure. The CSP network in the backbone consists
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of one or more residual units, while the CSP network in neck replaces the residual units
with the CBL modules. Moreover, the SPP module means the spatial pyramid pooling
module which executes the maximum pooling with different kernel size and fuses the
features through concatenating them together. Pooling mimics the human visual system
by performing dimensionality reduction (downsampling) operations to represent image
features at a higher level of abstraction. It is mainly the compression of the input feature
map. On the one hand, it makes the feature map smaller and simplifies the computational
complexity of the network; on the other hand, it performs feature compression and extracts
the main features. The Concat module means the tensor concatenation operation.

2.3. The Attention Mechanism

The attention mechanism is to obtain more critical information by focusing on the
important regions of the input objects. In practice, there are different implementations
for the attention mechanism in different applications. CBAM [8] is a lightweight widely
used attention mechanism that combines spatial and channel attention. At the same time,
ECA-Net [9] is an effective channel attention mechanism which can capture information
about cross-channel interactions, i.e., the dependence between channels, and obtain a
significant performance increase.

2.3.1. CBAM

The CBAM [8] is a combination of spatial and channel attention. The channel attention
is to learn the weights of different channels and multiple the different channels with the
weights to enhance the attention to the key channel domain. For the feature map of a
layer F ∈ R(C×H×W) where C represents the number of channels, H and W represent the
length and width of the feature map in pixels, channel attention module first calculates the
weights of each channel Mc ∈ R(c×1×1) according to the following formula.

Mc(F) = σ(W1(W2(Fc
avg)) + W1(W2(Fc

max))) (1)

In above formula, Fc
avg and Fc

max represent the feature maps after average and maximize
pooling, W1 and W2 represent the weights of two layers of a multilayer perception, and σ
is the sigmoid activation function. Then, the channel attention feature map is obtained by
multiplying Mc ∈ R(c×1×1)) with the original feature map.

The channel attention feature map will be sent to the spatial attention module. The
spatial attention focuses on the location information of the object on the images and
selectively aggregates the spatial features of each space through the weighted sum of
spatial features. Taking the channel attention feature map Fc ∈ R(C×H×W) as input, the
maximize pooling and average pooling are performed successively as shown in Formula (2).
Then, the spatial attention weight map Ms ∈ R(1×h×w) is obtained through the convolution
with the kernel of 7× 7 as shown in Formula (3).

Fs =
1
c ∑

i∈c
Fc(i) + max

i∈c
Fc(i) (2)

Ms = σ( f (7×7)(Fs)) (3)

After that, the spatial attention weight map and the input channel attention feature
map are multiplied to obtain the final attention feature map.

2.3.2. ECA-Net

The channel attention in CBAM compresses the spatial dimensionality of the fea-
ture map through global average pooling and maximum pooling to capture nonlinear
cross-channel interactions, which involves dimensionality reduction to control the com-
plexity of the model. However, dimensionality reduction has side effects on capturing the
dependence between all channels. The ECA-Net mechanism [9] avoids dimensionality
reduction by adding a small number of parameters but effectively captures information
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about cross-channel interactions and obtains a significant performance increase. After
channel-level global average pooling without dimensionality reduction, ECA-Net captures
local cross-channel interaction information by considering each channel and its K neighbors.
The convolutional kernel size K represents the coverage of local cross-channel interactions,
i.e., how many neighbors of that channel are involved in the attention calculation. To avoid
manual tuning of K, a method is used to adaptively determine K as shown in Formula (4).

K = ϕ(C) = |
log2(c)

r
+

b
r
|odd (4)

Here, C is the channel dimension, |t|odd denotes the nearest odd number of t, r is set
to 2 and b to 1.

