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Abstract: Exposure to fine particulate matter (PM2.5) air pollution has been shown in numerous stud-
ies to be associated with detrimental health effects. However, the ability to conduct epidemiological
assessments can be limited due to challenges in generating reliable PM2.5 estimates, particularly in
parts of the world such as the Middle East where measurements are scarce and extreme meteorologi-
cal events such as sandstorms are frequent. In order to supplement exposure modeling efforts under
such conditions, satellite-retrieved aerosol optical depth (AOD) has proven to be useful due to its
global coverage. By using AODs from the Multiangle Implementation of Atmospheric Correction
(MAIAC) of the MODerate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imag-
ing Spectroradiometer (MISR) combined with meteorological and assimilated aerosol information
from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2),
we constructed machine learning models to predict PM2.5 in the area surrounding the Persian Gulf,
including Kuwait, Bahrain, and the United Arab Emirates (U.A.E). Our models showed regional
differences in predictive performance, with better results in the U.A.E. (median test R2 = 0.66) than
Kuwait (median test R2 = 0.51). Variable importance also differed by region, where satellite-retrieved
AOD variables were more important for predicting PM2.5 in Kuwait than in the U.A.E. Divergent
trends in the temporal and spatial autocorrelations of PM2.5 and AOD in the two regions offered
possible explanations for differences in predictive performance and variable importance. In a test
of model transferability, we found that models trained in one region and applied to another did
not predict PM2.5 well, even if the transferred model had better performance. Overall the results
of our study suggest that models developed over large geographic areas could generate PM2.5 es-
timates with greater uncertainty than could be obtained by taking a regional modeling approach.
Furthermore, development of methods to better incorporate spatial and temporal autocorrelations in
machine learning models warrants further examination.

Keywords: aerosol optical depth; particulate matter; autocorrelation; machine learning

1. Introduction

Spatially and temporally resolved estimates of particulate matter with aerodynamic
diameter less than 2.5 µm (PM2.5) are of significant importance for studying the health
effects associated with exposure to air pollution. Various statistical and machine learning
methods have been developed for this task and have been facilitated by increases in both
the quantity and types of spatio-temporal data. For instance, aerosols observed from
polar-orbiting satellites, retrieved as aerosol optical depth (AOD), have become attrac-
tive for PM2.5 estimation due to their vast coverage, both spatial and temporal. Many
studies have found great success in leveraging AOD to predict PM2.5 globally [1–6]. The
resolution of AOD data has improved significantly in the past decade for MODerate reso-
lution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer
(MISR) instruments, which originally provided AOD retrievals at 10 km and 17.6 km,
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respectively. Advanced processing algorithms have downscaled these retrievals to much
higher resolutions (1 km and 4.4 km, respectively) with improved accuracy in validation
tests [7,8].

While the spatio-temporal coverage of satellite-observed AOD has made it a key
predictor in models developed to estimate PM2.5, the majority of studies have focused on
data-rich regions of the world such as the United States and China, which have large and
established air quality monitoring networks to train and validate models [5,6,9,10]. In other
locations such as the Middle East where ground PM2.5 monitoring is sparse or nonexistent,
modeling efforts have been limited.

The air quality in Middle Eastern cities is poor, with contributing sources ranging
from industry and construction to transportation [11]. Compounding these anthropogenic
sources, extreme meteorological events such as dust storms further contribute to high
particulate matter concentrations and make it challenging to estimate PM2.5 accurately. A
recent study in Kuwait found dust events occurring in more than one third (37%) of the
days observed from October 2017 through October 2019 [12], and most particle samplers
are likely inadequate to collect samples during dust storms when concentrations exceed
200–400 µg/m3 [13]. The same study also found dust storms and road dust to be the second
largest contributor (20%) to PM2.5 in Kuwait City.

While it may be desirable to apply models trained in data-rich regions to make
predictions where there is little validation data, they are not guaranteed to perform well,
and the estimates are likely to possess large uncertainties. Most studies estimating PM2.5
typically report an overall summary performance metric such as cross-validation R2, yet
these statistics may be deceiving because models are unlikely to predict with the same
accuracy at all locations and at all times within a given study domain. Spatial and temporal
variability in predictive performance has been shown through leave-one-out (LOO) cross-
validation (CV), either by leaving out one site or region or by leaving out one year in each
training-validating iteration [5,14–19].

For example, differences in predictive performance have appeared in large-scale stud-
ies including Engel-Cox et al. (2004), who found that MODIS AOD showed poorer correla-
tion with PM2.5 in the Western U.S. compared to the Eastern and Midwest U.S. [20]. In cross-
validated models based on U.S. Census Bureau geographic subdivisions, Di et al. (2019)
found that the western region had the poorest prediction with the mountain subdivision
having the lowest CV R2, and the pacific subdivision having the highest CV RMSE (root
mean squared error). The Midwest and southern subdivisions west of the Mississippi River
also predicted worse than all subdivisions east of the river [5].

