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Abstract: Accurate estimation of the degree of regeneration in tropical dry forest (TDF) is critical
for conservation policymaking and evaluation. Hyperspectral remote sensing and light detection
and ranging (LiDAR) have been used to characterize the deterministic successional stages in a TDF.
These successional stages, classified as early, intermediate, and late, are considered a proxy for
mapping the age since the abandonment of a given forest area. Expanding on the need for more
accurate successional forest mapping, our study considers the age attributes of a TDF study area as a
continuous expression of relative attribute scores/levels that vary along the process of ecological
succession. Specifically, two remote-sensing data sets: HyMap (hyperspectral) and LVIS (waveform
LiDAR), were acquired at the Santa Rosa National Park Environmental Monitoring Super Site (SRNP-
EMSS) in Costa Rica, were used to generate age-attribute metrics. These metrics were then used as
entry-level variables on a randomized nonlinear archetypal analysis (RNAA) model to select the
most informative metrics from both data sets. Next, a relative attribute learning (RAL) algorithm
was adapted for both independent and fused metrics to comparatively learn the relative attribute
levels of the forest ages of the study area. In this study, four HyMap indices and five LVIS metrics
were found to have the potential to map the forest ages of the study area, and compared with these
results, a significant improvement was found through the fusion of the metrics on the accuracy of the
generated forest age maps. By linking the age group mapping and the relative attribute mapping
results, a dynamic gradient of the age-attribute transition patterns emerged.

Keywords: tropical dry forests; succession mapping; hyperspectral; full-waveform LiDAR; random-
ized nonlinear archetypal analysis (RNAA); relative attribute learning (RAL)

1. Introduction

Tropical forests play crucial roles in the functioning of our planet and the maintenance
of life [1], as well as in the protection of biodiversity and regulation of climate [2]. Among
them, tropical dry forests (TDFs) account for nearly half of all tropical forests [3] and are
one of the most disturbed and least protected ecosystems on earth [4–6]. As a wealth of
unique biodiversity, TDFs are important habitats for millions of people [7] and the source
of key ecosystem services [7,8]. However, at the turn of the 21st century, less than 2% of all
TDFs remained intact worldwide [9], and their rate of disturbance and deforestation far
surpasses land use and land cover change processes in other tropical biomes [5]. On the
other hand, some regions are returning to their original extent of forest cover as a result of
shifting socio-economic forces. This regeneration process is taking place in the context of
processes denominated as “agro-landscapes,” where forest regeneration is not uniform but
occurring in the context of a fragmented landscape dominated by agricultural fields [10].
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As international agreements aimed to combat climate change make countries report on
efforts to promote solutions that pay for ecosystem services (water and carbon), the need to
have accurate indicators of forest age is becoming more pressing. Forest age, together with
its spatial distribution, has been demonstrated to be among the key sources of uncertainty
that have impeded robust projections of the carbon sequestration potential of naturally
regenerating tropical forests [11]. Moreover, age estimations are critical to monitor the
effectiveness of conservation policies and the generation of national reports on the status
of biological diversity, among many other commitments [8,12–15]. Unfortunately, a lack of
information on forest age is rampant across many tropical landscapes, so proxies must be
used. The most common proxy term used to characterize forest growth variations triggered
by natural causes or human disturbance is “successional stage;” a term in which “age”
is estimated based on factors such as forest structure (e.g., tree height and diameter at
breast height) and composition (e.g., species density, number of species, etc.) [16]. These
factors play a key role in the longstanding goal of ecologists and conservation biologists to
understand the environmental and biological controls that determine the successional path
of a forest after disturbance [17]. A given successional stage in a tropical forest, therefore,
depends on multiple factors, such as site characteristics (e.g., soil types, slope, aspect),
land-use history, and propagule availability rather than “age since its last disturbance” [18].
Understanding successional trajectories is also useful in predicting how communities and
ecosystems recover from disturbance [19], especially when applied to the less studied TDF
biomes [16,20].

In general, forest structure parameters, such as canopy openness, can be linked to
features such as spectral indices that are used to estimate successional stages [21,22]. Such
features can then be related to TDF biomass, especially in situations where data were
collected during the dry season [23,24]. Furthermore, spectral mixture analysis [10] has
been used to address the spectral variability problem that compounds the separation of
TDFs under different levels of succession. The common denominator found by the authors
of [25] and [10] is that TDFs present strong differences in the short-wave infrared (SWIR;
1.3–2.5 µm) wavelength range, rather than the visible-near infrared (VNIR; 0.4–1.3 µm)
wavelength range during the dry season.

In addition to multi- and hyperspectral approaches to estimate ecological succes-
sion, light detection and ranging (LiDAR) has been applied to delineate mechanisms of
forest regeneration in a TDF [26–28]. Recently, full-waveform LiDAR has gained popu-
larity in forestry applications either by itself [26,29–33] or synergistically with spectral
images [34,35]. For example, Gu et al. [33] differentiated TDF study areas into three succes-
sional stages using 21 waveform metrics, multiple comparison analyses, and unsupervised
ISODATA clustering. Their results demonstrated that different LiDAR metrics have differ-
ent abilities to differentiate successional stages.

One fundamental problem on the determination of successional stages in TDFs (either
primary or secondary) has been the use of deterministic clustering approaches [21] that ig-
nore the structural and compositional dynamics associated with significant and sometimes
subtle differences between forests of different ages [10,36]. The former has been explored
by the authors of [34], who used decision-level fusion with multi-task learning (MTL) to
distinguish differences between transitional zones of different types of intermediate TDFs.
This former study aimed to look at how a “contact zone” between different successional
stages behaved from a spectral and structural point of view. This work was later expanded
by the authors of [35], who used both feature-level and decision-level fusion of hyperspec-
tral and full-waveform LiDAR metrics as part of a random forest (RF) approach to separate
a TDF study area into different levels of succession (inter-succession variability). These two
former approaches serve to bring a more ecological approach to mapping forest succession,
which is a continuous stochastic phenomenon driven by wind and vertebrates [4,27].

Forest age is a continuous variable, making it different from both stage and age groups
that are often treated as discrete variables. Age is relevant since it can be linked to forest
height, biomass, and other biophysical variables (e.g., leaf area index), all of which are
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important attributes to estimate ecosystem services. Unfortunately, mapping ecological
transitions along the age domain is difficult using remote sensing because of the lack of
precise information of when the process of land abandonment occurred. It is normal to find
that in a given region, there are forests in different successional stages and ages, meaning
that while mapping forest succession could be considered a proxy for age, succession and
age are not the same, and they must be treated differently. The mapping of age in a TDF
is difficult given the fact that many of the factors that drive a given spectral reflectance at
a pixel level are related to a combination of ecological and biophysical variables [10,37].
Therefore, the identification of ecological transitions in a secondary TDF with respect to
the age attribute requires the evaluation of the relative strength of the age attribute used to
characterize it.