2.4. Improved YOLOv5 with Attention Mechanism

To detect multi-scale boulders from the planetary images, we improve the YOLOv5
detection method with attention mechanism. As shown in Figure 2, there are three im-
provements to the original YOLOv5 architecture: (1) a new feature fusion layer marked
with the green background is added to capture more shallow feature information of small
boulders; (2) the features from the backbone network are brought into the feature fusion
layers (represented by the red lines) to reduce feature information loss of small boulders;
(3) and the attention modules shown with purple color are added into the fusion layers to
highlight the information that contributes to the boulder detection.

Figure 2. The architecture of the improved YOLOv5 method. Compared to original YOLOv5 method,
there are three improvements in the architecture. First, a new fusion layer is added which generates
a large scale of feature map with the size of 152 × 152 × 255. Second, new connections represented
by red lines have been added to bring feature information from backbone into feature fusion layers.
Third, the attention modules are added into feature fusion layers.

First, to improve the performance of YOLOv5 on detecting the small boulders, a new
fusion layer is added which generates a larger feature map with the size of 152 × 152 × 255.
Compared to the original YOLOv5 model in Figure 1, there are four fusion layers in
the improved YOLOv5. The structure of the new fusion layer can be seen in Figure 2.
On the basis of the original network, the fused feature maps are further unsampled and
concatenated with the feature map of 152 × 152 pixels from the backbone network to
generate a new layer of fused feature maps. In this process, the CSP modules and the CBL
modules are also used.

Second, four connections represented by the red lines are added to bring the feature
information from the backbone network (152 × 152 pixels, 76 × 76 pixels, 38 × 38 pixels,
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19 × 19 pixels) into the feature fusion layers in the neck network. Based on the idea of
residual networks, these connections can enhance the back propagation of gradients, avoid
gradient fading, and reduce the loss of the feature information of small objects.

Third, in order to amplify the information of the boulders in the images, the attention
modules are added into feature fusion layers. As shown in Figure 3, the attention modules
are implemented as a combination of the CBAM and the ECA-Net. That is, the channel
attention is selected from ECA-Net [9] and the spatial attention is from CBAM [8]. The
ECA module first learns directly on the features after global average pooling (GAP) by 1D
convolution and multiplies the updated weights with the input feature map to generate a
new feature map. The feature map generated by the ECA module is used as the input of the
spatial attention module of CBAM. Through spatial attention module, the spatial attention
feature map will be generated and summed with the original feature map to simulate the
residual block structure. In the end, the final feature map is output after applying the Relu
activation function to the summed feature map.

Figure 3. The structure of the attention modules. The attention modules are implemented by com-
bining the ECA and the CBAM attention mechanisms. The above part is the ECA attention module
which implements the channel attention, and the blow part is the CBAM spatial attention module.

2.5. The Pyramid Based Approach Using Improved YOLOv5 for Detecting Boulders

In light of the large size of the images from the planets and the diverse scales of the
boulders in the images, an image pyramid based approach is designed in this paper for
detecting boulders based on the improved YOLOv5 detection method. The basic idea is to
construct an image pyramid from the large image and then detect the objects from each
layer with different spatial resolutions to improve the detection precision. The framework
of the proposed pyramid based approach is shown in Figure 4, which consists of four steps:
Pyramid Construction, Hierarchical Slice, Boulder Detection, and Results Relocation.

Taking a large image as input, the first step is to construct an image pyramid by
extracting several layers of images with different resolutions from the input large image
through downsampling. Because the images fed into the YOLOV5 usually have a much
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smaller size such as 300 × 300 pixels, we need to cut the input large images into a set of
small images for YOLOv5. However, the cutting process may cut the large boulders into
several parts which are located in different small images and leads to one boulder being
wrongly recognized as several boulders. The purpose of constructing image pyramid is to
avoid that case. For the large boulders in a lower layer of the image pyramid, they will
become smaller in the higher layer of the image pyramid. Thus, the large boulders can be
accurately recognized from the image of higher layer. Furthermore, through relocating the
detection results of each layer into the original input image, the wrongly detected results
generated in the lower layers will be eliminated with the NMS algorithm. The number of
layers extracted is determined according to the size of the original image and the size of
the input of YOLOv5 method. The size of the top layer should be less than four times the
input size of YOLOv5 method. Otherwise, once the size of one generated layer is larger
than four times the input size of YOLOv5 method (both the width and height should be
more than twice the width and height of the input image of YOLOv5 respectively), a new
higher layer will be generated.

