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Abstract: The previous multi-track InSAR (MTI) method can be used to retrieve mining-induced three-
dimensional (3D) surface displacements with high spatial–temporal resolution by incorporating multi-
track interferometric synthetic aperture radar (InSAR) observations with a prior model. However,
due to the track-by-track strategy used in the previous MTI method, no redundant observations are
provided to estimate 3D displacements, causing poor robustness and further degrading the accuracy
of the 3D displacement estimation. This study presents an improved MTI method to significantly
improve the robustness of the 3D mining displacements derived by the previous MTI method. In
this new method, a fused-track strategy, instead of the previous track-by-track one, is proposed to
process the multi-track InSAR measurements by introducing a logistic model. In doing so, redundant
observations are generated and further incorporated into the prior model to solve 3D displacements.
The improved MTI method was tested on the Datong coal mining area, China, with Sentinel-1 InSAR
datasets from three tracks. The results show that the 3D mining displacements estimated by the
improved MTI method had the same spatial–temporal resolution as those estimated by the previous
MTI method and about 33.5% better accuracy. The more accurate 3D displacements retrieved from
the improved MTI method can offer better data for scientifically understanding the mechanism of
mining deformation and assessing mining-related geohazards.

Keywords: multi-track; interferometric synthetic aperture radar (InSAR); logistic model; 3D displace-
ments; nonlinear deformation

1. Introduction

Coal is a major component of global fuel supplies worldwide (about 40%) and plays a
crucial role in industries such as iron and steel manufacturing [1]. However, underground
coal mining can cause ground surface deformation, causing a series of hazards such as
landslides and damage to buildings and other infrastructure [2–4]. Therefore, it is essential
to monitor mining-induced three-dimensional (3D) displacements with high precision
and high spatial–temporal resolution for better assessing mining-induced hazards and
understanding the mechanism of mining deformation.

Interferometric synthetic aperture radar (InSAR) is a valuable tool for detecting sur-
face deformation induced by underground coal mining over a large area with high spatial
resolution [5–8]. However, InSAR observations are only 1D projections of the true defor-
mation vector onto the radar line-of-sight (LOS) direction [9–11]. As a result, the complex
pattern of mining deformation in 3D space is difficult to describe well using the InSAR
observations of 1D LOS displacements, dramatically narrowing the scope of application of
InSAR in mining engineering.
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In recent years, a variety of methods have been proposed to retrieve 3D deformation
components from InSAR 1D observations [12]. These methods can roughly divided into
two categories: (1) fusing multi-track InSAR observations, and (2) incorporating single-
track InSAR with prior models [13,14]. Limited by the near-polar orbits of the current
SAR sensors, three or more InSAR observations over the same area of interest (AOI)
with significantly different imaging geometries cannot be acquired for most areas on
Earth [15]. As a consequence, accurate 3D deformation components, especially along the
north direction, are difficult to obtain in most cases using the methods that fuse multi-track
InSAR observations [12]. With the configuration of the current SAR sensors, the methods
of incorporating single-track InSAR observations (which are readily acquired) with prior
models have been proven to be a useful alternative for retrieving the 3D deformation
components caused by underground coal mining.

However, the methods of incorporating single-track InSAR with prior models have
two limitations: (1) the coarse temporal resolution due to the long revisit cycle (e.g.,
dozens of days) of a single SAR sensor currently, and (2) poor robustness due to the
lack of redundant observations for 3D displacement estimation. In 2020, Wang et al. [16]
presented a method, referred to as MTI, for enhancing the temporal resolution of 3D mining
displacement estimations from multi-track InSAR (MTI) observations. The core idea of
the MTI method has the advantage that the multi-track InSAR observations have much
denser temporal samples of mining deformation progress (i.e., high temporal resolution)
compared with the single-track InSAR. To this end, the MTI method first retrieves 3D
mining displacements by incorporating each single-track InSAR observation with the
prior model used previously. It then estimates 3D time-series displacements for all the
acquisition dates of the collected multi-track SAR images (e.g., several days, depending on
the selected SAR images) using a generalized weighting least-squares solver. However, due
to the track-by-track processing strategy used in the MTI method, it cannot offer redundant
observations for 3D mining displacement estimations. This implies that the poor robustness
existing in the previous single-track-based methods still cannot be effectively improved by
the MTI method, degrading the accuracy of the calculated 3D time-series displacements
caused by underground coal mining (please refer to Section 2.1 for more details).

In this study, an improved MTI method was proposed, with the main aim of improving
the poor robustness of the MTI-estimated 3D mining displacements. In this new method, a
fused-track strategy, rather than the track-by-track one in the MTI method, was developed
to synchronize the multi-track InSAR observations to all the SAR acquisition dates using a
logistic model. In doing so, redundant observations will be generated if the synchronized
multi-track InSAR measurements are incorporated with the prior model to estimate 3D
mining displacements. This strategy would be beneficial for improving the robustness of
3D mining displacement estimations. Theoretically, the improved MTI method can retrieve
3D mining displacements with the same spatial–temporal resolution as those estimated by
the previous MTI method, but with better robustness. This superiority has been validated
over the Datong coal mining area, China, in this study. The estimated 3D displacements,
which have high spatial–temporal resolution and higher accuracy, will be useful for better
understanding the deformation mechanism and assessing mining-induced geohazards.