In this study, we aim to assess the ability of hyperspectral and LiDAR to map eco-
logical successional processing with respect to a given age attribute and not the discrete
age groups or successional stages. In so doing, we look to address some of the concerns
mentioned above. The first objective was to develop a fast nonlinear archetypal analysis
model to conduct different metric configurations for forest-age-attribute learning. The
second objective was to use “relative attribute learning” (RAL) [38,39], which is formulated
as a “learn-to-rank” problem and uses a rank support vector machine (SVM) framework,
to calculate the relative score/belonging levels of a sample to a certain class attribute.
This allowed us to learn and predict the associate score of the succession age attribute
by using the smallest set of informative spectral indices, as well as LiDAR metrics. Fi-
nally, the obtained relative attribute mapping results were compared with previous age
group-based mapping.

2. Materials
2.1. Study Area

This study was conducted at the Santa Rosa National Park Environmental Monitoring
Supersite (SRNP-EMSS; 10◦48′53”N and 85◦36′54”W) in Guanacaste, Costa Rica (Figure 1).
The study area is relatively flat, with an average slope of 7% and elevations reaching up
to 325 m above sea level in the northwest to sea level in the southeast. SRNP-EMSS has
a mean annual temperature of 25 ◦C and mean annual precipitation of 1750 mm [23,40].
The six-month dry season at SRNP-EMSS extends from December to May, when there is no
precipitation [41].

Due to its historic land use, the actual vegetation at the SRNP-EMSS is a mixture
of successional stages, and the majority of the plant species are drought deciduous [42].
The area has three well-documented succession stages: early (~30 years old), intermediate
(~50 years old), and late-stage (>100 years), which are the product of 20-years of ecosystem
monitoring [23,42]. Before the 1970s, the area was used for cattle raising, agriculture, and
selective logging [43,44]. In 1971 the area became Santa Rosa National Park, and the natural
vegetation was allowed to return (no reforestation processes were involved).

The early successional forests at SRNP-EMSS are a mixture of woody vegetation,
shrubs, and pastures with 100% deciduous species. The intermediate successional stage has
fast-growing trees and lianas, of which up to 80% are deciduous. The late successional stage
contains three layers of vegetation, with 50–90% of the canopy being occupied by evergreen
crowns [23,26]. Although the study area has secondary forests in different successional
stages, small patches of old-growth forest cannot be completely ruled out.

2.2. Materials
2.2.1. Multi-Source Remote-Sensing Data

Two types of data sets were used in this study: (1) a hyperspectral cube and
(2) a large footprint full-waveform LiDAR data set. These two remote-sensing data sets
were collected in March 2005 during the dry season. More specifically, the HyMapTM

(HyVista Corporation Pty Ltd., Sydney, New South Wales, Australia) hyperspectral imagery,
which is airborne remote-sensing data, was acquired on 4 March 2005, under cloud-free
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conditions [45,46]. This image data has 125 spectral bands ranging from 0.45 to 2.48 µm
(15–20 nm of bandwidth intervals) and 15 m spatial resolution. Surface reflectance was
derived from the original digital numbers using the HyCorr software (CSIRO, Canberra,
Australia) following the steps described by Cao et al. (2015).

The large footprint full-waveform LiDAR data were collected using NASA’s Land,
Vegetation and Ice Sensor (LVIS) system [45,46]. LVIS is an airborne, wide-swath imaging
laser altimeter system that is flown over target areas to collect data on surface topography
and 3-D structure. This system includes a 1064 nm-wavelength laser and three detectors.
Additional information about the sensor can be found following the link of https://lvis.
gsfc.nasa.gov/Home/index.html (accessed on 21 September 2021). The LiDAR data were
collected within a week of the HyMap data. The LVIS system discretizes the return energy
into 432 bins for each laser pulse emitted as a waveform that can represent the vertical
distribution of the canopy well [47]. The nominal footprint size of these LiDAR data is
20 m. Gridded raster images were produced from the original binary point clouds stored
in LVIS geo-located waveform (LGW) and LVIS ground elevation (LGE) data (version 1.02)
for image fusion with hyperspectral data.
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MSI in (c); with both LiDAR and hyperspectral data using fused metrics of RH50, DMCI, MSI in (d). See Table 1 for a 
description of the metrics used in this caption. 
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Figure 1. Study area at Guanacaste, Costa Rica. The location of the study area in (a), a pseudo color map was generated
with LiDAR data using metrics of RH50, AH1015, and MAX, in (b), with hyperspectral data using metrics of NDLI, DMCI,
MSI in (c); with both LiDAR and hyperspectral data using fused metrics of RH50, DMCI, MSI in (d). See Table 1 for a
description of the metrics used in this caption.
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Table 1. Summary of HyMap and LiDAR metrics used.

Acronym Source Description Formula

Hyperspectral metrics
1 CAI SWIR Cellulose absorption index 0.5 ∗ (ρ2000 + ρ2200)− ρ2100
2 LCA SWIR Lignin-cellulose absorption index 2 ∗ ρ2205 − (ρ2165 + ρ2330)

3 NDNI SWIR Normalized difference nitrogen index log(1/ρ1510)−log(1/ρ1680)
log(1/ρ1510)+log(1/ρ1680)

4 NDLI SWIR Normalized difference lignin index log(1/ρ1754)−log(1/ρ1680)
log(1/ρ1754)+log(1/ρ1680)

5 DMCI SWIR Dry matter content index (ρ2305 − ρ1495)/(ρ2305 + ρ1495)
6 NDTI SWIR Normalized difference tillage index (ρ1650 − ρ2215)/(ρ1650 + ρ2215)
7 NDWI NIR; SWIR Normalized difference water index (ρ858.5 − ρ1240)/(ρ858.5 + ρ1240)
8 SIWSI NIR; SWIR Short infrared water stress index (ρ858.5 − ρ1640)/(ρ858.5 + ρ1640)
9 MSI NIR; SWIR Moisture stress index ρ1599/ρ819

10 NDII NIR; SWIR Normalized difference infrared index (ρ850 − ρ1600)/(ρ850 + ρ1600)
11 RMSI NIR; SWIR Reciprocal of moisture stress index ρ860/ρ1650

LiDAR metrics
12 Cx ELW The x-coordinate of the waveform centroid
13 Cy ELW The y-coordinate of the waveform centroid

14 RG ELW The radius of gyration, which can be expressed as the root mean square of the sum
of the distances that all points on the waveform are from its centroid

15 MAX ELW x-coordinate of the maximum waveform amplitude
16 EC ELW Effective channel, number of points reflected at each pixel
17 RH50 NCEREC Height (relative to zg*) at which 50% of the waveform energy occurs (m)
18 AH1e10 ELW Total waveform amplitude where the relative height is less than 10 m
19 AH1015 ELW Total waveform amplitude where the relative height is between 10 and 15 m
20 AH1520 ELW Total waveform amplitude where the relative height is between 15 and 20 m

Note: ELW represents effective waveform, and NCREC is the normalized cumulative return energy curve; zg* is the mean elevation of the
lowest detected mode within the waveform (m).