Figure 4. The framework of the pyramid based approach.

The second step is to cut the images of each layer of the pyramid into small slices
which can be fed into the improved YOLOv5 method. The images of each layer are cut
separately according to the size of the input of YOLOv5 method. The third step is the
boulder detection process in which the boulders are detected by applying the improved
YOLOv5 method. We feed each slice into YOLOv5 and use it to predict the position of the
boulders on the slices. The fourth step is to relocate the detection results into the original
input image and eliminate the duplicate ones. Actually, there are two relocation steps. One
is to relocate the detection results from each slice to their corresponding layer. Another is
to further relocate the detection results of each layer to the original input image. Once all
the detection results are mapped to the original input image, the NMS algorithm is applied
to eliminate the duplicate detection results.

3. The Datasets and Results

To evaluate the improved YOLOv5 method, two datasets have been used. One is the
VOC2007 [32] which is widely used for the evaluations of detection methods, and the other
is the dataset constructed from the images of Bennu asteroid provided by OSIRIS-REx.
We have also applied the proposed pyramid based approach to detect the boulders on
the surface of Bennu asteroid and analyze their distribution. In this section, we describe
the datasets, the implementations and settings, and the results of the evaluation. The
distribution of the boulders on Bennu asteroid is also presented.

3.1. Datasets

To test the performance of the improved YOLOv5 on the detection of boulders, we
have constructed a boulder dataset from the images of the Bennu asteroid. The Bennu
asteroid is currently more than 200 million miles away from Earth. The diameter of Bennu’s
equator is about 492 m. The Lincoln Near-Earth Asteroid Research Team discovered the
Bennu asteroid on 11 September 1999 [33]. The global map of the surface of the Bennu
asteroid was created by stitching together images collected by NASA’s OSIRIS-REx space-
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craft between 7 March and 19 April 2019. A total of 2,155 PolyCam images were stitched
together and corrected to make a mosaic. At 2 inches (5 cm) per pixel, this is the highest
resolution available globally for mapping planetary bodies. The spacecraft collected these
images at a distance of 1.9 to 3.1 miles (3.1 to 5 km) from the surface of the asteroid [34].

The region of 121°E–178°E, 90°S–88°N in the global map of the Bennu asteroid was
selected as the dataset for model training, and we cut the selected part into small slices
of 300 × 300 pixels in 8-bit JPG format. As a result, there are 884 slices in total. For these
small slices, some of them do not have boulders. Therefore, we have removed these slices
in which there are none boulders manually. These images without boulders are not used to
train the model but are used for the testing sessions. Finally, there are 729 slices that remain.
For these slices, the boulders are labeled manually by using the tool of LabelImg. During
the marking process, we mark as many boulders that can be recognized by human eyes as
possible. In practice, the dataset for YOLOv5 is enhanced with Mosaic technique. That is,
the dataset will be enriched by the operations such as random scaling and stitching. To
train YOLOv5 model for detecting boulders, the enriched dataset is divided into training
set and test set according to the ratio of 9:1.

Besides the boulder dataset, the dataset of VOC2007 is also used to further test whether
the improved YOLOv5 has better performance on the commonly used dataset. VOC2007
contains 9963 labeled images, with 24,640 objects labeled in 20 categories, such as people,
cars, dogs, chairs, etc. It is a benchmark for the evaluations of the image classification
and recognition methods. It has been widely used for the evaluations of the detection
methods such as Faster R-CNN [14], YOLO [20], and YOLOv2 [21]. In our experiments,
the VOC2007 dataset is divided into training and test sets in the same way as the Bennu
asteroid dataset.