Model adjustments can be made to account for differences in predictive performance.
In a global study, Shaddick et al. (2018) accounted for spatial variability in their AOD-
PM2.5 models by adding random effect terms for country, region, and super-region [4]. In
another global study, Hammer et al. (2020) identified divergent temporal trends in PM2.5
across regions that affected model performance, which was addressed through statistical
fusion [21]. Modeling over the contiguous U.S., Di et al. (2019) included a spatially lagged
term for PM2.5 to account for spatial autocorrelation [5].

Although Engel-Cox et al. (2004) and Di et al. (2019) cited sparse data (both fewer
PM2.5 monitors and lower AOD retrieval success rate) and challenging terrain as reasons
for heterogeneity in model performance, few studies have investigated other possible
mechanisms. We suggest that trends in spatial and temporal autocorrelation for PM2.5,
AOD, and possibly meteorology could impact the strength of the correlation between
PM2.5 and model predictors. Several studies have examined the spatial and temporal
autocorrelation (or coherence) of PM2.5 and AOD, yet its potential impact on models
predicting PM2.5 has remained underexplored.

Sullivan and Pryor (2014) found that PM2.5 temporal variability had an impact on
both natural and anthropogenic cycles and indicated that there was a link between PM2.5
concentrations and meteorological conditions. They also found that, at a subdaily scale,
spatial variability was 2–3 times greater than temporal variability [22]. In another study
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of MODIS AOD over eastern North America, Sullivan et al. (2015) found that spatial
coherence r for AOD dropped below 0.3 at ∼750 km on average, and that the range of
the semivariogram for the summer was almost twice that of the winter (∼2200 km vs.
∼1300 km, respectively) [23].

Toth et al. (2019) studied decay in spatial correlation for PM2.5 in the contiguous U.S.
(CONUS) and found the e-folding length in correlation (distance or time for correlation
to reduce below 1/e, about 0.37) to be ∼600 km; regional analysis by 10 km bin averages
found the e-folding length to be ∼700 km in the eastern CONUS and ∼300 km in the
western CONUS [24]. In their temporal autocorrelation analysis in the Southeastern U.S.,
Kaku et al. (2018) found that the e-folding time was 3 days for ground-monitored PM2.5
and only 1 day for ground-monitored AERONET AOD. The authors noted that strong
single-day spikes in AOD—and hence day-to-day variability—were far more prevalent in
AOD than in PM2.5 [25].

Using the Middle East as our study region (Figure 1), we developed AOD-PM2.5
models, evaluated their overall and regional predictive performance, examined the spa-
tial heterogeneity in model performance, identified the most important predictors, and
explored the impact of spatial and temporal autocorrelation on relationship between PM2.5
AOD, and other predictors.

Figure 1. Map of the study region with all PM2.5 monitors (left) and only those in Kuwait (right).

2. Materials and Methods
2.1. Particulate Matter Data

The PM2.5 data used in this study were obtained from two sources. Through a
collaborative project between researchers from Kuwait University and the Harvard School
of Public Health, PM2.5 data were collected in years 2004–2005 and 2017–2019 at three
locations in Kuwait: a “central” site at Kuwait University, a “northern” site in Um-Al-Aish—
approximately 55 km north of Kuwait City in the Al Jahra Governorate—and a “southern”
site in Um-Al-Haiman—approximately 45 km south of Kuwait City in Ali Sabah Al Salem.
The central and southern sites were in urban areas, and the northern site is in a desert
area. Due to high concentrations of PM and extreme temperatures in the region, Harvard
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high-capacity impactors were used to sample PM2.5 [26,27]. We refer to these data as the
HHI PM2.5 dataset.

The second source of data was OpenAQ, an open-source platform that provides
real-time and historical air quality data. OpenAQ aggregates government-measured and
research-grade data from different government entities and international organizations [28].
For this study, we acquired PM2.5 data from measurements taken at United States embassies
and consulates from five cities in four countries: Bahrain (Manama), Iraq (Baghdad),
Kuwait (Kuwait City), and United Arab Emirates (Abu Dhabi and Dubai). PM2.5 data were
available as early as 2016 (Manama), and we included data collected up to mid-June, 2020.
We refer to these data as the OpenAQ PM2.5 dataset.

2.2. Aerosol Optical Depth Data

Launched in December 1999, the polar-orbiting Terra satellite carries two instruments
that observe atmospheric aerosols: the MODerate resolution Imaging Spectroradiometer
(MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR). The MODIS instrument
uses a single sensor with a wide observation swath and provides daily aerosol observations
globally. Initially available at 10 km resolution, MODIS data have been reprocessed using
the Multi-Angle Implementation of Atmospheric Correction (MAIAC) and are currently
available at 1 km resolution [8]. We refer to these as MAIAC AOD data.