2. Methodology
2.1. Overview of the Track-by-Track MTI Method

The MTI method uses a track-by-track strategy to solve 3D mining displacements
by incorporating multi-track InSAR observations with a prior model, called the linear
proportional model (LPM). The LPM is defined as the horizontal component of mining-
induced surface deformation being linearly proportional to the gradient of its vertical
component [14]. For an AOI where SAR images from K multiple tracks have been collected,
we can process each track’s SAR images using the time-series InSAR techniques (e.g.,
the small baseline subset InSAR or the permanent scatterer InSAR) [17–24] to generate
multi-track InSAR time-series measurements of LOS displacements.
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Let Nk be the number of the kth (k = 1, 2, · · · , K) track’s SAR images acquired on the dates
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be the corresponding time-series LOS displacements. For an arbitrary pixel (i, j) over an
AOI, the MTI method firstly constructs three independent equations involving mining-
induced 3D time-series displacements (denoted as dU, dE and dN in the vertical, easting and
northing directions, respectively) on the date tk

i (k = 1, 2, · · · , K) based on the kth track’s
InSAR observations from the prior LPM, i.e., [16].
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The first equation in System (1) indicates the projection function of the 3D displace-
ment components onto the LOS direction, where C1 = cos θ, C2 = − sin θ cos α and
C3 = sin θ sin α are the projection vectors, with θ and α being the incidence angle and
the heading angle of the selected SAR sensor [25]. The remaining two equations in
System (1) are based on the LPM [14], where SN(i, j) = [dU(i + 1, j)− dU(i, j)]/RN and
SE(i, j) = [dU(i, j + 1)− dU(i, j)]/RE represent the gradients of vertical subsidence along
the north and east directions, respectively, at a pixel (i, j), with RN and RE being the spatial
resolutions of the multi-track LOS displacements maps in the north and east directions,
respectively; BN(i, j) and BE(i, j) denote the linear proportional coefficients in the north
and east directions, respectively, which are generally considered equal to each other and
can be estimated by b · H(i, j)/tan β with b, H and β being the horizontal motion constant,
the mining depth and the major influence angle, respectively.

For an AOI with a pixel size of m-by-n, independent equations with a number of
3mn values can be constructed on the basis of Equation (1) for solving the 3D mining
displacements (which also number 3mn) of the whole region of interest at the date tk

i
(refer to [14] for more details). In track-by-track processing (hereafter referred to as the
track-by-track strategy), the 3D time-series displacements of the SAR acquisition dates of
each track can be obtained. Limited by the revisiting cycles of the current SAR satellites
(several to dozens of days), the temporal resolution of the single-track 3D time-series
displacements are too coarse to analyze the fast deformation events caused by underground
mining. Therefore, the MTI method densifies the temporal resolution of 3D time-series
displacements in the vertical, east and north directions using a generalized weighted least-
square solver. We take the vertical direction as an example to briefly summarize the key
steps. Let T =

[
T1 T2 · · · TM

]T be the acquisition date vector of all multi-track SAR

images (M in number) in chronological order, and let VU =
[

VU12 VU23 · · · TM−1M
]T

be the incremental velocities of vertical subsidence in the period of interest. Thus, we
can obtain: 

A1
A2
...

AK

 ·VU =


dU1
dU2

...
dUK

+ δU or AVU = dU + δU (2)

where A =
[

A1 A2 · · · AK
]T is the coefficient matrix, whose entries are deter-

mined by the formation network of the kth track’s small-baseline InSAR pairs [20];
dU =

[
dU1 dU2 · · · dUK

]T denote the multi-track time-series vertical subsidence
solved by Equation (1) and δU indicates the error term. The incremental velocities are
solved using a generalized weighted least-square solver:

V̂U =
(

ATPA
)+

ATPdU (3)
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where P is an interferometric coherence-based weighting matrix (see [16] for more details),
and the symbol + denotes the Moore–Penrose pseudoinverse operation. Finally, the
time-series vertical subsidence at T(denoted as dU(T)) is obtained by summarizing the

incremental subsidence, i.e., by using dU
(
Tj
)
=

i=j
∑

i=2
VUi−1i(Ti − Ti−1), j = 2, 3, · · · , M.

Since the T is a union set of all the acquisition dates of the multi-track SAR images,
dU(T) has a much high temporal resolution than any of the single-track time-series vertical
subsidence values (i.e., dUi, i = 1, 2, · · · , K) (please refer to Wang et al. [16] for more details
about the MTI method). However, as can be observed from System (1), no redundant
observations are offered to solve the 3D displacements for each track, due to the track-
by-track strategy used in the MTI method. This indicates poor robustness to suppress
the noise of InSAR observations and the uncertainties of the prior model, degrading the
accuracy of the calculated 3D displacements.