3.2. The Implementations and Settings

The implementation of YOLOv5 [7] comes from GitHub which is written in Python
language. The training was run under Linux system, CUDA version 10.1, Pytorch version
1.6.0, Python version 3.8, and NVIDIA Tesla T4. We have trained the detection methods for
300 epochs by using the Adam optimizer [35] with a learning rate of 0.01 and a batch size
of 16. Moreover, the confidence threshold is set to 0.25, which means that objects with a
similarity of 0.25 or above will be marked.

3.3. The Comparison with Related Object Detection Methods

To validate the performance of the proposed improved YOLOv5, we have com-
pared it with the related detection methods including SSD [16], ESSD [18], MDSSD [19],
YOLOv3 [22], YOLOv4 [23], and YOLOv5 [7]. The precision and the FPS (frames per
second) are used as measurement indicators. Precision is calculated as the proportion of
the number of positive samples correctly predicted to the number of samples predicted as
positive samples. It is defined as follows:

Precision =
TP

TP + FN
(5)

The TP and FN represent the number of predictions of true positive samples and the
number of predictions of false negative samples which are negative samples but predicted
as positive samples. When the boulder prediction category is correct and the intersection
over union (IoU) [36] measuring the ratio of the intersection between the prediction box
and the ground truth is larger than a threshold (0.6 in our experiments), the detection is
considered to be correct. FPS indicates the number of images that can be processed by
the object detection methods in each second, which examines the real-time performance
of the detecting methods. The higher the FPS value, the faster the detection speed. The
comparison results are shown in Table 1.
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From the results in Table 1, it can be seen that the improved YOLOv5 outperforms the
other detection methods. For example, it outperforms the YOLOv5 by 3.4% on the boulder
dataset and 1.5% on the VOC2007 dataset. These results show that the improved YOLOv5
detection method achieves the best result in terms of precision. However, in terms of FPS,
the detection speed has dropped compared to the original YOLOV5 model.

Table 1. The comparison results with related methods.

Dataset Method Backbone Precision FPS

SSD VGG-16 44.1% 11
ESSD VGG-16 43.0% 11

MDSSD VGG-16 53.0% 4
YOLOv3 Darknet-53 59.4% 33
YOLOv4 CSPDarknet53 72.0% 32
YOLOv5 CSPDarknet53 73.2% 30

Bennu

Ours CSPDarknet53 76.6% 25

SSD VGG-16 77.5% 46
ESSD VGG-16 79.4% 25

MDSSD VGG-16 78.6% 28
YOLOv3 Darknet-53 74.5% 36
YOLOv4 CSPDarknet53 78.1% 35
YOLOv5 CSPDarknet53 82.7% 36

VOC2007

Ours CSPDarknet53 84.2% 28

3.4. The Analysis of the Boulders on Bennu Asteroid

To validate the proposed approach, we have applied it to detect the boulders on global
map of the Bennu asteroid and analyze their distribution. In this section, we present the
results of the boulder detection and analysis, including the total number of the boulders in
different regions of the Bennu asteroid, and the number of boulders of different scales.

As the size of the entire Bennu asteroid image is 31,417 × 15,709 pixels, a pyramid
consisting of six layers is constructed. Accordingly, as shown in Table 2, there are 4802 slices
of 320 × 320 pixels for the first layer, 1176 slices of 320 × 327 pixels for the second layer,
288 slices of 327 × 327 pixels for the third layer, 72 slices of 327 × 327 pixels for the fourth
layer, 18 slices of 327 × 327 pixels for the fifth layer, and 3 slices of 327 × 491 pixels for the
sixth layer. Moreover, there are no overlapping areas between the individual slices of each
layer. Table 2 also shows the number of boulders detected from each layer and the final
detection result. We can see that the final detection result of boulders is less than the result
of first layer. This is because when generating the slices of the first layer, the large boulders
may be cut into several parts which are wrongly recognized as boulders as well. These
boulders wrongly recongnized will be filtered in the proposed pyramid based approach.

