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Abstract: With high spatial resolution remote sensing images being increasingly used in precision
agriculture, more details of the row structure of row crops are captured in the corresponding images.
This phenomenon is a challenge for the estimation of the fractional vegetation cover (FVC) of row
crops. Previous studies have found that there is an overestimation of FVC for the early growth
stage of vegetation in the current algorithms. When the row crops are a form in the early stage of
vegetation, their FVC may also have overestimation. Therefore, developing an algorithm to address
this problem is necessary. This study used World-View 3 images as data sources and attempted to
use the canopy reflectance model of row crops, coupling backward propagation neural networks
(BPNNs) to estimate the FVC of row crops. Compared to the prevailing algorithms, i.e., empirical
method, spectral mixture analysis, and continuous crop model coupling BPNNs, the results showed
that the calculated accuracy of the canopy reflectance model of row crops coupling with BPNNs is
the highest performing (RMSE = 0.0305). Moreover, when the structure is obvious, we found that
the FVC of row crops was about 0.5–0.6, and the relationship between estimated FVC of row crops
and NDVI presented a strong exponential relationship. The results reinforced the conclusion that the
canopy reflectance model of row crops coupled with BPNNs is more suitable for estimating the FVC
of row crops in high-resolution images.

Keywords: high spatial resolution image; fractional vegetation cover; row crops; neural networks

1. Introduction

Fractional vegetation cover (FVC) is a canopy architecture parameter that represents
the fraction of the land surface covered by green foliage in the two-dimensional plane [1].
FVC is a very important parameter for describing the vegetation cover on the Earth’s
surface, and also is one of the important indicators of ecosystem change [2]. Vegetation
usually includes crops, forests, grasslands, and shrubs. Different from other vegetation,
the crops are artificially planted. Its FVC is closely related to the growth status of the crop,
which can further estimate the yield of food. Therefore, crop FVC is very important in
agriculture. With the development of information technology, precision agriculture was
proposed. Precision agriculture requires remote sensing as support [3,4]. In the estimation
of FVC during the crop growing season, high spatial resolution remote sensing data is a
good choice for precision agriculture [5]. When crops are being sowed in the row mode,
also known as row crops, it consists of row closures (vegetation component) and between-
row (bare soil component) in the early growth stage [6]. The estimation of the FVC of row
crops is more complicated than that of continuous crops (canopy state at the later stage of
crop growth) in the high spatial resolution remote sensing data. Therefore, developing the
estimated methods of the FVC of row crops are urgently needed in remote sensing.
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To estimate FVC from remote sensing images, the prevailing algorithms include the
(1) empirical method, (2) spectral mixture analysis (SMA), and (3) physical model-based
method [7–9]. In the empirical method, the regression relationship (this relationship can
also be understood as causality) between the vegetation index (VI) and FVC is developed.
Then, this relationship is used to estimate the FVC [8]. This method has high calculation
accuracy, which is suitable for estimating FVC based on regional remote sensing data
and is further used as reference data to validate other methods [7,10]. However, the
empirical method lacks a physical mechanism and requires a large number of samples
to ensure the accuracy of the regression relationship [9]. Therefore, this method is not
suitable for the estimation of FVC over a large area. Moreover, when an image contains
heterogeneous canopies, the accuracy of the empirical method is limited [11,12]. Row crops
are typical heterogeneous canopies. Therefore, the empirical method is not a good choice
for developing a method to estimate the FVC of row crops.

SMA is also called a pixel unmixing model, and it overcomes the limitations of the
empirical method for estimating FVC over a large area [13]. SMA was developed based
on early vegetation micrometeorological modeling [12,14,15], and extended some similar
algorithms, e.g., the pixel dichotomy model [1,16]. In SMA, the endmember (the decom-
posed “basic component” of the pixel) probability in each pixel is constructed, and then is
combined with spectral linear equation and classification algorithm to calculate FVC [17].
SMA is a semi-empirical algorithm, and considers spectral mixing relationships in the
modeling, which has a certain physical mechanism [18]. According to solutions of the
linear equations [17], SMA is divided into unconstrained inversion and constrained in-
version [19,20]. Different from unconstrained inversion, constrained inversion considers
constrained conditions (the sum of all endelements is 1 and all endelements are greater
than 0) [21]. Therefore, this method will not have outliers (FVC appears greater than 1
or less than 0) when estimating FVC, and is rarely used in high spatial resolution im-
ages [20,22]. The reason is that the heterogeneity of ground objects in the images becomes
more obvious with the increase of spatial resolution, which becomes a challenge for the
selection of endmembers in SMA [23]. Therefore, whether SAM is a good method to
estimate the FVC of row crops needs further study.

