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Figure S1. Flowchart of the methodology showing the four processing strategies for UAV-DAP-based DTM generation. 

1.1. Method A 
This method is the most straightforward and simple method to estimate the under-

lying terrain and does not involve machine learning. We present it as a basic method to 
which the more advanced methods can be compared (see below). In this method, the DTM 
is estimated by subtracting a regional average and representative tree height, inferred 
from an independent dataset, from a coarse-resolution DSM. The underlying assumption 
is that the dense canopy is relatively homogeneous at coarser spatial resolution and cova-
ries with terrain. For the DRC, a national vegetation height map is available with a reso-
lution of 100 m (UCLA, WWF, BMUB, KFW, 2017). We desampled the DAP-derived DSM 
into coarse resolutions (i.e., 5 m, 10 m, 30 m, 50 m, 80 m and 100 m) and assessed their 
correlation with the reference DTM. After identifying the resolution at which the correla-
tion between reference DTM and DSM was the highest, the mean regional vegetation 
height was subtracted from this DSM to obtain an estimated DTM (DTMa; Figure S1). The 
products described here are referred to as DSMa, DTMa and CHMa in the remainder of the 
text. 
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1.2. Method B 
In this second method, we use a simple ground filtering method to identify ground 

points and interpolate these identified ground points to derive the DTM. First, a DEM was 
constructed by rasterizing the DAP-based point cloud using minimum elevation values 
of each grid at 0.5 m resolution. We then used local minima as filtering method to select 
the lowest point in a moving window as a potential ground point. As presented in the 
main manuscript, the size of moving window affects the number and probability of the 
points to be the true ground points. In this method, we used a large moving window (ra-
dius of 50 m) to detect the local minima for each cell. The rationale behind this approach 
is that given the large size of the moving window, the selected points would have a high 
possibility to be ground points. These points are assumed as ground points and interpo-
lated to generate a DTM using original kriging (DTMb; Figure S1). The products described 
here are referred to as DSMb, DTMb and CHMb in the remainder of the text. 

1.3. Method C 
The third method is similar to method B, but here we use a much smaller moving 

window of 5 m. This substantially increases the number of selected points that are candi-
dates to be true ground points. This approach therefore requires an additional classifica-
tion procedure to classify the selected minima in true ground points and low points that 
are understory vegetation (and should not be included in the estimation of the DTM). To 
this end, we performed a supervised classification using an ensemble learning method 
based on a set of spectral and structural features derived from the raw DAP-based point 
cloud. All candidate points within a +/-2 m distance from the true ground, as inferred from 
the reference ALS-DTM, were considered to be true ground points, while others were re-
garded as non-ground (i.e., substory). This threshold of 2 m was determined after an anal-
ysis of the difference between the DAP cloud and ALS-derived ground points (Figure 7 in 
the main manuscript). Afterwards, structural features were extracted around these candi-
date points to contribute to the classification of ground points, including grid density 
(number of points in each cell), standard deviation of height and height range in each cell 
(demonstration see Figure A3). These cell-based statistics were performed at grid sizes of 
1, 5, 10, 20 and 40 m, respectively. In addition, spectral features of the candidate points 
were extracted from both the top and bottom layer of the cloud, including their R-, G- and 
B-band values, as well as YUV values (a brightness index). Considering possible changes 
in light conditions during data collection, we included only their normalized values into 
analysis, i.e., subtracting the mean and dividing by the standard deviation. As such, each 
value would reflect the distance from the mean in units of standard deviation. In total, 23 
variables were extracted into the exploratory analyses to determine their importance and 
construct the classification model. A random forest (RF) classification was applied to clas-
sify the candidate points into ground or non-ground points. A subset area of the 
Yangambi site was used for model calibration. As an exploratory method, it provides in-
formation on whether variables are important or not in the classification, which gives di-
rections for final model calibration. We validate the performance of the developed classi-
fication model by applying it on the area not used for model calibration and evaluate the 
estimated DTM by comparing it to the reference DTM. The accuracy of the RF classifica-
tion was estimated by using the proportion of correct predictions among the total points. 
The feature importance of the predicting model was also derived for exploratory analysis 
(Figure A3). The classifier training and assessment were performed in R (Version 3.5.1, R 
Core Team). In the next step, we performed a geometry-based filter, i.e., TIN densification 
filtering algorithm, to further screen ground points. The algorithm first generates a sparse 
TIN through seed points (the original term from the paper, similar with “candidate points” 
in this case by definition) and then iteratively processes layer-by-layer densification until 
all ground points have been classified. The iterations traverse all the unclassified points, 
query the triangles that each point belongs to in the horizontal projection plane and cal-
culate the distance (d) from the point to the triangle and the maximum angle between the 
point and three vertices with the triangle plane. The distance and maximum angle are 
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compared with the threshold values to determine the classification and to repeat this pro-
cess until all ground points have been classified (Zhao et al., 2016). This procedure was 
performed using the LiDAR360 software (GreenValley Ltd.). These resulting selections of 
points are then very likely to be ground points that can be used for interpolation. Finally, 
the DTM was generated by interpolating the filtered ground points using original kriging 
(DTMc; Figure S1). The products described here are referred to as DSMc, DTMc and CHMc 
in the remainder of the text. 

1.4. Method D 
This solution is a slightly modified version in terms of the interpolation method 

based on the former method C. Instead of using ordinary kriging, we applied a co-kriging 
technique, i.e., kriging with external drift (KED), where the aforementioned coarse-DSM 
was used as a co-variable to assist in the interpolation (DTMd; Figure S1). The rationale is 
that the DSM contains information on the underlying topography and can thus improve 
the interpolation, particularly in regions where limited amounts of ground points are de-
tected. This method also allows to create a prediction standard error map. The interpola-
tion was performed in ArcMap 10.4 (ESRI). The products described here are referred to as 
DSMd, DTMd and CHMd in the remainder of the text. 

2. DTM Generation Results Using UAV-DAP Products 
A comparison of DTMs generated from the four methods is shown in Figure S2. 

DTMa showed a less accurate result with an RMSE of 4.58 m and an NSE of 0.53. DTMb 
using a large moving window resulted in an underestimation locally. This indicated that 
the density of points for interpolation was not high enough to retrieve the terrain details. 
DTMc, on the other hand, utilized small moving window for the detection of minima 
points and the RF+TIN classifier well identified ground points, resulting in an improved 
performance with an RMSE of 2.25 m and an NSE of 0.878. Compared with DTMc, the 
DTMd using co-kriging showed better performance. In summary, among the four DTM 
generation approaches, the small moving window along with co-kriging (DTMd) showed 
the best reconstruction (RMSE = 2.1 m, NSE = 0.894), and this method was finally reported 
in the main manuscript.  
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Figure S2: Comparison of DAP-based outputs and the ALS reference. Top: DTMs generated using DAP-based methods 
and the reference ALS DTM. The black marks depict the points that were classified as ground. Middle: Difference map 
between DAP-derived DTMs and the reference ALS DTM and their comparison of elevation values of each grid. Bottom: 
CHMs generated using DAP-based methods and the ALS reference. 
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