Table 2. The number of boulders detected from the images of Bennu asteroid.

Layer Layer Size Slice Size Slices Num Boulders Num Detected Result

First layer 31,417 × 15,709 320 × 320 4802 276,431
Second layer 15,709 × 7855 320 × 327 1176 99,812
Third layer 7855 × 3928 327 × 327 288 19,768
Fourth layer 3928 × 1964 327 × 327 72 3562
Fifth layer 1964 × 982 327 × 327 18 510
Sixth layer 982 × 491 327 × 491 3 21

257,238



Remote Sens. 2021, 13, 3776 11 of 19

3.4.1. Statistics of the Number of Boulders

From Table 2, it can be seen that 257,238 boulders are identified from the image of
Bennu asteroid. To further understand these boulders, we have estimated the size of
each boulder by using the diameter of the boulders generated by the improved YOLOv5
detection method. We have sorted the 257,238 detected boulders by diameter size. We
divided the boulders into four scales according to diameter and counted the number of
boulders in each scale, as shown in Figure 5. The horizontal coordinate indicates the
diameter of the boulder, and we use "D" to represent the diameter in meters (m).

Figure 5. The number and proportion of the boulders of different scales.

The results in Figure 5 show that most of the detected boulders are less than 5 m in
diameter. More accurately, there are 249,351 boulders whose diameters are less than 5 m,
which accounts for 96.9% of the total number of detected boulders. The boulders whose
diameters are more than 5 m accounts for 3.1% of the total boulders. The number of the
large boulders whose diameters are more than 30 m is only 7.

3.4.2. Boulder Distribution Statistics

In order to analyze the distribution of the boulders on the Bennu asteroid, we have
statistically analyzed the number of the detected boulders in the regions of 40°N–88°N,
0°–40°N, 0°–45°S, 45°S–90°S. Figure 6 shows the number of boulders in these regions.
It can be seen that there are 34,472 boulders detected in the 40°N–88°N region, 71,299
boulders in the 0–40°N region, 87,065 boulders in the 0°–45°S region, and 64,402 boulders
in the 45°S–90°S region. By comparison, the region of 0°–45°S has most boulders and
accounts for about 34% of the total number of boulders. The region of 40°N–88°N has the
fewest boulders and accounts for 13%. In addition, the northern hemisphere accounts for
about 41% of the total number of boulders, and at the same time the southern hemisphere
accounts for about 59% of the total number of boulders. This means that compared
to northern hemisphere, there are more boulders in the southern hemisphere of Bennu
asteroid. Furthermore, the 45°S–40°N region accounts for 62% of the total amount of
boulders, indicating that most boulders are distributed near the equator. These results
show the boulder distribution on the surface of Bennu asteroid. Furthermore, the boulders
detected are marked by the yellow boxes.
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Figure 6. The number and proportion of boulders in each region.

Figure 7 shows the distribution of the boulders whose diameters are less than 5 m.
The upper subfigure shows the number of these boulders in each region, and the subfigure
below shows the distribution of these boulders across the surface of the Bennu asteroid. It
can be seen that there are 155,226 boulders with the diameters less than 5 m detected in
the region of 40°N–45°S, accounting for about 62% of the total number. This indicates that
most of the boulders whose diameters are less than 5 m are near the equator. In addition,
the region of 40°N–88°N has the lowest number of boulders with the diameters are less
than 5 m, accounting for only 13% of the total number. These are consistent with that
shown in the subfigure below Figure 7. From the subfigure below Figure 7, we can see that
boulders less than 5 m in diameter are more densely distributed, especially in the southern
hemisphere. Among these detected boulders whose diameters are less than 5 m, there is
a proportion of buoulders which are less than 2.5 m in diameter (pixel values less than
20 pixels). We infer that there may be false detections in boulders smaller than 5 m. This is
partly due to the fact that our detection precision was only 76.6%. This may be also partly
caused by that we mark as many boulders visible to the human eye as possible and some
of them may be small in diameter. In fact, it is difficult to determine which stones are not
the boulders while zooming into the images to mark the boulders.
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Figure 7. The distribution of the detected boulders whose diameters are less than 5 m in each region.