The MISR instrument relies on nine camera angles and four spectral bands to discern
aerosol particles of different sizes, shapes, and types. In addition to total column AOD,
MISR provides AODs fractionated into small, medium, and large (amount of particles of
each size); nonspherical (amount of nonspherical particles); and absorption (amount of
light-absorbing particles). One limitation of MISR is that, due to its narrower observation
swath, the instrument only overpasses any given location every 3–5 days. Originally
available at 17.6 km resolution, MISR AOD data have also been improved and reprocessed,
and the latest version (V23) is available at 4.4 km [7].

The MISR quality-control procedures sometimes reject observations that are deemed
“low-quality”, one reason being unusually high values. However, all original AOD observa-
tions are still preserved in the “AUXILIARY” subgroup of the MISR AOD product files and
are labeled “raw” (e.g., raw total AOD, raw small AOD, and raw absorption AOD). The
“raw” version of each AOD variable contains both the “high-quality” and “low-quality”
observations; therefore, it typically provides a slightly larger sample size. As extreme
weather conditions such as sandstorms are typical in our study region, we considered
the raw AOD variables for modeling PM2.5. Although we fitted predictive models using
both “high-quality” and “raw” AOD data, we will only report results of models with “raw”
AOD variables as they consistently predicted better than those with “high-quality” AOD
variables. For the remainder of this paper, we refer to the “raw” MISR AOD variables
simply as MISR AOD, except for the AERONET AOD validation portion where we report
both and will be specific in that context.

2.3. Meteorology Data

Following previous modeling approaches [29], we incorporated meteorological data to
improve PM2.5 predictions. For this study, we relied on reanalysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF), version 5 (ERA5). ERA5 provides a
wide range of meteorological data at hourly temporal and approximately 31 km horizontal
resolution [30]. We extracted ERA5 meteorological variables including wind speed, wind
direction, temperature, evaporation, surface pressure, cloud cover, precipitation, relative
humidity, boundary layer height (BLH), and downward shortwave (UV) radiation, which
we identified to be a key predictor variable in previous studies [29,31,32].

2.4. Assimilated Aerosol Data

We also incorporated assimilated aerosol optical depth data from the Modern Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2), which is
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the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global
Modeling and Assimilation Office (GMAO) [33,34]. Although MERRA-2 data are provided
at relatively low resolution (∼50 km), their source-specific AODs have proven to be useful
for estimating PM2.5 in other studies [5,35,36]. While there have been some efforts to
downscale MERRA-2 to a finer spatial resolution [35], in this study we used MERRA-2
AOD variables (dust, black carbon (BC), organic carbon (OC), and sulfate (SO4)) at their
native resolution.

2.5. Statistical Methods

We validated MAIAC and MISR AOD against AOD from the Aerosol Robotic Network
(AERONET). AERONET is an instrument network of ground-based sun photometers that
derive AOD at a number of visible and near-infrared wavelengths from direct sun observa-
tions and has served as the primary standard for validating satellite aerosol products [37].
We matched MAIAC and MISR AOD to the Kuwait University AERONET when it was
active between 2006 and 2010 by identifying the nearest MAIAC AOD observation within
1 km and the nearest MISR AOD observation within 4.4 km of the AERONET site. As
AERONET only measures AOD at 500 nm and 675 nm, we interpolated it to 550 nm in order
to match total column AOD from both MAIAC and MISR [19]. We averaged AERONET
AOD to the nearest hour and filtered measurements to match the Terra satellite overpass
time (between 10:00 and 12:00 local time). Validation statistics including linear correlation
(r), RMSE, and bias between AERONET AOD, MAIAC and MISR AOD were calculated.

We used a selection of five different machine learning models [29,38] in a regression
framework (LASSO regression, ridge regression, gradient boosting machines (GBM), random
forests (RF), and support vector machines (SVM)) [39]. In previous studies, non-linear
methods (GBM, RF, and SVM) demonstrated stronger predictive performance compared to
linear learners (LASSO and ridge), due to the non-linear relationship between PM2.5 and
satellite-observed AODs [29,38,40]. We considered linear methods to assess whether the
pattern of non-linearity held in this region with more extreme climate conditions.

We fitted separate predictive models for MAIAC AOD and for the six fractionated
MISR AODs (total, small, medium, large, nonspherical, and absorption). In both cases, we
included ERA5 meteorological variables, MERRA-2 assimilated AODs, spatial coordinates
(the latitude and longitude of MAIAC or MISR pixels), and time (Julian date and month).
For each machine learning method, the model was trained on 70% of the data, and we
selected the best fitting hyperparameters based on R2 as the performance metric by using
10-fold cross validation. The models with the best performing hyperparameters were then
assessed on the remaining 30% test sample of data and also via R2. Due to the small sample
size of our data, particularly for the MISR-AOD dataset, the trained models could be very
sensitive to the observations in the training set. Therefore, we repeated this training-testing
process in 25 iterations, each time drawing a different 70–30 split in the data, in order
to assess the stability and robustness of each model. The models with the best median
prediction test R2 were chosen as the final models.