2.2. Development of the Improved Fused-Track MTI Method

In the improved MTI method, the multi-track InSAR observations are first aligned
(or interpolated) into the same time series (i.e., all acquisition dates of the multi-track
SAR images, namely, T =

[
T1 T2 · · · TM

]T) using a logistic model, on a track-by-
track basis. In doing so, for an AOI covered by SAR images from K tracks, K multi-track
InSAR measurements of LOS time-series displacements can be yielded for an arbitrary
date of the collected SAR images (i.e., Ti, i = 1, 2, · · · , M). The synchronized multi-track
InSAR measurements (K in number) are then incorporated with the LPM so that we can
obtain K + 2 equations to solve the 3D time-series displacements. This implies that K − 1
redundant observations (in the case of K ≥ 2) can be provided to suppress the noise of
InSAR observations and the uncertainties of the LPM, thus improving the robustness of 3D
time-series displacement estimations.

2.2.1. Synchronization of Multi-Track Time-Series LOS Displacements Using the
Logistic Model

A key step in the improved MTI method is reliably synchronizing (or interpolating)
the asynchronous multi-track InSAR measurements of time-series LOS displacements in
the same time series. However, due to the highly nonlinear evolution of mining-induced
time-series displacements, it is crucial to select a suitable model for the synchronization.
In 2021, Yang et al. [26] found that the temporal evolution of LOS displacements caused
by underground longwall mining (a mining method used extensively worldwide) follows
an S-shaped growth pattern. The logistic model is a classical S-shaped growth function,
where the growth is approximately exponentially in the initial stage, then, as saturation
begins, the growth slows to linear and finally stops at maturity [27,28]. Hence, the logistic
model was selected to synchronize the multi-track InSAR measurements of the time-series
LOS displacements to the acquisition dates of all the multi-track SAR images in this study.

The synchronizing processing method follows. For a highly coherent pixel (i, j), the
time-series LOS displacements obtained from the kth (k = 1, 2, · · · , K) track’s SAR im-
ages, namely, dLOS

(
tk
)
=
[

dLOS

(
tk
1

)
dLOS

(
tk
2

)
· · · dLOS

(
tk

N

) ]
, can be theoretically

described by the logistic model, i.e.,

dLOS

(
tk
)
=

ck

1 + ak exp
(
−bk · tk

) + εk (4)

where ak and bk denote the parameters of the logistic curve shape, ck denotes the maximum
possible surface deformation at the pixel (i, j); tk =

[
tk
1 tk

2 · · · tk
N
]

represents the
vector of the acquisition dates of the kth track’s SAR images with respect to the reference at
the starting time t0

k= 0 (i.e.,dLOS

(
t0

k = 0
)
≡ 0) and εk is the error term.

Prior to the synchronizing process, the unknown parameters of the logistic model
need to be estimated on a pixel-by-pixel basis. Since Equation (4) is nonlinear, a two-step
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method is proposed to estimate the unknown parameters of the logistic model in this study.
In the first step, a quadratic linearization (QL) of Equation (4) is performed:

d(dLOS

(
tk
)
)/dtk/dLOS

(
tk
)
= bk − bk/ck · dLOS

(
tk
)

ln(ck/dLOS

(
tk
)
− 1) = ln ak − bk · tk

(5)

At this stage, the parameters of the logistic model can be estimated in a least-square
(LS) sense. To reduce the influence of InSAR observation errors on the accuracy of the
parameter estimation, we take the LS solution of the parameters as the initial values, then
refine the solutions using the Gauss–Newton (GN) method (a common nonlinear inversion
method) [29,30]. For the sake of the following argument, the two-step method is referred to
as QL+GN. The QL+GN method for model parameter estimation presented here has much
better time efficiency and an acceptable accuracy level compared with other evolution
searching methods (e.g., the genetic algorithm) used in previous studies [31]. This issue is
discussed in detail in Section 4.4.

After the estimation of the parameters of the logistic model in a pixel-by-pixel manner,
the asynchronous time-series LOS displacements from the kth track can be interpolated with
the multi-track InSAR observations in the same time series (i.e., all multi-track acquisition
dates in this study, namely, T =

[
T1 T2 · · · TM

]T) using Equation (4):

d̂k
LOS(Ti) =

ĉk

1 + âk exp
(
−b̂k · Ti

) , i = 1, 2, · · · , M (6)

where âk, b̂k and ĉk denote the parameters estimated by the proposed QL+GN method.
At this stage, the synchronized multi-track InSAR measurements of the time-series LOS
displacements (denoted as d̂LOS(T) =

[
d̂1

LOS(T) d̂2
LOS(T) · · · d̂K

LOS(T)
]
) on the date

T are obtained for each high-coherence pixel.