Figure 8 shows the distribution of boulders whose diameters are between 5 m and
10 m in each region on the surface of the Bennu asteroid. For the numbers shown in
the subfigure in the up of Figure 8, it can be seen that there are 4082 detected boulders
whose diameters are between 5 m and 10 m at the poles, i.e., the regions of 40°N–88°N and
45°S–90°S, accounting for about 59% of the total number. This shows that more boulders
of this kind are located at the poles. It can be also seen from that shown in the subfigure
below Figure 8.
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Figure 8. The distribution of the detected boulders whose diameters are between 5 m and 10 m in
each region.

Figure 9 shows the distribution of the boulders whose diameters are between 10 m
and 30 m in each region on the surface of the Bennu asteroid. There are 661 boulders with
the diameters between 10 m and 30 m detected in the regions of 40°N–88°N and 45°S–90°S,
accounting for about 73% of the total number. From the subfigure below Figure 9, it can be
seen that the boulders are also slightly more numerous at the poles compared to these near
the equator.

Figure 10 shows the distribution of the boulders whose diameters are more than 30 m
in each region on the surface of the Bennu asteroid. It can seen that there are a total of seven
boulders whose diameters are more than 30 m detected, including four in the southern
hemisphere and three in the northern hemisphere.
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Figure 9. The distribution of the detected boulders whose diameters are between 10 m and 30 m in
each region.

Figure 10. Cont.
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Figure 10. The distribution of the detected boulders whose diameters are more than 30 m in
each region.

4. Discussion
4.1. Applications and Limitations

The method proposed in this paper focuses on the automatic detection of boulders in
planetary images, which is promising for the analysis of the distribution of the boulders on
the surface of planets. We evaluate the proposed method on the Bennu asteroid dataset
labeled by us and on a typical object detection dataset—VOC2007. The results show that
our improved YOLOv5 method not only improves the precision of the boulder detection
from planetary images but also has better performance on the common object detection
dataset. This demonstrates the superiority and applicability of our proposed method.

However, it should be noted that the proposed method still has some limitations. For
example, although our method has improved precision compared to other methods, the
precision only reaches 76.6%. This means more improvements are required in the future.
Moreover, while improving the detection precision, it can be seen that the detection speed
has dropped compared to other methods. The detection speed of our method is only close
to 25 FPS on the Bennu asteroid dataset and 28 FPS on the VOC2007 dataset. This has not
reached the standard of real-time detection.

4.2. Hyperparameter Exploration

There are several training parameters which can affect the performance of the deep
learning model trained. These parameters include the size of input images, the number of
epochs, the batch size representing the number of images input to the model each time, the
learning rate, and the optimizer used. In our experiments, we have trained the detection
methods for 300 epochs by using the Adam optimizer [35] with a learning rate of 0.01 and a
batch size of 16. Whether these settings are optimal need to be verified. Therefore, we have
done several experiments by adjusting these parameters and observed the performance
changes of YOLOv5 based on the Bennu asteroid dataset. The experimental results are
shown in Table 3. The “exp1-exp8” in Table 3 represents the id of the experiments, the
“Img size” represents the size of the input image, the “Epochs” is the number of training
iterations, the “Batch size” is the number of samples input to the network each time, and
the “LR” is the learning rate.

In the experiments, we found that the loss tended to be stable when the epoch was
close to 300, so the epoch is set to 300. From the Table 3, we find that exp8 has the highest
precision in which the batch size is set to 16, the learning rate to 0.01, and the Adam
optimizer [35] which is more suitable for the small dataset that is used in the training. This
verifies our settings to these hyperparameters.
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Table 3. Parameter adjustment and results.