Leave-one-out (LOO) cross-validation, typically reserving a single site or region, or
a time unit (e.g., year) for out-of-sample validation, is a common approach for assessing
model generalizability—a key component of predictive modeling using machine learning
techniques [5,41]. Given the small number of PM2.5 monitoring sites (eight sites) in our
sample, the overall small sample size, and the unbalanced sample sizes across regions,
this approach was less useful in our study, and so it was not conducted (Kuwait and the
U.A.E., respectively, made up 50% and 25% of the MISR-AOD data and 56% and 19% of
the MAIAC-AOD data).

In addition to developing a model using data from all sites, we divided the study
region into two subregions: Kuwait (four sites) and the U.A.E. (two sites). We excluded
Manama and Baghdad from this portion of the analysis as they each had only one PM2.5
monitoring site and, thus, provided little spatial variability. For the iterated training-testing
process described above, we calculated both the overall test R2 and the regional test R2
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using the data that included all sites. Furthermore, we fitted separate models using only
data from each subregion; this was also performed once with MAIAC AOD and once with
fractionated MISR AODs. These regional models allowed us to assess the transferability
of the models—i.e., predicting PM2.5 over an area using a model trained in a completely
different location. Specifically, we used the Kuwait-trained models to predict PM2.5 in the
U.A.E. and used the U.A.E.-trained models to predict PM2.5 in Kuwait and assessed their
respective prediction R2.

For the best performing machine learning method, we estimated variable importance
to understand the relative importance of satellite-observed aerosol variables among the
models considered (MAIAC AOD vs. MISR AODs and overall vs. regional). Variable
importance was calculated by using permutation accuracy importance, which is based on
the increase in mean squared error (MSE) when a variable is excluded, as it is more robust
to bias than the typical Gini impurity importance, which is based on node purity [42]. In
order to verify variable importance for AOD variables in these models, we fitted the same
models without satellite AOD predictors and assessed their predictive performance (R2).

Possible explanations for differences in performance and variable importance between
subregions were explored by estimating temporal and spatial autocorrelations. The tem-
poral autocorrelation function (ACF) was assessed for PM2.5, AOD, MERRA-2 variables,
and ERA5 meteorological variables at the Kuwait and U.A.E. PM2.5 monitoring locations.
Due to the temporal gaps in MISR AODs (i.e., MISR being able to retrieve every 3–5 days
for a given location), high-resolution temporal ACFs for satellite observed aerosols were
only assessed by using MAIAC AODs. The abundance of MAIAC data also allowed for
autocorrelation to be assessed more extensively. We collected MAIAC AOD in 2017–2019
for every pixel retrieved over land within a 2 degree by 2 degree area that covered the
PM2.5 monitors in each country (Figure 2).

Instead of examining only coincident MAIAC pixels at each site, we estimated ACF
for AOD at every MAIAC pixel within 50 km of each site, and then we used these ACFs
to calculate the median ACF for each site. In order to assess spatial autocorrelation, we
estimated the daily empirical semivariograms [43] in 1 km bins up to 50 km for each region,
and we calculated the median semivariogram over the 3 year period. Due to the lower
resolution of ERA5 and MERRA-2 data (31 and 50 km, respectively), assessment of the
spatial autocorrelation was only conducted for MAIAC AOD.

Figure 2. Areas within each country where temporal and spatial autocorrelations for MAIAC AOD
were evaluated (shaded pink) and the PM2.5 monitors (yellow circles) in each country.
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3. Results
3.1. AOD Validation

From 2006 through 2010, the Kuwait University AERONET monitor measured AOD
on 421 days. Of these observations we were able to match MAIAC AOD on 319 days,
MISR AOD on 40 days, and MISR “raw” AOD on 47 days. Overall, all three satellite-
observed AOD samples showed strong correlations with ground-observed AERONET
AOD (r = 0.79–0.81, Figure 3). Although there were fewer MISR AOD samples, they
showed slightly better correlation with AERONET AOD (r = 0.799 for AOD and r = 0.813
for “raw” AOD) compared to MAIAC AOD (r = 0.793). The larger r for MISR “raw” AOD
over MISR AOD was likely due to a larger sample that included AOD observations that
were highly correlated with AERONET AOD (Figure 3). Finally, MAIAC AOD showed a
larger bias (0.140) relative to AERONET AOD compared to that of MISR AOD (0.087) and
MISR “raw” AOD (0.088).

Figure 3. Validation of AERONET AOD interpolated to 550 nm versus MAIAC AOD (left), MISR
AOD (center), and MISR “raw” AOD (right) with one-to-one line (dotted) and correlation line (red).