2.2.2. Forest Succession Reference Data Generation

A set of five remote-sensing images were used to generate the age data. The first
images are a unique set of aerial photographs collected by the U.S. Army in 1956 (Scale
1:24,000), the second was a Landsat multispectral scanner image collected in January 1979
(60 m spatial resolution) eight years after the national park was created. The last images
consist of three Landsat multispectral scanner images collected in January 1986, January
1997, and February 2005 (28.5 m spatial resolution) [15]. Those retrieved data were used to
generate the forest age groups of 0–10, 10–20, 20–30, 30–50, and 50 + years used for age
group mapping. Detailed steps for the generation of the reference data can be found in the
work of [35], and this reference data enables the age group mapping. In this study, the age
group variables (“AgeGroup”) were given parameters 1, 2, 3, 4, and 5 to represent the five
age groups 0–10, 10–20, 20–30, 30–50, and 50 + years, respectively. The age group mapping
result [35] is reproduced and used as a reference image presented in Figure 10a.

2.2.3. Ground Control Points

The same ground control points adopted by the authors of [35] were used in this study
to validate mapping results. Ground control points were independently validated in July
2016 [15]. Specifically, 55 selected ground control points were obtained for each age group
(1–5) based on the above-generated forest succession reference data, resulting in a total of
275 ground control points. These ground control points were then randomly divided into
30 training and 25 testing/validation samples per age group following [35].

3. Methods
3.1. Derivation of HyMap and LiDAR Metrics

Sun et al. [35] summarized and used twenty metrics from both HyMap and LiDAR
data with the potential to map successional stages [10,33,34,48,49]. We used the same
set of twenty metrics (9 LiDAR and 11 HyMap as summarized in Table 1) in this study.
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The HyMap metrics are biochemical and biophysical indices (CAI, LCA, NDNI, NDLI,
DMCI, NDWI, SIWSI, NDTI, NDII, MSI, and RMSI) that were calculated using the SWIR
wavelengths (1.2 to 1.38 µm, 1.4 to 1.79 µm, and from 1.91 to 2.48 µm) (see Sun et al., 2019
for a description on the indices). Those indices are relevant to the plant’s biochemical
composition, structure, and water content. They are all different for different successional
stages and therefore have been used for succession mapping. As described in the work
of [35], CAI, LCA, NDNI, NDLI, and DMCI are five indices related to the lignin, cellulose,
and nitrogen content of vegetation, whereas NDII, MSI, and RMSI are related to their
water content [48,49]. NDWI, SIWSI, and NDTI are related to the biophysical structure
of vegetation in a given successional stage. The LVIS metrics, namely Cx, Cy, RG, EC,
MAX, RH50, AH1e10, AH1015, and AH1520, have demonstrated the potential to map TDFs
succession [33,35]. Among them, Cx, Cy, and RG are three shape-based LiDAR metrics,
whereas EC, MAX, and RH50 are point-based. The remaining three metrics are area-based.

3.2. Feature Selection from Multi-Source Fused Metrics

Only a small set of metrics can be of significance in differentiating successional
stages [34]. As such, a feature selection approach was conducted in order to select only
those metrics that are informative enough to explain data variance. In this study, a fast non-
linear feature learning model modified from a kernel archetypal analysis (KAA) [50,51] was
developed to implement the feature selection. Moreover, Fourier features are demonstrated
to be useful for efficient kernel learning [52,53]. Those studies indicate that the translation-
invariant kernel function, such as K(x1, x2), which is the inner product of feature vectors of
φ(x1) and φ(x2) in the high dimensional kernel space, can also be expressed as the inner
product of features vectors y(x1) and y(x2) in the low dimensional Euclidean space

K(x1, x2) = 〈φ(x1), φ(x2)〉 = y(x1)
Ty(x2) (1)

This is because the translation-invariant kernel function can be regarded as the Fourier
transform of a certain distribution p(w) in Equation (2)

K(x1, x2) = φ(x1 − x2) =
∫

Rm

p(w)e−jwT(x1−x2)dw (2)

The Fourier transform can furthermore be approximately equivalent to the sum of the
nonlinear functions generated by a finite number of expanded cosine basis functions:

∫
Rm

p(w)e−jwT(x1−x2)dw ≈
k
∑

i=1

1
k e−jwi

Tx1 ejwi
Tx2

=
k
∑

i=1

1
k cos(wT

i x1 + bi) cos(wT
i x2 + bi)

= 〈 1√
k
y(x1), 1√

k
y(x2

)
〉

(3)

Therefore, the Fourier features were used in our study to approximate the Gaussian
kernel K(x, y) = exp(−(1/2σ2)‖x−y‖2) in KAA to speed up the computation. Specifically,
there are three essential steps for this approximation: (i) To randomly sample m parameters
wi ∈ RM from the independent distribution p(w) as

w1, . . . , wm ∼ p(w) (4)

(ii) To construct a m-dimensional randomized feature map Y for the input data X
as follows

yi = [cos(wix1 + bi), . . . , cos(wixN + bi)] ∈ RN ,
Y= [y 1 · · · ym] ∈ Rm×N (5)
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Here, bi obeys the uniform distribution in the interval of wi ∼ N(0, 1/σ2I). Finally,
(iii) approximate the kernel matrix K with K̂

K ≈ K̂ =
1
m

YTY (6)

As the kernel was approximated with a randomized nonlinear feature map, we
denote our feature extraction model as randomized nonlinear archetypal analysis (RNAA).
RNAA was next used as the feature learning tool to generate G given number of features
Z = {z1, z2, . . . , zG} with both types of input metrics. The former was done by optimizing
the objective function as follows:

min
C,S
||X− XCS||2F

s.t.C ≥ 0, S ≥ 0,∣∣cg
∣∣1 = 1, |sk

∣∣1 = 1

(7)

where X ∈ RN×K was input data with K features. The features, Z, are called archetypes,
and they were generated as linear combinations of observations weighted by their index
matrix C ∈ RK×G. The observations were reconstructed by these archetypes and the
corresponding coefficient S ∈ RG×K.

In order to estimate which of the original input metrics are useful to explain the
variance on the TDFs, and following the multiple endmember selection rules using the
KAA model [51], the original input feature metrics, which contributed the most to the
generation of each new transformed feature by RNAA were selected following Equation (8)

Eg= {xi| cg(i) >th} (8)

The acceptable threshold, th, is mean(max(cg) + min(cg)). Finally, the selected metrics
used to generate the new features were integrated as the new input features of the age-
attribute learning process.

Data from various data sources may have different expressions for a given object,
and multi-source data fusion may obtain more abundant data information than what is
necessary due to co-linearity and spatial autocorrelation. As such, independent learning
from a single data source may be more beneficial to the discovery of important information
than data integrated from two or more data sets. Because of this, feature selection using
RNAA was first conducted on each individual remote-sensing data set to pick out the most
informative metrics used for forest-age-attribute learning. The informative metrics selected
from each data source were then fused in different combinations for forest-age-attribute
learning. This was next compared with the learning performance of the independent source
metrics to find out the most powerful fused metric set to map the forest succession of the
study area.