2.2.2. Fused-Track-Based Estimation of 3D Time-Series (TS) Displacements

By performing the logistic model-based synchronization, we can obtain K multi-track
InSAR measurements at a high-coherence point (i, j). However, it should be pointed out
that the K multi-track InSAR observations are usually from the near-polar descending
and ascending orbits under the current SAR satellite configuration. This means that it is
difficult to accurately solve 3D displacements from the synchronized multi-track InSAR
measurements because of the insufficient number of independent imaging geometries (only
two). Therefore, the improved MTI method incorporated the synchronized multi-track
LOS displacements with the LPM to estimate the 3D time-series displacements associated
with underground coal mining.

More specifically, for the pixel (i, j) at the date Ti, an equation system involving
3D time-series displacements (namely, dU(Ti), dE(Ti) and dN(Ti)) can be produced by
incorporating the synchronized multi-track LOS displacements with the LPM:

d̂1
LOS(Ti) = C1

1dU(Ti) + C1
2dE(Ti) + C1

3dN(Ti)
d̂2

LOS(Ti) = C2
1dU(Ti) + C2

2dE(Ti) + C2
3dN(Ti)

...
d̂K

LOS(Ti) = CK
1 dU(Ti) + CK

2 dE(Ti) + CK
3 dN(Ti)

dN(Ti) = BN · SN(Ti)
dE(Ti) = BE · SE(Ti)

(7)

For simplifying the solution of System (7), the last two linear equations are first substi-
tuted into the first K equations based on the rule of Gaussian elimination, which generates a
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system involving only the synchronized multi-track LOS displacements (namely, d̂LOS(Ti))
and the unknown subsidence of the mining areas of interest (namely, dU(Ti)), i.e.,

C · dU(Ti) = d̂LOS(Ti), (i = 1, 2, · · · , M) (8)

where C represents the coefficient matrix, whose entries can be readily deduced from
Equation (7). Next, time-series subsidence at the date Ti can be estimated in a weighted
least-square sense as

d̂U(Ti) = CTPCCTPd̂LOS(Ti), (i = 1, 2, · · · , M) (9)

where P is the interferometric coherence-based weighting matrix, defined the same as
in [16]. Finally, time-series horizontal movements in the east and north directions can
be estimated on the basis of the LPM-based constraints (i.e., the last two equations in
Equation (7)). The flow chart of the improved MTI method is plotted in Figure 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 20 
 

 

 InSAR at 

track 1 

InSAR at 

track 2

InSAR at 

track K
...

...

SBAS-InSAR

Parameters 

estimation using 

QL+GN

Modelling multi-track TS LOS displacements using logistic model 

Parameters 

estimation using 

QL+GN

Parameters 

estimation using 

QL+GN

Interpolating multi-track LOS displacements to the same time series 

LOS TS 

displacements at 

track 1 

LOS TS 

displacements at 

track 2 

LOS TS 

displacements at 

track K 

Synchronous TS 

LOS displacements 

at track 1  

Synchronous TS 

LOS displacements 

at track 2 

Synchronous TS 

LOS displacements 

at track K 

...

Constructing equation system involving 3D displacements and multi-

track LOS displacements 

...

Least square 

solver

Vertical TS 

displacements

Easting TS 

displacements

Northing TS 

displacements

Linear 

proportional 

model

 

Figure 1. Flow chart of the improved MTI method for retrieving time-series 3D mining displace-

ments. TS, time-series. 

3. Experiments and Results 

3.1. Study Area and SAR Dataset 

The Datong coalfield was selected to test the improved MTI method. The long-term 

mining activities in this coalfield have caused a series of geohazards, such as land sub-

sidence and damage to infrastructure [33–35]. In this study, 125 Sentinel-1 SAR images 

were collected over the tested area from January 2018 to May 2019. These SAR images 

were all acquired in the Terrain Observation by Progressive Scans (TOPS) mode but with 

two ascending (track 040 and 113) and one descending tracks (track 120). The footprints 

of these collected SAR images are shown in Figure 2, and the parameters of the collected 

Sentinel-1 datasets are listed in Table 1. 

Figure 1. Flow chart of the improved MTI method for retrieving time-series 3D mining displacements.
TS, time-series.

Note that System (7) involves three unknowns (i.e., the 3D time-series displacements
at Ti) and K + 2 equations. This implies that redundant observations can be offered to
solve 3D mining displacements if multi-track InSAR observations (K > 1) can be obtained.
Consequently, compared with the previous MTI method, where no redundant observations
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are offered, the improved MTI method proposed in this study can potentially improve
the robustness of the estimated 3D displacements (depending on the number of available
InSAR datasets and the accuracy of the measured LOS displacements). In addition, it
should be pointed out that two assumptions were used for the improved MTI method
in the time and space domains. The first is that the time series of LOS displacements
associated with underground longwall mining temporally follows the growth of a logistic
model. The other is that two-dimensional horizontal movements in the east and north
directions at the pixel are linearly proportional to the gradient of subsidence (estimated
from the subsidence at the adjacent pixels using the LPM). These two assumptions have
both been proven in [26,32], respectively.