3.2. Model Results

From February 2004 to February 2020, we were able to match PM2.5 data (three sites
from HHI and five from OpenAQ in the entire study region including four countries) to
411 unique days of MISR (raw) AOD data and 1454 unique days of MAIAC AOD data for
model building. The PM2.5 data included a 10 year temporal gap between 2005 and 2016:
Only HHI monitors were active during 2004–2005 and were active again during 2017–2019;
OpenAQ monitors in the study region began monitoring as early as 2016. Predictive
performances of the full models are summarized in Table 1.

Table 1. Median test R2 across machine learning methods, AOD sources, and samples.

Instrument Model N LASSO Ridge GBM RF SVM

MISR Overall 542 0.34 0.35 0.47 0.48 0.44
Kuwait 271 0.38 0.37 0.42 0.51 0.43
U.A.E. 138 0.57 0.57 0.64 0.66 0.53

MAIAC Overall 3334 0.28 0.29 0.50 0.53 0.47
Kuwait 1863 0.29 0.29 0.46 0.48 0.44
U.A.E. 642 0.51 0.49 0.63 0.65 0.61

The models using data from the entire study region generally did not predict well
and, at best, could only explain approximately 50% of the variability in PM2.5 in the test set.
Non-linear machine learning methods performed better than linear methods, with random
forest demonstrating the highest predictive performance. Non-linear models had similar
test R2 between MISR and MAIAC despite the large difference in sample size (N = 542
for MISR and N = 3334 for MAIAC) while the linear models performed much worse
for MAIAC.
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The ten most important variables in the RF models are shown in Figure 4 in descend-
ing order of importance. Variable importance was measured by percentage increase in
MSE; although the absolute percentages of increase in MSE were fairly small for each vari-
able excluded, their relative proportions are more meaningful in understanding variable
importance [42]. In the MISR model, total column AOD was responsible for the largest
increase in MSE when excluded, and size-fractionated AOD variables were also among
the ten most important. Although total column AOD was also among the ten most im-
portant variables for the MAIAC model, its importance was relatively smaller than those
of MERRA-2 dust, temperature, and boundary layer height. MISR models performed
better when MERRA-2 sulfate extinction was included, while MAIAC models preferred
MERRA-2 black carbon extinction.

Figure 4. The top 10 most important variables for the random forest overall models using MAIAC
AOD (left) and MISR AOD (right), as measured by increase in MSE when excluded.

In our regional analysis, the RF model using MAIAC AOD resulted in higher pre-
diction R2 for the U.A.E. than for Kuwait (median test R2 = 0.65 and 0.48, respectively;
Table 1). Relative to the overall test R2, the RF model predicted slightly poorer in Kuwait
and significantly better in the U.A.E. These results are fairly stable and robust to different
training-testing splits (i.e., narrow boxplots, Figure 5). The RF model using fractionated
MISR AODs also predicted better in the U.A.E. than in Kuwait (median test R2 = 0.66 and
0.51, respectively). Relative to the overall test R2, the regional models predicted slightly
better in Kuwait and much better in the U.A.E. (the lower overall R2 was likely due to
poorer prediction results in Baghdad and Manama, which are not shown). Wider boxplots
indicated that the MISR-AOD model was more sensitive to different training-test splits,
which was expected due to the smaller sample size (Figure 5).

For Kuwait, the MISR model had total column AOD and MERRA-2 dust as the two
most important variables in the RF models; the nonspherical AOD was among the ten most
important variables along with size-fractionated AOD (Figure 6). Similar to the overall
model, MAIAC AOD was not as important as MERRA-2 dust or temperature.

The regional models using only PM2.5 monitors in the U.A.E. showed better predictive
performance with both MISR and MAIAC models explaining an additional 13–23% of the
variation in the test set compared to the overall and Kuwait-specific models (Table 1). While
MERRA-2 dust remained among the most important variables, total column AOD was less
important, especially in the MAIAC model. Julian date, temperature, and UV radiation
became much more important in both MISR and MAIAC models. For the MISR model,
large and small AOD were still among the ten most important (Figure 6). Differences in
predictive performance between the regional models were also observed in the overall
models when test R2 was estimated for each subregion (Figure 5).

In our assessment of model transferability, we used the RF model trained only on
data in Kuwait to predict PM2.5 in the U.A.E. and vice versa, and found that both regional
models performed much worse in predicting a different region than predicting their native
region. In particular, the MAIAC-based and MISR-based Kuwait models were only able to
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explain 37.4% and 28.4%, respectively, of the variation in PM2.5 in the U.A.E. Similarly, the
MAIAC-based and MISR-based models developed for the U.A.E. were only able to explain
12.8% and 13.2%, respectively, of the variation in PM2.5 in Kuwait (Figure A1). The poorer
performance in the U.A.E. models was likely due to their underestimation of extremely
high PM2.5 values in Kuwait.

Figure 5. Test R2 across different settings: overall and regional models, MISR and MAIAC models,
and models with and without AOD variables.