3.3. Relative Attribute Learning for TDFs Succession Age Attribute

In this study, the relative attribute learning (RAL) algorithm integrated with the
rank support vector machine (rankSVM) ranking model [38,39] was deployed to learn the
relative relation of the age attribute (denoted as a function of the successional stage, as a)
of a given forest. Given the training data set X ∈ RN×G with G selected metric features,
the RAL uses the relative relation between sample pairs and is treated as a “learn-to-rank”
problem on the rankSVM framework (Equation (9) [38]).

min
w
‖wT‖2

2 + C(∑ εij
2 + ∑ γij

2)

s.t. wT(xi − xj) ≥ 1− εij, ∀(xi, xj) ∈ O,
|wT(xi − xj)

∣∣≤ γij, ∀(xi, xj) ∈ S,
εij ≥ 0, γij ≥ 0

(9)
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where (xi, xj) is a comparison pair of forest samples in X, w ∈ RG×1 is the weight vector, C
is the penalty factor, S and O are the similarity set and comparison set, respectively, which
cannot be empty at the same time. The similarity set S requires the samples of each pair to
have similar attributes, for example, forest samples with approximately the same age.

The ground control points used in this study have age group information (they have
been assigned to the five age groups correspondingly) but no information on the specific
forest age. As such, forest samples in the same age group may have different ages (For
example, the early forests are among 0–10 years, but inside of the age group of 0–10, there
are forests of 4, 7, and 9 years old). As it was not clear which pairs of the forest samples
have the same age attribute, the similarity set S was set to empty to avoid uncertainty
errors when learning the ranking function. The samples in different reference age groups
were first used to construct a comparison set of the succession age attribute a to be used as
part of a “learning ranking function”. Specifically, each point xi in the older age group was
used to formulate the comparison pair O =

{
(xi, xj)

∣∣xi >a xj
}

with point xj in the younger
age groups. The remaining twenty-five ground control points were also used this way in
the accuracy assessment.

As part of the process associated with parameter setting, the penalty factor C for
all the training data sets was not fixed as it was in Equation (9). Instead, our study
assigned different penalty values to the training sample pairs since the more confident the
training information is, the larger the penalty factor should be to make the model make
fewer mistakes on the training data. As the similarity set was empty in our study, the
specific value for the penalty was set as CS= 0. Referring to the age group information, the
forest samples in pairs that had a larger age gap were assumed to have more confident
comparative relationships regarding their age attribute in the ranking function learning. If
their ranking order (comparative relationship) was wrongly taken in training the ranking
function, such comparative pairs were assigned a heavier penalty. On the contrary, if the
forest samples had a smaller age gap, their age-attribute levels may be close to each other
resulting in small intra-group/age variability. Under such circumstances, there is less
confidence in imposing a heavy penalty to guarantee their ranking order in the learning.
Therefore, for the pairs in the comparison set, the penalty was set as

COij = 200∗|AgeGroupi−AgeGroupj

∣∣∣ (10)

This implies that the training sample pair with the larger age gap between two forest
samples was given a larger COij . Thus, it was less likely for the model to make ranking
errors on those training samples. With the prepared training data, the modified RankSVM
model can be trained as follows:

min
w
‖wT‖2

2 + ∑ COij εij
2 + CS∑ γij

2

s.t. wT(xi − xj) ≥ 1− εij, ∀(xi, xj) ∈ O,
|wT(xi − xj)

∣∣≤ γij, ∀(xi, xj) ∈ S,
εij ≥ 0, γij ≥ 0

(11)

Finally, the ranking score of a sample with respect to the succession age attribute can
be obtained as seen in Equation (12):

ra = f (x) = wTx (12)

Furthermore, ra was scaled to the range [0, 1] according to the maximum and minimum
values of the relative scores Ra of the whole forest following

ra = {ra −min(Ra)}/{max(Ra)−min(Ra)} (13)
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3.4. Accuracy Assessment

In this study, the age attribute was evaluated via a ranking model. Therefore, the
widely used Kendall’s τ was used to evaluate the quality of the ranking function [54],
which was calculated via Equation (14)

τ =
ncon − nincon

N
(14)

where N is the total number of pairs, ncon is the number of pairs in which the predicted
relation between two samples is consistent with their true relation, and nincon is the number
of pairs that have inconsistent estimated relation between two samples. Note, if xi = xj,
rai = raj , the pair is neither counted as a consistent pair or an inconsistent pair. Specifically,
if rai > raj for the pair

{
(xi, xj)

∣∣xi >A xj
}

, this pair is categorized as ncon. Otherwise, it
is categorized as nincon. The value will fall between −1 and 1. If τ= 1, the sorting result
is exactly the same as the benchmark sorting result. If τ= 0, then there is no correlation
between the two sets. If τ= −1, the result of the ranking equation is completely opposite
to that of the benchmark.

4. Results
4.1. HyMap and LVIS Metrics Selection and Age-Attribute Learning

Different configurations of metrics were conducted for age-attribute learning and
performance evaluation. Specifically, the number G in the developed method of RNAA
varied from 1 to the number of input metrics used to implement feature learning. Then a
different configuration of metrics that contribute to the generation of a new feature was
indirectly achieved following Equation (8) with the optimized index matrix C. These steps
were first conducted on the remote-sensing data set from the independent source. On
each data set, the varied configuration of metrics was compared to analyze their different
potential for age-attribute learning. After that, the most informative configuration of
metrics of both data sets was combined together, and the same feature selection process
was conducted on the combined data to analyze the most informative fused metrics.

4.1.1. Metric Selection of HyMap Data of SRNP-EMSS

Table 2 lists the key metric selection results from HyMap data collected at SRNP-EMSS,
conducted following the rules of Equation (8). Using a different number of RNAA features
to explain the data variance at SRNP-EMSS enabled the discovery of a different number of
informative metrics. As can be seen in Table 2 and Figure 2, the ranking accuracies achieved
on training and test data sets fluctuate when less than four metrics are used. Even though
the training and test accuracies see a nearly sustained growth when more than four metrics
are being used, and contrary to the training accuracy, the test accuracy begins to decrease
after more than nine metrics are being used (shown in Figure 2). Both accuracies increased
after the introduction of the NDNI, NDLI, DMCI, and MSI metrics. Of these metrics, NDNI,
NDLI, and DMCI use the SWIR wavelengths, and MSI uses the VNIR wavelengths.

Table 2. HyMap metrics selected from the eleven metrics for TDFs age-attribute learning.

RNAA Feature Number (G) Selected Metrics Accuracy (τ)
Training Test

1 CAI 0.8882 0.8710
2 NDLI, MSI 0.8224 0.8010
3 NDLI, DMCI, MSI 0.8213 0.8010
4 NDNI, NDLI, DMCI, MSI 0.8940 0.8797
5 NDNI, NDLI, DMCI, NDWI, MSI 0.8956 0.8774
6 LCA, NDNI, NDLI, DMCI, NDWI, NDII 0.8949 0.8800
7 LCA, NDNI, NDLI, DMCI, NDWI, MSI, NDII 0.8967 0.8771
8 CAI, LCA, NDNI, NDLI, DMCI, NDWI, MSI, NDII 0.9189 0.8989
9 CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, MSI, NDII 0.9193 0.9002

10 CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, MSI, NDII, RMSI 0.9220 0.8970
11 CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, SIWSI, MSI, NDII, RMSI 0.9249 0.8899
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Figure 2. RAL ranking accuracy τ obtained on HyMap metric combinations learned with RNAA
metrics shown in Table 2.