3. Experiments and Results
3.1. Study Area and SAR Dataset

The Datong coalfield was selected to test the improved MTI method. The long-
term mining activities in this coalfield have caused a series of geohazards, such as land
subsidence and damage to infrastructure [33–35]. In this study, 125 Sentinel-1 SAR images
were collected over the tested area from January 2018 to May 2019. These SAR images
were all acquired in the Terrain Observation by Progressive Scans (TOPS) mode but with
two ascending (track 040 and 113) and one descending tracks (track 120). The footprints
of these collected SAR images are shown in Figure 2, and the parameters of the collected
Sentinel-1 datasets are listed in Table 1.
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Table 1. Parameters of the collected Sentinel-1 SAR datasets.

Satellite Characteristics Track 040 Track 113 Track 120

Orbit direction Ascending Ascending Descending
Number of images 41 43 41

Time spanning 8 January 2018–27 May 2019 1 January 2018–20 May 2019 7 January 2018–26 May 2019
Incident angle 33.67◦ 43.77◦ 43.9◦

Heading angle −10.5◦ −9.2◦ −170.7◦

3.2. Retrieval of Multi-Track Time-Series LOS Displacements

The SBAS-InSAR method [20] was used to process the collected Sentinel-1 SAR images
of tracks 040, 113 and 120. The SAR images were first co-registered by the network-based
method [36] for each track. We then selected interferometric pairs with the following
criteria for making a tradeoff between deformation gradients and redundant observations:
(1) a co-registered SAR image was only connected with its two time-adjacent images to form
interferometric pairs, and (2) the spatial–temporal baselines of these interferometric pairs
were both below the given thresholds (50 days and 300 m in this study). The topographic
and flat-earth phase components of each interferometric pair were removed by the SRTM
DEM and satellite orbit information. To achieve a resolution of 20 m in both the range
and azimuth direction, we applied a multi-looking factor of 5:1 (range, azimuth) for
generating the interferograms. The Goldstein filter was exploited to reduce the phase
noise in the differential interferograms [37,38], and the filtered differential interferograms
were unwrapped using the network programming-based phase unwrapping method [39].
Subsequently, singular value decomposition (SVD (in the case of the rank-deficient problem)
or the least-square solver (for an over-conditioned case) was used to derive the time-series
LOS displacements in a track-by-track manner. Finally, the time-series LOS displacements,
starting from zero with respect to the date of the earliest image, were geocoded and
resampled to a common map projection grid for the subsequent 3D displacement retrieval.

In this study, we selected an AOI (marked by the yellow star in Figure 2) to test the
reliability of the improved MTI method. The reasons for selecting the AOI are twofold. First,
visually obvious deformation occurred in the AOI during the time period of interest (i.e.,
from January 2018 to May 2019) due to underground coal mining in the Datong coalfield
(see Figure 3 for the geocoded cumulative multi-track LOS displacements). Second, nearly
real-time 3D displacement measurements obtained by a continuous GPS receiver in the
AOI (the location is marked by red triangle in Figure 3) were available to validate the
feasibility and the reliability of the improved MTI method.
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location of a continuously deployed GPS receiver named GPS01. The yellow triangle shows a point P near the mining center
of the AOI.



Remote Sens. 2021, 13, 3782 9 of 20

As is shown in Figure 3, different spatial patterns were present in the generated multi-
track cumulative LOS displacements maps associated with the same mining operation,
due to the different SAR imaging geometries. In addition, maximum LOS displacements
of about 78, 71 and 89 cm were measured for the track 040, 113 and 120 InSAR datasets,
respectively. The different deformation patterns presented in Figure 3 would hinder the
interpretation of deformation events and assessment of the resulting geohazards. This
fact suggests that it is essential to decompose the 3D displacement components of InSAR-
measured LOS displacements.

3.3. Synchronization of the Multi-Track Time-Series LOS Displacements

The logistic model was used to synchronize the multi-track InSAR measurements
of the time-series LOS displacements. For this, the unknown parameters of the logistic
model were estimated using the proposed QL+GN algorithm in a pixel-by-pixel manner
(see Section 2.2.1). The estimated model parameters (a, b and c) of tracks 040, 113 and 120
are plotted in Figure 4. Note that the time-series LOS displacements over the areas where
underground mining had an insignificant influence on should be negligible and should
theoretically not follow an S-shaped growth curve. As a result, a linear model, instead
of the logistic model, was chosen to synchronize the multi-track InSAR measurements of
time-series LOS displacements. Having obtained the parameters of the logistic model, the
multi-track InSAR observations of the LOS displacements were interpolated to the same
time series (i.e., all acquisition dates of the multi-track SAR images collected in this study)
to generate synchronous time-series LOS displacements.
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Figure 4. The QL+GN-estimated parameters a (a,d,g), b (b,e,h) and c (c,f,i) of the logistic model for
tracks 040 (a–c), 113 (d–f) and 120 (g–i). The blue dashed rectangular boxes represent the area of
deformation due to underground mining. Note that the parameters a (a,d,g) have no units, and the
units of b (b,e,h) are the reciprocal of the time units.
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3.4. Estimation of Mining-Induced Time-Series 3D Displacements