Figure 6. The top 10 most important variables for the random forest models based on monitors in
Kuwait using MAIAC AOD (top left) and MISR AOD (top right) and in the U.A.E. using MAIAC
AOD (bottom left) and MISR AOD (bottom right), as measured by increase in MSE when excluded.
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3.3. Temporal and Spatial Autocorrelations

The temporal autocorrelation functions for PM2.5 and MAIAC AOD, grouped by
monitor location in Kuwait and the U.A.E., are shown in Figure 7. We observed that the
decay in autocorrelation was much faster in Kuwait (e-folding length—time until ACF
drops below 0.37—at 1 day for all four sites) compared to both Abu Dhabi and Dubai
(e-folding length at 12 and 14 days, respectively). For MAIAC AOD, the median ACFs are
shown by site after aggregating the ACF for every MAIAC pixel within 50 km of each site.
The autocorrelation difference between Kuwait and the U.A.E. was still observed, although
it was smaller; the e-folding length at 1 day for MAIAC AOD in Kuwait and at 3 days for
MAIAC AOD in the U.A.E.

Figure 7. Autocorrelation functions for PM2.5 (left) and median ACFs for MAIAC AOD (right) at
different sites in Kuwait and the U.A.E.

Among the meteorological variables, we calculated the ACF for those with highest
variable importance in the RF models: temperature, UV radiation, BLH, and wind speed
(Figure A2). At all six sites in both countries, temperature and UV radiation showed
very strong autocorrelations and seasonal trends. BLH and wind speed showed weaker
autocorrelations (e-folding length at 3 and 2 days, respectively), with the exception of the
Northern site in Kuwait where BLH had a e-folding length of almost 2 months and showed
a clear seasonal trend.

Among the assimilated aerosol MERRA-2 variables, the autocorrelation for dust
extinction showed a small separation between PM2.5 sites in Kuwait and the U.A.E. early
on, yet they all had an e-folding length at 3 days, after which there was little distinction
between the two regions (Figure A3). Sulfate extinction showed clearer separation between
the two regions for almost a month; the e-folding length was at 2 days for Kuwait sites and
3 days for the U.A.E. There was also little separation between Kuwait and the U.A.E. for
black carbon extinction, and the e-folding length was just over a month for Kuwait and
slightly under a month for the U.A.E.

We restricted our analysis of spatial autocorrelation to days with at least 2500 success-
ful AOD retrievals in each region. From 2017 through 2019, we analyzed daily semivari-
ograms for 961 days in Kuwait ranging from 2515 to 19,552 AOD retrievals, with a median
of 18,116 AOD retrievals per day. In the same period, we analyzed daily semivariograms for
1001 days in the U.A.E. ranging from 2610 to 23,609 AOD retrievals per day, with a median
of 20,721 AOD retrievals per day. The top row of Figure 8 shows the daily semivariograms
for each region, with the median semivariograms in red (note the y-axes are different for
each region). In order to better show the aggregate trend of spatial autocorrelation, median
semivariograms are shown in the bottom row of Figure 8.
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Daily and median semivariograms of MAIAC AOD in Kuwait and the U.A.E. demon-
strated clear differences in spatial autocorrelation trends between the two regions. Daily
semivariograms in Kuwait showed greater semivariance and greater variation compared
to the U.A.E. where semivariance was both smaller and demonstrated less variation. The
median semivariograms showed that MAIAC AOD in Kuwait reached a partial sill at 0.1
with a range of 15 km while MAIAC AOD in the U.A.E. reached a partial sill at 0.004 with
a range of 5 km. These semivariance trends showed that in the U.A.E. MAIAC AOD had
much smaller spatial variability compared to Kuwait, even at distances as far as 50 km.

Figure 8. Daily semivariograms for MAIAC AOD in Kuwait and the U.A.E. (grey lines in top row)
and median semivariograms (red lines in both top and bottom rows).

4. Discussion

In this study we applied methods developed in our previous work to estimate PM2.5
from satellite-observed AOD and meteorology over the Middle East, a geographic region
with poor air quality and meteorological phenomena that render air quality estimation
difficult. By noting regional differences in model performance, we explored possible
statistical explanations including variable importance in the best fitting models as well as
temporal and spatial autocorrelation trends in AOD and PM2.5.

Model performance in Kuwait was similar to our previous study in Mongolia, although
the Mongolia models did not include meteorology [38]. On the other hand, model perfor-
mance in the U.A.E. was similar to the improved results we found modeling PM2.5 and
PM2.5 speciation over California [29], which incorporated meteorology. We observed that the
non-linear relationship between PM2.5 and satellite-retrieved AOD also affected the predictive
performance of machine learning methods differently: gradient boosting, random forest,
and support vector machines performed better than ridge and LASSO regression. Curiously,
the linear methods did not perform much worse than GBM and RF in the U.A.E. and even
outperformed SVM in the MISR AOD models (Table 1). These findings indicate that linear
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approaches should be carefully considered when constructing prediction models in other
study regions.