Along with those quantitative results, Figure 3 further presents the qualitative age-
attribute mapping results for the whole study area. Visual comparisons with the reference
age data of our study area suggest that the feature learning results RNAA(4), RNAA(5),
and RNAA(7) are all feasible. Concerning goodness of fit, the most informative set of
HyMap metrics extracted by RNAA to evaluate the forest age groups of the study area are
considered to be NDNI, NDLI, DMCI and MSI learned via RNAA(4) (Table 2 and Figure 2).
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Figure 3. Age-attribute mapping of the study area with different HyMap metric combinations, given in Table 2 and learned
by the RNAA. The color bar represents the relative scores scaled to a range of 0–1.

As can be seen in Figure 4, NDNI, NDLI, and DMCI are in diagonally opposed
quadrants, and as such, they are the most dominant feature variables to explain data
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variance. As this result agrees with the feature selection results, we conclude that NDNI,
NDLI, DMCI, and MSI are the most important metrics for the HyMap data.

Remote Sens. 2021, 13, x 11 of 25 
 

 

 
Figure 3. Age-attribute mapping of the study area with different HyMap metric combinations, given in Table 2 and learned 
by the RNAA. The color bar represents the relative scores scaled to a range of 0–1. 

As can be seen in Figure 4, NDNI, NDLI, and DMCI are in diagonally opposed quad-
rants, and as such, they are the most dominant feature variables to explain data variance. 
As this result agrees with the feature selection results, we conclude that NDNI, NDLI, 
DMCI, and MSI are the most important metrics for the HyMap data. 

 
Figure 4. View of the HyMap data and the original metric variables in the space of the first two 
principal components. 

4.1.2. Metric Selection of LVIS Data of SRNP-EMSS 
A similar learning process to the one described above in the context of the HyMap 

metrics was conducted with the LVIS metrics. As can be observed in Table 3 and Figure 
5, both training and test accuracies increase immediately when using the metric set Cx, 
RG, MAX, EC, and RH50 (selected by the RNAA (2)), and after this, the accuracies fluctuate 

RNAA(1)
 

 

RNAA(2)
 

 

RNAA(3)
 

 

RNAA(4)
 

 

RNAA(5)
 

 

RNAA(6)
 

 

RNAA(7)
 

 

RNAA(8)
 

 

RNAA(9)
 

 

RNAA(10)
 

 

RNAA(11)
 

 

0 0.2 0.4 0.6 0.8 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

CAILCA

NDNI
NDLI

DMCI

NDTINDWISIWSIMSINDIIRMSI

Component 1

C
om

po
ne

nt
 2

Figure 4. View of the HyMap data and the original metric variables in the space of the first two
principal components.

4.1.2. Metric Selection of LVIS Data of SRNP-EMSS

A similar learning process to the one described above in the context of the HyMap
metrics was conducted with the LVIS metrics. As can be observed in Table 3 and Figure 5,
both training and test accuracies increase immediately when using the metric set Cx, RG,
MAX, EC, and RH50 (selected by the RNAA (2)), and after this, the accuracies fluctuate
slightly upon the introduction of additional metrics. However, the test accuracies stay
below the highest accuracy achieved using the RNAA (2), even when more metrics are
added (Table 3 and Figure 5).

Table 3. Key metrics selected from the nine LVIS metrics for age-attribute learning.

RNAA Feature Number (G) Selected Metrics
Accuracy (τ)

Training Test

1 Cx 0.8473 0.8464
2 Cx, RG, MAX, EC and RH50 0.9324 0.8931
3 RG, MAX, EC and RH50, AH1015, AH1520 0.9347 0.8867
4 Cy, RG, MAX, EC, RH50, AH1015 0.9307 0.8896
5 Cy, RG, MAX, EC, RH50, AH1015, AH1520 0.9351 0.8858
6 Cy, RG, MAX, EC, RH50, AH1e10, AH1015 0.9309 0.8893
7 Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 0.9351 0.8858
8 Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 0.9351 0.8858
9 Cx, Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 0.9347 0.8880

The age-attribute learning results, shown in Table 3 and Figure 5, are represented in a
spatial context in Figure 6. This figure suggests that the combination of Cx, RG, MAX, EC,
and RH50, selected by RNAA(2), is the most powerful set of metrics that avoids the under-
and over-fitting problem.

The LVIS metric variables in the space of the first two principal components are
presented in Figure 7. As suggested by this figure, the metric set of RG, MAX, EC, and
RH50 are more dominant loading factors than the other metrics. More importantly, RH50
approaches orthogonality to RG, MAX, EC, Cx, and AH1015. In particular, RH50, Cx, MAX,
and AH1015 are distributed in four different quadrants. Therefore, a combination of these
metrics would achieve maximum information complementarity. These dominant metrics
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are overlapped with the key metric set of Cx, RG, MAX, EC, and RH50, which performed
the best in age-attribute learning.
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Figure 5. RAL ranking accuracy τ with different LVIS metric combinations learned with RNAA in
Table 3.
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Figure 6. Age-attribute mapping with different metric combinations corresponding to that learned with RNAA metrics
shown in Table 3. The color bar represents the relative score scaled to range from 0 to1.
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4.1.3. Multi-Source Metric Fusion

Table 4 illustrates the key metrics from HyMap and LVIS data for TDF age learning
at SRNP-EMSS under different metric fusion conditions. Here, training data has a higher
age-attribute learning accuracy (τ = 0.9418) than the highest accuracy achieved on the
independent data set (either HyMap or LVIS). However, the test accuracy (τ = 0.8806)
is lower than the highest accuracies obtained on the two independent data sets. To test
the ability to improve the result, a smaller fusion data set was compiled by fixing the key
metrics from one data source and adding one key metric from the other data source. In the
case of using the HyMap key metrics with one informative LiDAR key metric, nearly all
training and test accuracies increased when compared to the best cases achieved on the
independent data. The only combination of a decreased accuracy was that of the NDNI,
NDLI, DMCI, MSI, and MAX metric set. In this case, the test accuracy was slightly lower
than that obtained without adding MAX. Here, RH50 was found to be the best LiDAR
metric to be combined with the hyperspectral metric set.

Table 4. HyMap and LVIS key metrics fusion for TDFs age-attribute learning at SRNP-EMSS.