Prior to estimating the kinematic 3D mining displacements, an inverse distance in-
terpolation was performed for the sake of the following estimation of 3D mining dis-
placements. The improved MTI method was then used to generate the time-series 3D
displacements, starting from zero with respect to the date of the earliest image, based
on the synchronized multi-track LOS displacements. Here, the prior parameters of the
LPM, i.e., the horizontal movement constant b, the mining depth H and the tangent of the
major influence angle tanβ, were given as b = 0.31, H = 480 m and tanβ = 1.8, respectively.
Figure 5a–c shows the annual rates of the estimated time-series 3D displacements from
January 2018 to May 2019. As seen in this figure, the maximum displacement rates over
the region of interest between January 2018 and May 2019 were around −80 cm, 20 cm and
23 cm per year, in the vertical, easting and northing directions, respectively. Figure 5d–i
plots the estimated time-series 3D displacements along the profiles AA′ and BB′ due to
underground coal mining for demonstrating the evolution of 3D displacement.
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BB′ (marked by dashed lines in (a–c)).

3.5. Accuracy Evaluation

The in situ 3D displacements measured by a continuous GPS receiver (named GPS01,
marked by the red triangle in Figure 5a–c) were used to validate the accuracy of the 3D
displacements calculated by the improved MTI method. The kinematic 3D displacements
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derived by the proposed improved MTI method and the MTI method are plotted together
with the GPS-derived 3D displacements for point GPS01 in Figure 6a–c. Note that, due
to the missing GPS signals, in situ 3D displacements for parts of the time period (e.g.,
from 9 September 2018 to 4 November 2018) between January 2018 and May 2019 are
unavailable.
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Figure 6. (a–c) Comparison of the improved MTI method results and the original MTI method for
surface point GPS01 (marked by the red triangle in Figure 3) in the region of interest between January
2018 and May 2019.

As can be seen from Figure 6, the time-series 3D displacements estimated by the
improved MTI method (green diamonds) agree well with the in situ GPS measurements
(gray triangles) from the GPS01 receiver, with root mean square errors (RMSEs) of 1.4, 2.8
and 1.7 cm in the vertical, easting and northing directions, respectively. These RMSEs
occupy 1.6%, 22.7% and 17.7% of the maximum 3D displacements (i.e., −87.55, −12.32
and 9.58 cm) in the vertical, easting and northing directions, respectively. Besides the
uncertainty of the theoretical LPM, the errors of the InSAR-derived LOS displacements,
particularly those due to unwrapping errors and decorrelation noise, are the major source
of error in the solved 3D time-series displacements using the improved MTI method. As
suggested by Yang et al. [13], the uncertainties of the LPM and InSAR observations would
cause larger errors in the calculated horizontal movements in the easting and northing
directions, compared with those in the vertical direction. This can also be observed in
Figure 6, where a larger relative bias to the maximum displacement occurs in the calculated
easting and northing movements compared with those in the vertical direction.
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4. Discussion
4.1. Comparison of the Robustness of the Improved MTI and MTI Methods
4.1.1. Simulation Analysis

The robustness of the improved MTI and MTI methods was first analyzed with
simulation data. More specifically, we first simulated time-series 3D displacements caused
by underground mining at nine time periods using the probability integration method
(a deformation model widely used in mining engineering) [13,40,41]. Figure 7a–c shows
the annual rates of the simulated 3D displacements in the vertical, easting and northing
directions, respectively. The simulated time-series 3D displacements were then projected
onto the LOS directions by following the same imaging geometries listed in Table 1. Next,
Gaussian noise with a mean of zero and a standard deviation (STD) of 0.8, 0.65, and 0.9 cm
was added to the projected time-series LOS displacements of three tracks, respectively.
Finally, the time-series 3D displacements in the vertical, easting and northing directions
were estimated from the projected LOS displacements with Gaussian noise by using the
improved MTI and the previous MTI methods.
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Figure 7 shows a comparison of the annual rates of the 3D displacements estimated
by the improved MTI (d–f) and MTI (g–i) methods. As shown in this visualization, the
3D displacements estimated by the improved MTI methods are less noisy (more accurate),
especially in the horizontal direction, than those estimated by the MTI method. In addition,
the mean RMSEs of the improved MTI-estimated 3D displacements are about 0.5, 1.2 and
1.0 cm, respectively, in the vertical, easting and northing directions. This result indicates an
improvement of around 40%, 50% and 70% with respect to the RMSEs of the MTI-estimated
3D displacements (i.e., 0.7, 1.8 and 1.7 cm, respectively) (see Figure 7j–l). The results
suggest that the improved MTI method can significantly improve the robustness of 3D
displacement estimation (with a mean of 53% in this simulated case) compared with the
previous MTI method.