The comparison between MAIAC AOD and MISR fractionated AODs also highlighted
important differences. First, our data showed stronger linear correlation between PM2.5
and MISR AOD than MAIAC AOD (r = 0.50 and 0.38, respectively). Although the MAIAC
models were developed on a data set with 4–6 times the sample size of the MISR models,
their predictive performances were equivalent, both in the overall and the regional models
(Table 1). MISR AOD also contributed more to the predictive accuracy of RF models
(0.030–0.087% increases in MSE when excluded) compared to MAIAC AOD (0.009–0.044%
increases in MSE when excluded). The MISR model in Kuwait saw greater improvements
in predictive accuracy attributable to total and fractionated AODs, while the MISR model
in the U.A.E. saw greater reliance on temporal (Julian date) and meteorological variables
(temperature and UV radiation).

Similarly, while MAIAC AOD was less important than MERRA-2 dust, temperature,
and month of the year in predicting PM2.5 over Kuwait, its importance was even smaller in
the U.A.E. When we excluded AOD variables entirely from each model, the MAIAC-based
models performed similarly while MISR-based models performed worse. Notably, the
Kuwait model without MISR AODs observed the largest decrease in test R2 (Figure 5),
while the overall model predicted better in the U.A.E. without AOD variables.

The differences in predictive performance between Kuwait and the U.A.E. were part
of a larger trend in our study where both the overall and the regional models performed
differently depending on the region. The Kuwait models performed poorly in most
configurations compared to the U.A.E. models despite having twice the sample size,
indicating that sample size was not the only driver of the observed regional differences.
Regional model performance differences were consistent with other PM2.5 studies where
geography-based leave-one-out cross-validation revealed that one trained model did not
perform the same everywhere. Di et al. (2019) obtained lower cross-validated R2 in western
subdivisions of the contiguous U.S., which could be attributed to the sparsity of PM2.5
monitors in these regions [5]. They also suggested that in mountainous regions such as
the Appalachians and Rocky Mountains, terrain had an important influence on model
performance.

Regional analyses of temporal and spatial autocorrelation further revealed significant
heterogeneity. PM2.5 measurements in Kuwait demonstrated weak temporal autocorre-
lation (i.e., fast ACF decay), while PM2.5 in the U.A.E. showed slower autocorrelation
decay (Figure 7). MAIAC AOD also showed a similar but smaller difference in temporal
autocorrelation decay between the two regions. Anderson et al. (2003) observed different
ACF trends in ground-monitored AOD from two AERONET stations (Bondville in Illinois
and Spitzbergen in Norway) [44]. As the Abu Dhabi station was only active for very short
periods during 2004–2005 and did not provide sufficient data, ACFs were calculated using
MAIAC AOD instead. We observed different ACF trends with MAIAC AOD in the two
regions, although the difference was negligible after 4 days. PM2.5 autocorrelation decayed
much slower than AOD autocorrelation in the U.A.E., similar to findings by Kaku et al.
(2018) in the Southeastern U.S. [25]. Regional semivariograms also demonstrated distinct
differences in MAIAC AOD spatial autocorrelation trends: AOD in the U.A.E. showed
smaller variance than in Kuwait, as far as 50 km (Figure 8). Slower temporal decay and
greater spatial homogeneity may in part explain why the models performed better in the
U.A.E. than in Kuwait.

Differences in spatial and temporal autocorrelation trends could explain some of the
differences in variable importance between the regional models. For example, in the U.A.E.
where PM2.5 showed stronger temporal autocorrelation, the model seemed to rely more on
variables with similarly stronger temporal autocorrelation such as temperature and UV
radiation (Figure A2), as well as temporal trends (Julian date), rather than satellite AOD,
which showed poor temporal autocorrelation (Figure 7). On the other hand, in Kuwait
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where PM2.5 correlated poorly over time, the model relied less on meteorological variables
and more on aerosol-related variables, including MERRA-2 extinctions (Figure A3).

These findings highlight the challenge of modeling PM2.5 over large areas that cover
subregions with potentially heterogeneous temporal and spatial trends. Our regional
models focused on two subregions with similar geographical characteristics: the Kuwait
PM2.5 monitors covered an east-facing coastal region at approximately 40 km × 90 km, and
the U.A.E. monitors covered a west-facing coastal region at approximately 85 km × 95 km.
However, the two subregions showed very different trends in PM2.5 temporal dependence,
which likely affected the predictive power of the respective regional models. The overall
models with eight monitors in the study area also masked the difference in test R2 in
Kuwait (lower) and the U.A.E. (higher). Our study still found greater utility in models with
larger spatial coverage when the data were available; regional models did not necessarily
predict better than the overall model in their respective regions. We recommend careful
evaluation of subregional spatial and temporal trends to better understand differences in
inter-region predictive performance.