Condition Selected Metrics
Accuracy (τ)

Training Test

HyMap key metrics combined with all the LVIS key metrics NDNI, NDLI, DMCI, MSI,
Cx, RG, MAX, EC, and RH50 0.9418 0.8806

HyMap key metrics combined with one of the LVIS key metrics

NDNI, NDLI, DMCI, MSI, Cx 0.9087 0.8944
NDNI, NDLI, DMCI, MSI, RG 0.9211 0.8819

NDNI, NDLI, DMCI, MSI, MAX 0.9147 0.8787
NDNI, NDLI, DMCI, MSI, EC 0.9031 0.8797

NDNI, NDLI, DMCI, MSI, and RH50 0.9138 0.8928

LVIS key metrics combined with one of the HyMap key metrics

NDNI, Cx, RG, MAX, EC and RH50 0.9313 0.9027
NDLI, Cx, RG, MAX, EC and RH50 0.9271 0.8992
DMCI, Cx, RG, MAX, EC and RH50 0.9267 0.9002
MSI, Cx, RG, MAX, EC, and RH50 0.9258 0.8982

The results, shown in Table 4, can be summarized as follows: Adding one hyperspec-
tral metric to a set of dominant LVIS metrics achieved a better performance than using
the dominant hyperspectral metrics with one added LVIS metric. In previous sections, the
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LiDAR metrics were also found to be more powerful than the hyperspectral metrics for the
evaluation of the TDF’s successional age attribute at SRNP-EMSS. The metric set included
NDNI, Cx, RG, MAX, EC, and RH50, which enabled the analysis of fused data to provide
the best performance, are displayed in Figure 8 in the space of the first two principal
components. As can be seen in that figure, the metric NDNI is orthogonal to all the rest of
the LiDAR metrics and thus provides suitable complementarity for the other metrics.
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Figure 8. View of the fused feature data and the five metric variables (from both LVIS and HyMap
data) in the space of the first two principal components.

Table 5 illustrates the differences before and after the best LiDAR metrics were fused
with the NDNI metric. As can be seen in the table, the importance/weight of the LVIS
metrics changed with the introduction of the NDNI variable, which led to an improvement
in the ranking accuracy.

Table 5. Importance of metrics in the age-attribute ranking function of the two best learning cases.

Metric NDNI Cx RG MAX EC RH50

Weight for age-attribute learning —— 1.6324 −7.3361 2.0739 −0.9981 0.9416
0.0015 1.6871 −7.4882 2.3589 −0.5981 0.7056

4.2. Age-Attribute Mapping

The ranking scores of the age attribute, achieved using the metric set NDNI, Cx, RG,
MAX, EC, and RH50 on 125 test samples, are presented in Figure 9. With the ascending
age groups, each of which has 25 forest samples, an overall increasing trend in the relative
scores of the age attribute can be observed. Moreover, the 25 forest samples within each
age group were predicted using different levels of the age attribute.

Figure 10b shows the age-attribute mapping results for the whole study area, whereas
the age group mapping result of the previous study by the authors of [35] is reproduced
and presented in Figure 10a for comparison. Compared to discrete age group mapping, the
relative scores of the age-attribute mapping offer a continuous transition of the succession
process as well as a quantitative evaluation for the composition of the age variations in
each discrete age group. These variations can be seen more intuitively in the filled contour
map of the relative scores of the age-attribute mapping, shown in Figure 10c. As can be
seen in that figure, one discrete age group contains areas that are of different ages. The
statistical histogram of the relative scores of the age-attribute mapping result, shown in
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Figure 10d, suggests that the number of pixels increases from young forests toward mature
forests until the relative score of the age attribute becomes 0.8. Thus, there are fewer pixels
in the young and old forest categories than in the categories in between.
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Figure 9. Relative scores of the age attribute predicted for the test TDF samples at the SRNP-EMSS.
The test samples are arranged in increasing order of the five age groups, each of which has 25
consistent forest samples.

Remote Sens. 2021, 13, x 16 of 25 
 

 

ages. The statistical histogram of the relative scores of the age-attribute mapping result, 
shown in Figure 10d, suggests that the number of pixels increases from young forests to-
ward mature forests until the relative score of the age attribute becomes 0.8. Thus, there 
are fewer pixels in the young and old forest categories than in the categories in between. 

 
(a) (b) 

 
 

(c) (d) 

Figure 10. TDFs succession mapping for the whole study area at SRNP-EMSS with respect to the age group (a), age attrib-
ute (b), filled contour map of the relative scores corresponding to the age-attribute mapping (c), and statistical histogram 
of the relative scores of the age-attribute mapping result (d). The age group mapping is represented with five discrete 
colors of dark blue, light blue, yellow, red, and dark red. The color bar in the age-attribute mapping represents the relative 
scores scaled to a range from 0 to 1. 

4.3. Statistical Analysis 
Figure 11 shows the statistics related to the spatial and statistical distribution of pixels 

in different age groups. As can be seen in the upper row of the figure, the number of pixels 
in the old category (shown in red) increases from the early forest category to the mature 
forest category. As seen in the maps of the middle row, the number of pixels that fall under 
different age scores a) increases as a function of increasing age until the most mature age 
group and b) overlaps between the neighboring age groups. 

TDFs succession age group mapping

 

 
TDFs succession age attriubte relative score mapping

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11 2 3 4 5

(0--10 years) (10--20 years) (20--30 years) (30--50 years) (50+ years)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Relative sc ore of age attr ibute

N
um

be
r 

of
 f

or
es

ts

 

 

Figure 10. TDFs succession mapping for the whole study area at SRNP-EMSS with respect to the age group (a), age attribute
(b), filled contour map of the relative scores corresponding to the age-attribute mapping (c), and statistical histogram of the
relative scores of the age-attribute mapping result (d). The age group mapping is represented with five discrete colors of
dark blue, light blue, yellow, red, and dark red. The color bar in the age-attribute mapping represents the relative scores
scaled to a range from 0 to 1.
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4.3. Statistical Analysis

Figure 11 shows the statistics related to the spatial and statistical distribution of pixels
in different age groups. As can be seen in the upper row of the figure, the number of pixels
in the old category (shown in red) increases from the early forest category to the mature
forest category. As seen in the maps of the middle row, the number of pixels that fall under
different age scores (a) increases as a function of increasing age until the most mature age
group and (b) overlaps between the neighboring age groups.
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Figure 11. Comparison and statistics between the age groups and age attribute. Upper row: the dark red areas in each
subfigure represent the distribution of forests in the corresponding age group. Middle row: the age-attribute scores shown
in a spatial context and scaled to range from 0 to 1.0 (0: young forest, 1: old forest). Lower row: the number of forests as a
function of the relative scores of the age attribute.

The probability density function (PDF) curves, fitted from the above-derived his-
togram and shown in Figure 12, suggest clear succession transitions of the five age groups.
Transition patterns from one age group to another can be visually observed from the
statistic mean of the PDF curve, corresponding to each predefined age group. Except for
the age groups of 0–10 years and 50+ years, forests in all the other periods were predicted
with the age-attribute level across a score range width approaching 0.5. For example, for
the 10–20 years period, the age-attribute relative score varied approximately from 0.2 to
0.7, for the 20–30 year period from 0.4 to 0.9, and for the 30–50 year period, from 0.5 to 1.0.
However, a very different phenomenon was observed for the early and late age groups.
For the early period, the age-attribute level was estimated with a range of 0 to 0.6, and
for the late/mature age, the range was 0.7 to 1.0. Thus, the age-attribute-level range is
either wider (young age) or narrower (mature age) than the age-attribute-level range of the
intermediate periods. Most pixels fell into the intermediate age range.