Number Img Size Epochs Batch Size LR Optimizer Precision

exp1 640 300 16 0.01 Adam 72.0%
exp2 320 300 16 0.01 SGD 71.5%
exp3 320 300 16 0.001 Adam 71.7%
exp4 320 300 16 0.1 Adam 72.4%
exp5 320 300 8 0.01 Adam 72.1%
exp6 320 300 32 0.01 Adam 71.2%
exp7 320 300 64 0.01 Adam 70.1%
exp8 320 300 16 0.01 Adam 73.2%

4.3. The Ablation Study

Ablation study is a labour-saving way to study causality. In the case of complex deep
neural networks, the performance of the network is usually studied by removing parts
of the network in order to better understand the behavior of the network. We have put
forward three improvements to YOLOv5 method. Whether all these improvements work
well and whether there is interaction between them also need be investigated. We have run
improved YOLOv5 with different improved settings on the Bennu asteroid dataset and
recorded their performance in Table 4.

Table 4. The results of ablation study. In the first column, the “YOLOv5” detection method in the first row refers to the
original YOLOv5 model; the “improved YOLOv5” in the second row refers to the model that adds the new feature fusion
layer to YOLOv5; the third row refers to the model that further adds new connections into YOLOv5 to bring shallow features
from backbone network for feature fusion; the fourth row refers to the model that applies ECA attention mechanism to
model of the third row; the fifth row refers to the model that applies the CBAM attention mechanism to the model of the
third row; and the sixth row refers to our proposed model that applies the combined ECA and CBAM attention mechanism
to the model of third row.

Method Scale4 Layer New Connections
Attention Mechanism

Precision
ECA CBAM ECA+CBAM

YOLOv5 × × × × × 73.2%
Improved
YOLOv5 X × × × × 75.1%

Improved
YOLOv5 X X × × × 75.5%

Improved
YOLOv5 X X X × × 76.1%

Improved
YOLOv5 X X × X × 73.7%

Ours X X × × X 76.6%

As shown in Table 4, the precision for YOLOv5 is 73.2% (first row). Then we evaluated
the effectiveness of the new feature fusion layer of Scale4 and obtained the precision of
75.1% (second row). This shows that the new feature fusion layer works and contributes
to boulder detection. Next, we tested the new connections to bring shallow features from
backbone network for feature fusion. The precision reached 75.5% (third row). This also
means that the added connecting lines have a positive effect on the detection of boulders.
Finally, we tested the effectiveness of the attention modules added. When we applied the
ECA-Net attention modules to YOLOv5, the precision value reached 76.1% (forth row).
When we applied the CBAM attention modules to YOLOv5, the precision value was 73.7%
(fifth row). This shows that there are interactions between the new feature fusion layer, the
new connections and the CBAM attention mechanism, and they may conflict with each
other. However, when we combined ECA-Net with CBAM to implement the attention
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modules, the precision reached 76.6% (last row). This result indicates the effectiveness of
the attention mechanism which combines ECA-Net with CBAM.

5. Conclusions

This paper has improved the state-of-the-art object detection method of YOLOv5 for
detecting boulders from planetary images. A new feature fusion layer has been added
into YOLOv5 to capture more feature information of small boulders. The shallow features
have also been brought from the backbone network into feature fusion layers to further
reduce the feature information loss of small boulders. Moreover, the attention modules
implemented by combining the CBAM and ECA-Net attention mechanisms are also added
to highlight the information that contribute to the boulder detection. Based on the VOC2007
dataset which is widely used for detection evaluations and the boulder dataset we have
constructed from the images of Bennu asteroid, the evaluation result has shown that
YOLOv5 has been improved by 3.4% in precision. In light of the multi-scales of the
boulders and the large size of the planetary images, a pyramid based approach is also
designed to detect boulders of different scales from different layers of images that have
different resolutions. We have applied the proposed approach to detect the boulders from
the images of Bennu asteroid. The distribution of the boulders on Bennu asteroid has been
also analyzed and presented in this paper.
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