Finally, a test of model transferability demonstrated the difficulty of using models
trained with data from one region to predict PM2.5 in another region. This approach was
taken by Li et al. (2021) where their final model trained only on PM2.5 data in Kuwait
was used to predict PM2.5 in neighboring Iraq [36]. In our study, the trained and tested
Kuwait-based model was transferred 850 km southeast to similarly coastal U.A.E. with
very poor performance. Therefore, we caution against using a model trained on data from
one region to another, even if they have similar geographies. We do note that Li et al.
(2021) used a multi-stage modeling framework that took advantage of the relatively stable
relationship between visibility and PM2.5, likely improving model transferability given the
severe scarcity of reliable PM2.5 data in Iraq, which offered few modeling alternatives.

The largest limitation of this study is the small sample sizes used for analysis. Al-
though the dimension of the overall MAIAC-AOD dataset was in the thousands and the
PM2.5 monitors in our data covered a large region—from Baghdad to Dubai—more than
half of the data were in Kuwait. We introduced spatial variation in the data by using
coordinates of MAIAC pixels instead of PM2.5 monitors, but the small number of monitors
meant that predictions relative to regions further away from these sites were likely less ac-
curate, and the ability to capture local variability in PM2.5 was limited. While this could be
ameliorated by the addition of air pollution monitors, retrospective prediction of historical
PM2.5 measurement may remain unreliable.

Using assimilated meteorology and aerosol data at lower resolutions compared to
the native resolutions of MAIAC and MISR was another limitation. This relates to spatial
misalignment, specifically the change of support problem discussed by Gotway and Young
(2002) as well as Banerjee et al. (2015) [45,46]. Downscaling gridded data is an active area
of research with different interpolation approaches. For example, Li et al. (2020) recently
downscaled MERRA-2 data from 50 km to 1 km using residual deep network [35]. In
our context, such downscaling would not guarantee better prediction performance as our
handful of PM2.5 monitors were largely located in urban areas with complex anthropogenic
air pollution sources. Simple downscaling methods (e.g., bilinear interpolation) were likely
to produce overly smoothed surfaces, while sophisticated methods (e.g., deep learning)
result in difficult uncertainty quantification.

One shortcoming of our study concerned the general approach of relying on machine
learning methods to predict PM2.5, particularly non-parametric learners. Classical sta-
tistical models such as linear regression explicitly assume that the error term follows a
particular distribution (e.g., Gaussian). Under this assumption, prediction uncertainty
can be quantified in a parametric manner such as prediction intervals based on standard
errors. However, non-parametric machine learning methods such as gradient boosting and
random forest depend on hyper-parameters (such as number of trees and learning rate)
that are typically chosen via non-statistical optimization methods such as cross-validation.
As such, it is difficult to quantity uncertainty for prediction estimates from these learners.
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Several uncertainty quantification methods have been proposed, such as bootstrap sam-
pling by Hastie et al. (2009) [39], yet few air pollution studies have reported uncertainty
on their estimates. Predictions by Di et al. (2019), which covered the contiguous U.S., did
include PM2.5 uncertainty estimates by modeling the monthly standard deviation of the
difference between daily monitored and predicted PM2.5 at 1 km resolution [5].

5. Conclusions

Our study contributes to a large body of research that has established (1) remotely
sensed AOD as a helpful addition to models estimating PM2.5, particularly where PM2.5
monitors are scarce, and that (2) machine learning, notably non-linear techniques, is a pow-
erful means of predicting PM2.5 using AOD and meteorology. In the overall models as well
as separate regional models for Kuwait and the U.A.E., we observed heterogeneity in pre-
dictive performance across regions despite sharing key geographical features. Spatial and
temporal autocorrelation trends for PM2.5 and MAIAC AOD revealed regional differences,
and we suggest that these differences can help explain the discrepancies in model perfor-
mance and feature importance between regions. Noting issues in model transferability, we
also caution against applying regionally tuned models to different geographic areas.

PM2.5 data scarcity in the Middle East will continue to pose serious challenges to
modeling efforts, yet understanding divergent spatial and temporal trends can better
inform future work in this area and others.
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Appendix A

Figure A1. Out-of-region PM2.5 predictions for Kuwait-trained models over the U.A.E. (left column)
and out-of-region PM2.5 predictions for U.A.E.-trained models over Kuwait (right column) by
MAIAC and MISR AODs (top and bottom rows, respective).

Figure A2. Autocorrelation functions for ERA5 meteorological variables with high importance in the
random forests models. The Kuwait City and Central monitors shared the same MERRA-2 pixel and,
thus, the same ACF.
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Figure A3. Autocorrelation functions for MERRA-2 assimilated aerosol extinction variables, includ-
ing dust, sulfate, black carbon, and organic carbon. The Kuwait City and Central monitors shared
the same MERRA-2 pixel and, thus, the same ACF. Organic carbon was not found to be useful in any
models and was excluded in the final PM2.5 models.
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