Boxplots in Figure 13 show an overall ascending trend of the medians, minima, and
maxima of the age scores as a function of the increasing age group. Specifically, the average
relative level of the age attribute for each age group was predicted as 0.3296, 0.4313, 0.6148,
0.7333, and 0.8180 for the five age groups, correspondingly. If year zero was taken as
the minimum and year 60 was taken as the maximum, the above-average levels/scores
would represent years 19, 25, 36, 43, and 48, correspondingly. As shown in Figure 13, the
standard deviation is relatively high (σ = 0.1104) for the youngest age group and relatively
low (σ = 0.06) for the most mature age group. Those age groups in between vary from
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σ = 0.0827 (30–50 years) to σ = 0.0893 (10–20 years) and σ = 0.0933 (20–30 years). This
implicitly points to some intra-group age variability of the age groups of the study area.
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Figure 12. Statistical results generated based on the histogram of the relative scores of the successional age attribute assigned
to each predicted age group by Sun et al. [35]. The top subfigure shows the PDF curves without the histograms shown in
the bottom subfigure.



Remote Sens. 2021, 13, 3830 18 of 24
Remote Sens. 2021, 13, x 19 of 25 
 

 

 
Figure 13. Statistical parameters of the relative score of the age attribute in each predicted succes-
sional age group. 

5. Discussion 
For the past few decades, studies on the regeneration of TDFs have extensively char-

acterized the process as three deterministic successional stages, i.e., early, intermediate, 
and late. Li et al. [34] tried to treat the regrowth process of secondary TDFs as a continuous 
process by evaluating the intermediate successional stage with three sub-classes of early-
intermediate, intermediate-intermediate, and intermediate-late, which provides a more 
detailed transition between adjacent growth stages. In this study, we evaluated the TDF 
succession at SRNP-EMSS using the age attribute instead of successional stages or age 
groups. The development of pathways and ecosystem dynamics of the SRNP-EMSS study 
area was quantified at detailed relative levels of the age attribute without knowing the 
exact growth age of any particular area. Here, we discuss the implications of our results 
with respect to the metric selection, ecological importance, and successional transitions. 

5.1. Significance of Key Metric Selection 
Different features are of different levels of importance to the identification task. Sim-

ple concatenation or stacking of different features for the research object may contain re-
dundant information or lead to over-fitting when limited training samples are available. 
Thus, it is essential to conduct feature reduction when using multi-dimensional hyper-
spectral and full-waveform LiDAR metric data [55]. To this end, correlation matrix com-
putation [34] and multiple comparison analyses [33,35] were used. Feature transformation 
is one of the main strategies of feature reduction as it has the ability to use more complex 
linear or nonlinear mathematics to generate some explainable features for the data vari-
ance. However, in ecological studies, it is highly important to pick out the most informa-
tive features from the original set rather than using virtual mathematic features to reveal 
the functional relationship between these features and the physical or chemical traits of 
the object. In this study, a fast nonlinear feature selection tool-RNAA was used to derive 
the key hyperspectral and LiDAR metrics. RNAA was implemented to select the most 
informative spectral indices and LiDAR metrics. This process tracked the contribution of 
the original input metrics to mathematic features in the feature transformation so that in-
formative metrics were extracted following rules in Equation (5). Similar processing strat-
egies have been adopted in endmember extraction studies [51,56] via archetypal analysis, 

0--10 y ears 10--20 y ears 20--30 y ears 30--50 y ears 50+ y ears
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 r
el

at
iv

e 
sc

or
e 

of
 a

ge
 a

tt
ri

bu
te

 

Figure 13. Statistical parameters of the relative score of the age attribute in each predicted successional
age group.

5. Discussion

For the past few decades, studies on the regeneration of TDFs have extensively
characterized the process as three deterministic successional stages, i.e., early, intermediate,
and late. Li et al. [34] tried to treat the regrowth process of secondary TDFs as a continuous
process by evaluating the intermediate successional stage with three sub-classes of early-
intermediate, intermediate-intermediate, and intermediate-late, which provides a more
detailed transition between adjacent growth stages. In this study, we evaluated the TDF
succession at SRNP-EMSS using the age attribute instead of successional stages or age
groups. The development of pathways and ecosystem dynamics of the SRNP-EMSS study
area was quantified at detailed relative levels of the age attribute without knowing the
exact growth age of any particular area. Here, we discuss the implications of our results
with respect to the metric selection, ecological importance, and successional transitions.

5.1. Significance of Key Metric Selection

Different features are of different levels of importance to the identification task. Simple
concatenation or stacking of different features for the research object may contain redundant
information or lead to over-fitting when limited training samples are available. Thus, it is
essential to conduct feature reduction when using multi-dimensional hyperspectral and
full-waveform LiDAR metric data [55]. To this end, correlation matrix computation [34]
and multiple comparison analyses [33,35] were used. Feature transformation is one of
the main strategies of feature reduction as it has the ability to use more complex linear
or nonlinear mathematics to generate some explainable features for the data variance.
However, in ecological studies, it is highly important to pick out the most informative
features from the original set rather than using virtual mathematic features to reveal the
functional relationship between these features and the physical or chemical traits of the
object. In this study, a fast nonlinear feature selection tool-RNAA was used to derive the key
hyperspectral and LiDAR metrics. RNAA was implemented to select the most informative
spectral indices and LiDAR metrics. This process tracked the contribution of the original
input metrics to mathematic features in the feature transformation so that informative
metrics were extracted following rules in Equation (5). Similar processing strategies have
been adopted in endmember extraction studies [51,56] via archetypal analysis, which has
a suitable model interpretation ability and has demonstrated the ability to work when
multiple representative sample selections need to be conducted.
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Results summarized in Tables 2 and 3 show that using more metrics in learning did not
necessarily result in a more precise predicting accuracy. Such a conclusion was also derived
when using LiDAR and hyperspectral data for aboveground biomass modeling in the
Brazilian Amazon [55]. Figures 4 and 7 show some feature redundancy in the PCA feature
space. Even though the training accuracy could be seen growing with a larger metric set,
the test accuracy decreased once the used metrics reached a certain number, suggesting
over-fitting. As shown in Table 4, the fusion of key metrics, generated from hyperspectral
and full-waveform LiDAR data, have the potential for TDF succession learning in the
SRNP-EMSS study area. This has also been documented in former studies [34,35]. It needs
to be highlighted that our study used only five metrics, namely NDNI, Cx, RG, MAX, EC,
and RH50, which have been found to be the optimal set to improve succession learning.
Evaluating different metric combinations in the context of feature redundancy and potential
over-fitting guaranteed achieving the optimal mapping results shown in Table 4.

5.2. Ecological Importance of the Key Metrics Used for Age-Attribute Learning

Secondary TDFs include changing horizontal (e.g., canopy openness and homogeneity)
and vertical (e.g., canopy height, LAI) structures and species compositions driven by
wind-dispersed or vertebrate-dispersed mechanisms [15,57,58]. To effectively evaluate
the succession processes, these horizontal and vertical variables that are relevant to forest
growth and their biochemical and biophysical expressions need to be considered.