Different from the empirical method and SMA, the physical model-based method
relies on radiative transfer models. The direct estimation of radiative transfer models is
very difficult due to the complexity of the models. Usually, neural networks (NNs) and
lookup table methods are the two typical alternative methods for the indirect estimation of
physical models [7,24]. NNs are the most commonly used method [7]. In NNs, the radiative
transfer models produce a learning dataset to “train” and “test” NNs. Currently, many FVC
products from remote sensing have been developed based on this method, e.g., POLDER
products, CYCLOPES products, GEOV1 products, and GLASS-FVC products [25–27]. In
previous studies, since the spatial resolution of remote sensing data was very low, the
spatial resolution of the corresponding FVC products was also very low. Therefore, the
radiative transfer models usually use continuous crop models to approximately calculate
the FVC of row crops [7]. However, with continuous improvement on the spatial resolution
of the sensors, more details of the row structure of the row crops are captured in the
corresponding images. Continuous crop models were continued to use to estimate the FVC
of row crops, which will cause overestimation [28]. Therefore, it is necessary to introduce a
canopy reflectance model of row crops to develop a new estimated method.

The objective of this study will develop a general and reliable FVC estimation al-
gorithm for row crops in the high spatial resolution images, and further address the
overestimation in the FVC of row crops. To achieve this goal, (1) we use NNs and canopy
reflectance model of row crops to participate in estimating FVC of row crops, then compare
the empirical method, SMA, and continuous crop model coupling BPNNs in the high
spatial resolution images. (2) By analyzing the accuracy for differences among prevailing
algorithms of FVC, we can find an optimal algorithm to estimate the FVC of row crops.
Through the above two steps, this study can demonstrate the advantages of the canopy
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reflectance model of row crops in estimating the FVC of row crops, and find a suitable
estimated algorithm for the FVC of row crops.

2. Methods
2.1. Empirical Method

In the empirical method, the regression equation between the normalized difference
vegetation index (NDVI) and FVC is developed based on the training data [29–33], namely:

FVC = P(0◦) = aNDVI + b (1)

Here, P(0◦) is the gap probabilities in the vertical viewing direction, i.e., FVC. a and b
are empirical coefficients, which can be fitted based on field measurements. According to
the measurement results of this study (see Figure 3c below), a = 0.755, b = −0.079.

2.2. Spectral Mixture Analysis

With the assumption that a pixel is the linearly weighted sum of each component
endmember, the SMA uses the spectral linear equation (i.e., Equation (2)) and pixel classifi-
cation algorithm (we used orthogonal subspace projection, i.e., OSP, see Section 2.2.1) [34]
to calculate FVC [35]. The expression of the spectral linear equation is

Rk =
M

∑
i=0

ri,k fi + ek (2)

Here, Rk is the reflectance of the kth band, i is the number of endelements, fi is the
abundance (area fraction) of the i-th spectral endmember in the pixel, ri,k is the reflectance
of the i-th endmember in the k-th band, and ek is the residual term of the spectral linear
equation, i.e., the calculated deviation. Equation (2) is rewritten as matrix-vector form:

R = rF + E (3)

According to the difference of solution methods used for spectral linear equation, i.e.,
Equations (2) or (3), SMA is divided into unconstrained SMA(U-SMA) [36] and constrained
SMA (C-SMA) [17]. The detailed calculation is shown in the following subsections.

2.2.1. Unconstrained SMA

F in Equation (3) represents the vector of the abundance (area fraction), one of which is
the abundance (area fraction) of vegetation components, i.e., FVC. Therefore, we decompose
F in Equation (3), and the equation is

R = r0 f0 + rotherFother + E (4)

Here, f 0 is FVC, r0 is vector corresponding to f 0, rother is r excluding r0, and Fother is
F excluding f 0. To remove rotherFother in Equation (4), we introduce orthogonal projection.
i.e., P = I− rotherr+other = I− rother

(
rT

otherrother
)−1rT

other. Here, P is an operator symbol of
orthogonal projection, and r+other is the pseudoinverse of rother. Then, Equation (4) becomes:

P(R) = P(r0 f0) + P(E) (5)

We then use the signal-to-noise ratio (SNR) algorithm [34] to calculate maximum
eigenvalue. Then, Equation (5) can be solved and the FVC (f 0 in Equation (5)) can be
calculated.



Remote Sens. 2021, 13, 3874 4 of 17

2.2.2. Constrained SMA

Compared with U-SMA, C-SMA includes two constraints: (1) the sum of components
equals one, and (2) the component value is greater than zero, which makes C-SMA closer
to the real situation. The constraint is expressed as the mathematical form:

min
f∈∆

{
(R− Fr)T(R− Fr)

}
s.t.∆ =

{
f

∣∣∣∣∣ n
∑

j=1
f j = 1

}
s.t.∆ = { f > 0}

(6)

In this study, we used the constrained least squares to address the first constraint.
The second constraint is an issue of extreme value in mathematics, and we introduced the
Lagrange multiplier method to calculate the eigenvalue vector in Equation (6). After that,
we used an iterative algorithm to solve Equation (6), and Kuhn-Tucker conditions are set to
convergence conditions.