4.1.2. Real Data Analysis

The real data described in Section 3.1 were used to further analyze the robustness
of the improved MTI and MTI methods (a comparison of the annual rate maps of the
3D displacements estimated by these two methods is shown in Appendix A, Figure A1).
Figure 6 shows a comparison of the time-series 3D displacements estimated by these two
methods with the in situ 3D displacements at the point of the GPS01 receiver. Table 2 lists
the RMSEs of the 3D displacements estimated by these two methods.

Table 2. Comparison of the RMSEs of the 3D displacements estimated by the improved MTI and
MTI methods.

Method Vertical [cm] Easting [cm] Northing [cm]

Improved MTI 1.4 2.8 1.7
MTI 2.3 3.5 2.9

Improvement 39.1% 20.0% 41.4%

As can be seen from Figure 6 and Table 2, the 3D displacements estimated by the
improved MTI method have a better agreement with the in situ measurements than the 3D
displacements derived by the MTI method. The RMSEs of the 3D displacements resolved
by the improved MTI method are 1.4, 2.8 and 1.7 cm, respectively, in the vertical, easting
and northing directions. These RMSEs indicate an improvement in accuracy of about 39.1%,
20.0% and 41.4% (with a mean improvement of 33.5%) compared with the MTI-estimated
3D displacements (i.e., 2.3, 3.5 and 2.9 cm). The comparison suggests that the improved MTI
method has better robustness than the MTI method, owing to the generation of redundant
LOS observations.

4.2. Capability of the Logistic Model for Modeling Mining-Induced LOS Displacements

Theoretically, the improvement in the robustness of the improved MTI method pri-
marily depends on the number and accuracy of the redundant LOS observations generated.
For an AOI, the track number of the collected multi-track InSAR datasets is constant. Thus,
the accuracy of the generated redundant LOS observations is essential for improving the
robustness of the estimated 3D mining displacements. In the improved MTI method,
redundant observations are generated by interpolating the multi-track measurements of
LOS displacements using the logistic model. Thus, the capability of the selected logistic
model for modeling the temporal evolution of mining-induced LOS displacements plays
an important role in the improved MTI method. This issue will be discussed in detail in
this section.

Figure 8a–f shows the fitting RMSEs and the corresponding histograms of the time-
series LOS displacements for tracks 040, 113 and 120 from the logistic model. As can
be seen, the RMSEs range from 0 to 1.9 cm, with mean RMSEs of 0.3, 0.3 and 0.4 cm
for tracks 040, 113 and 120, respectively. In addition, as observed in Figure 8d–f, the
RMSEs in the range of 0 to 1 cm occupy 98%, 99% and 95% of all pixels for tracks 040, 113
and 120, respectively. Figure 8g–i plots an example of the multi-track LOS displacement
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fitting at the GPS01 point using the logistic model, which also demonstrates a small misfit
between the InSAR-measured and the logistic-fitted LOS displacements. These results
indicate that the selected logistic model in this study can describe the temporal evolution
of LOS displacements caused by underground longwall mining. As a consequence, the
synchronous multi-track observations of LOS displacements with an acceptable accuracy
level (i.e., interpolation RMSEs of 0.91, 0.65 and 1.50 cm for tracks 040, 113 and 120 at the
GPS01 point) could theoretically be interpolated using the logistic model.
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113 and 120 using the logistic model. (g–i) An example of the fit of the time-series LOS displacements at the GPS01 point
using the logistic model.

4.3. Selection of the Models to Interpolate Multi-Track LOS Displacements

As stated previously, the capability of the selected models to describe the temporal
evolution of the mining-induced LOS displacements has a significant influence on the
robustness of the 3D displacements estimated by the improved MTI method. In this study,
the logistic model (a common S-shaped growth function) was selected and its capability
was tested in Section 4.2. To show the importance of the selected model for improving the
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robustness of the 3D displacements, we first took the multi-track InSAR observations from
track 113 at the point of the GPS01 receiver as an example. Two common mathematical
models (i.e., linear and cubic polynomials) [20,42,43] that are widely used in the retrieval
of InSAR time-series displacements were then selected as alternatives to demonstrate the
fitting performance of the multi-track InSAR observations (see Figure 9).
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Figure 9. Comparison of the time-series LOS displacement fitting for track 113 at the GPS01 point
using logistic, linear and cubic polynomials.

As can be seen from Figure 9, due to the highly nonlinear evolution, the linear function
had difficulty reliably describing the mining-induced LOS displacements (with a fitting
RMSE of 6.7 cm). Compared with the linear function, the fitting RMSE of the cubic
polynomial (i.e., 3.2 cm) was smaller than that of the linear function, whereas it was much
larger (about fivefold) than the fitting RMSE of the logistic model at the GPS01 point (i.e.,
0.6 cm). This result indicates that, with respect to the two common models used in the
InSAR community (i.e., linear and cubic polynomials), the logistic model is more suitable
to use for interpolating the multi-track LOS displacements into the same time series. Note
that besides the logistic model, other functions of the sigmoid growth function family
(e.g., the Weibull and Gompertz models) [44] could theoretically be selected to describe the
S-shaped growth pattern of the time-series LOS displacements caused by underground
longwall mining.