The biochemical expressions of the forests can be analyzed using spectral data. In
our study, NDNI, NDLI, DMCI, and MSI were found to be the most potent metrics to be
used for age-attribute learning. Of these metrics, NDNI, in particular, demonstrated its
power in discriminating the age-attribute level of the succession process, as it enabled
the best age-attribute learning results to be obtained when fused with the LiDAR metrics
(Table 4). Among the spectral indices, NDNI is used to estimate the relative content of
nitrogen in vegetation canopy and has been demonstrated to be very sensitive to the
change of nitrogen content when the vegetation is still green [59]. Nitrogen is an important
component of chlorophyll, and vegetation with a high concentration of nitrogen grows
faster. A study of [17] indicated that early successional communities may be more nitrogen-
limited [60] than later successional stages due to reduced rates of decomposition associated
with high C:N ratios. In contrast, intermediate and older communities were dominated by
fast-growing species with higher C:N ratios, higher growth rates, and forest net primary
productivity [61]. Both leaf C:N ratio and leaf dry matter concentration (factors that relate
to NDNI and DMCI metrics, respectively) were found to be relatively low during the earlier
stages of succession and were maximized during the intermediate stages of succession [17].
These findings can partially explain the performance of the NDNI in the evaluation of the
forest growth status related to the age attribute. Gei et al. [62] have indicated that a higher
density of nitrogen-fixing species exists in the early stages. In fact, it is has been found
that most of the recovery of species richness and species composition occurs in younger
secondary forests [63].

The hyperspectral remote-sensing data of this study were collected during the dry
season. In the dry season, there are nearly no leaves in the early successional forests, which
are mixtures of woody vegetation, shrubs, and pastures. In the intermediate successional
forests, up to 80% are deciduous with fast-growing trees and lianas, whereas in the late
successional forests, 50–90% of the canopy is occupied by evergreen crowns with three
layers of vegetation [23,26]. In the absence of leaves, the spectral separability of a forest
is largely driven by carbon constituents, such as bark and litter-fall, detectable using the
SWIR wavelength region [10,64]. Moreover, older forests with more biomass and higher
water content are found to have higher absorption and, thereby, lower reflectance in the
SWIR [65]. Because of these physico-chemical factors, spectral indices such as NDNI, NDLI,
DMCI, and MSI, associated with the relative wood content, nutrients, and water content of
the canopy, can be successful in the detection of the successional stages.
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Growth patterns can be mainly detected by analyzing the vertical structures of a
forest [66]. In this context, full-waveform LiDAR data has shown its potential for studying
TDF succession (e.g., [15,33]). Evidence shows that the elevation of the major peak and
the maximum amplitude of the waveform present a regular trend for the successional
stages, the former increasing and the latter decreasing from the early to the late stage
(e.g., the work of [33]). Their study used line-, point-, shape- and area-based groups of
metrics to differentiate the successional stages. Their results further indicate that all nine
LiDAR metrics used in the study (Cx, Cy, and RG are shape-based, EC, MAX, and RH50
are point-based and AHle10, AHle1015, and AH1520 are the area-based metrics) were
significantly different at the three successional stages of the SRNP-EMSS. They furthermore
demonstrated that even if the late and intermediate successional stages could be identified
by any of the four metric groups, the intermediate successional stage could not be identified
exclusively based on the line-based metrics, and the early successional stage could be
identified neither by the point- nor by the area-based metrics. Three point-based LiDAR
waveform metrics, i.e., RH25, RH50, and RH100 were also used by the authors of [27] to
characterize successional stages in SRNP-EMSS. In our study, a combination of shape- and
point-based groups of metrics, namely, Cx, RG, MAX, EC and RH50, were found to be
the smallest subset of the LiDAR metrics to fully explain the successional variation in the
study area.

5.3. TDFs Succession Transition with Respect to Age Attribute

Secondary TDFs are compositional mosaics driven by ecological and biophysical
processes. For instance, the study by Waring et al. [67], also conducted in Santa Rosa,
Costa Rica, highlights the high variability in stand ages, soil properties, and orthogonal
gradients of the successional stages. In our study, the varying levels of the age attribute
shown in Figure 10b provided visual evidence that the TDF succession process in the study
area was learned as continuous transition trajectories. These trajectories are expressed
with dynamic relative levels of the forest age attribute rather than deterministic ecological
processes [34]. Evaluation of the relative strength of the age attribute to characterize the
ecological transitions in a secondary TDF is more objective than the identification of the
secondary TDF succession transitions with absolute age or rough stages that do not take
the intra-class variability into account. Because the forest attributes in the remote-sensing
images are in general mixed at the pixel level, they are related to a combination of ecological
and biophysical variables [10,22]. As seen in Figure 11, our study encountered detailed
age variation within the five age groups. The overlapping age-attribute levels, shown
in Figure 12, visualize the transition patterns of the age variations between the different
succession stages.

In this study, forests in the early succession stage had the highest standard deviations
of the age attribute (Figure 13). This conforms to the finding by Gu et al. [33], who
encountered large differences in the vertical structures of the early successional stages
revealed by the standard deviations of the LiDAR waveforms. Gu et al. [33] also mentioned
that the forest structures in the intermediate and late successional stages were more uniform,
and the standard deviations for these two successional stages were similar at all LiDAR
waveform elevation levels. In our study, forests in the age group of 50+ years were found
to have the smallest standard deviation of the age-attribute level when compared with the
younger age groups. It is reasonable to assume that this is due to the uniformity of the
vertical structures of the most mature successional stage. Moreover, the standard deviations
of the three intermediate age groups were similar to one another, and the values were in
between the youngest and oldest age groups. Overall, the standard deviations of the age
attribute decreased from the early period toward the late/mature period.

6. Conclusions

This paper investigated the potential of multi-source, full-waveform LiDAR and
hyperspectral remote-sensing data fusion for the evaluation of the forest age in the SRNP-
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EMSS study area. A total of 20 metrics, 11 derived from full-waveform LiDAR data and 9
derived from hyperspectral data, were used to mine for the smallest number of informative
metrics with a potential for age-attribute learning. This was achieved through a fast feature
selection tool of an RNAA model and the RAL model. The RNAA model was used to
nonlinearly transform the original input metric features into newly generated metrics, and
the RAL model was deployed to provide relative age levels of the TDFs in the study area.
The most important findings of this process can be summarized as follows:

(1) Of the hyperspectral metrics used in this study, NDNI, NDLI, DMCI, and MSI selected
by the RNAA model were found to be the best set of variables to explain the data
variance and, ultimately, the forest age variation of the study area;

(2) A combination of the shape-based (Cx, RG) and point-based (MAX, EC and RH50)
LiDAR metrics, selected by the RNAA model and extracted from the LVIS data, were
found to be the smallest number of the LiDAR metrics that best explained the forest
age variation of the study area;

(3) Fusing hyperspectral and LiDAR data achieved better results than using these data
sets independently. Of the parameters used in this study, NDNI, Cx, RG, MAX, EC,
and RH50 were found to be the most powerful combination to map the forest age
variation of the study area;

(4) The RAL method was successfully used to retrieve the relative age-attribute degree of
TDFs in the study area. The result is a continuous forest age-level map that covers the
successional stages of the study area;

(5) A comparison between the former age group mapping result by Sun et al. (2019)
and ours confirms that the TDF succession process in the study area can be well
understood as continuous transition trajectories expressed with dynamic relative
levels of the forest age attribute, rather than deterministic ecological processes. De-
scending standard deviations of the age attribute were observed along the transition
trajectories, which account for the varied uniformity of the vertical structures along
the process of forest succession.
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