4.4. Efficiency of the QL+GN Algorithm for Estimating the Parameters of the Logistic Model

Accurate estimation of the parameters of the selected logistic model is a key step
for ensuring the accuracy of the synchronized multi-track InSAR observations of LOS
displacements, besides the model errors. In fact, some nonlinear searching methods have
been proposed to estimate the parameters of the logistic model. For instance, the hybrid
genetic algorithm (GA) with simulated annealing (SA) (referred to as GA+SA), which
generates the initial values of the parameter using the GA and then refines them with
the SA, has been proven to be an effective algorithm for estimating the parameters of
the logistic model, since it generally has a high accuracy level without designating the
initial parameters [16,31]. However, the GA+SA algorithm has poor efficiency in terms
of computation time. To this end, we proposed the QL+GN algorithm (see Section 2.2.1)
for keeping the same high accuracy level but dramatically reducing the time cost of
parameter estimation.

To validate the efficiency of the QL+GN algorithm, a comparison of the parameters
estimated using the QL+GN and GA+SA algorithms is presented in this section. For this,
the population size, crossover fraction and maximum generation of GA +SA were 100, 0.65
and 700, respectively [31]. Figure 10 shows a comparison of the fit of the InSAR observations
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for track 113 at the mining center (the yellow triangle in Figure 3) as an example. Inversion
of the logistic model parameters was carried out independently 50 times using the GA+SA
and QL+GN algorithms for reducing the random errors. Table 3 lists the means of the
GA+SA and QL+GN inverted parameters of the logistic model (namely, a, b and c). In
addition, the mean computation costs of model parameter estimation using these two
methods are listed in Table 3 for comparison.
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Table 3. The average inversion logistic parameters of the QL+GN and GA+SA algorithms.

Method
Parameters

RMSE (cm) Time Cost (Seconds)
a b c

QL+GN 900.03 0.037 −66.60 0.61 0.1
GA+SA 900.04 0.037 −66.60 0.62 2.1

It can be observed from Figure 10 that the random operations in the GA had a
significant influence on the fit of the LOS displacements for the 50 iterations (marked by
gray curves), although the SA was used to re-estimate the model parameters in the GA+SA
algorithm. However, the mean fit using the GA+SA algorithm shows good agreement with
the InSAR-measured LOS displacements (marked by red curve), with a RMSE of 0.62 cm.
Concerning the proposed QL+GN algorithm, the random influence on the logistic fitting
that occurred with the GA+SA reduced dramatically for the 50 parameter estimations
(almost complete overlap). In addition, the mean fit using the QL+GN algorithm agrees
well the InSAR observations, with a RMSE of 0.61 cm. This result suggests that the QL+GN
algorithm shows nearly the same accuracy level for estimating the parameters of the logistic
model (see Table 3) as the previous GA+SA algorithm. In addition, Table 3 also shows
that the mean computation cost of the parameter inversion of the logistic model using the
GA+SA algorithm (2.1 s for a pixel in this case) was much longer (21 times) than that of
the proposed QL+GN algorithm (0.1 in this case). The dramatic reduction in time cost is
beneficial for the retrieval of 3D time-series displacements using the improved MTI method,
especially over a large area (e.g., one with millions of pixels). These results suggest that the
proposed QL+GN algorithm is capable of estimating the parameters of the logistic model
with the same accuracy as the GA+SA algorithm, but with less randomness and a much
shorter computation time.
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5. Conclusions

This paper presents an improved MTI method for retrieving the more robust 3D time-
series displacements associated with underground coal mining obtained from multi-track
InSAR observations, compared with the previous MTI method. To this end, the logistic
model was first used to interpolate the asynchronous multi-track InSAR measurements.
An algorithm (QL+GN) was presented to estimate the parameters of the logistic model,
which had nearly the same accuracy level as the previous algorithms (e.g., GA+SA) but
with much higher time cost efficiency (1/21 in this study). Next, the interpolated (or
synchronous) multi-track InSAR observations were incorporated with the LPM to solve
mining-induced 3D displacements. Owing to the generation of redundant observations
using the logistic model, the improved MTI method had better robustness than the previous
MTI method (in which no redundant observations are offered). This assumption was tested
by simulation and real datasets from the Datong coalfield in China. The results suggest that,
with respect to the previous MTI method, the improved MTI method can more robustly
retrieve 3D time-series displacements with the same high spatial-temporal resolution (e.g.,
with an improvement in accuracy of 53% and 33.5% for the simulation and the real data,
respectively). These 3D kinematic displacements with a higher accuracy level and high
spatial-temporal resolution will have a wider scope of application in mining engineering
(e.g., a better understanding of the mechanism of mining deformation and assessing
mining-related geohazards).
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