2.2.3. Number of Endmembers

The number of endelements in the SMA influences the estimated accuracy of FVC.
In [21], the SMA of five endmembers (SMA-5) has high accuracy to simulate FVC in the
heterogeneous canopy. The canopy of row crops is a typical heterogeneous canopy in
agriculture. Therefore, we chose SMA-5 to participate in this comparison. Meanwhile,
considering that the row crops were mainly composed of vegetation and background, we
also chose the SMA of the two endmembers (SMA-2). Therefore, the SMA includes four
cases in this study, i.e., U-SMA-2, U -SMA-5, C-SMA-2, and C-SMA-5.

2.3. Physical Model-Based Method

The basis of the physical model-based method is the radiative transfer model. There-
fore, we chose the canopy reflectance model of row crops to address the simulated overesti-
mation of FVC of row crops. In this study, a modified four-stream (MFS) radiative transfer
model is used, which is developed based on the four-stream radiative transfer theory [6].
In the MFS model, the horizontal radiative transfer caused by the change of row structure
is considered; hence, the MFS model is most suitable for the canopy of row crops. Based on
the light transmittance, the MFS model establishes the relationship between the light signal
and the gap in the row crops. Then, FVC is calculated based on gap fraction from nadir
observations. In addition, to show the accuracy of the continuous crop reflectance model
to estimate the FVC of row crops in the high spatial resolution images, we had chosen the
PROSAIL model [37] to participate in the comparison. The PROSAIL model assumes that
the horizontal direction of the canopy is infinitely [38]. Therefore, the PROSAIL model
is suitable for estimating the FVC of the continuous crop. The input parameters of the
radiative transfer models (MFS and PROSAIL models) are generally a lot, and some input
parameters are difficult to be measured, which makes them difficult to solve, and further
to acquire FVC [7]. Therefore, in this study, we introduced backward propagation NNs
(BPNNs) to address this problem. Use of BPNNs is one of the NNS methods, their training
time is shorter, and robustness is strong in the estimation. Therefore, this method is widely
used to find the optimal solution for the radiative transfer model in Earth sciences [39].
The calculation steps are as follows:

2.3.1. Generating the Learning Dataset

Since BPNNs need the learning dataset (a “one-to-many” data table composed of FVC
and each band of the spectrum, the band of the spectrum can be seen in Table 2) to partici-
pate in “training” and “testing”, we used the MFS model to generate a learning dataset.
Since the PROSPECT-5 model (leaf reflectance model) [40,41] provided leaf hemispherical
reflectance and transmittance to the MFS model, we coupled the PROSPECT-5 model to the
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MFS model (canopy reflectance model). In the generation of the learning dataset of the MFS
model, the range of the leaf biochemical parameters involved in the PROSPECT-5 model
refers to Leaf Optical Properties Experiment 93 (Lopex 1993) [42], and these parameters are:
leaf chlorophyll content (Cab), carotenoid content (Car), brown pigment content (Cbrown),
equivalent water thickness (Cw), leaf mass per unit leaf area (Cm), and structure coefficient
(N). In addition, for other canopy parameters in the MFS model, we chose leaf area index
(L), average leaf inclined angle (θl), row width (A1), and distance between rows (A2) to
participate in the generation of learning dataset. The PROSAIL model is also composed of
the PROSPECT-5 model and SAIL model (canopy reflectance model) [38]; hence, we also
used a similar method to generate a learning dataset of the PROSAIL model. Table 1 shows
an example of the input parameters used to generate a learning dataset.

Table 1. The input parameters for the MFS model used to generate the learning dataset.

MFS Model PROSAIL Model

Parameter Unit Value Range Step Parameter Unit Value Range Step

Cab µg·cm−2 30–60 10 Cab µg·cm−2 30–60 10
Car µg·cm−2 4–14 2 Car µg·cm−2 4–14 2
N - 1.2–1.8 0.2 CW cm 0.005–0.0015 0.005
θl

◦ 30–70 10 Cm g·cm−2 0.003–0.005 0.001
L m2·m−2 0–6 0.5 N - 1.2–1.8 0.2
θs

◦ 20–45 5 θl
◦ 30–70 10

A1 cm 0–20 10 LAI m2·m−2 0–6 0.5
A2 cm 0–20 10 θs

◦ 20–45 5

Here some parameters in MFS model are fixed, they are: Cw = 0.014, Cm = 0.004, Cbrown = 0, h = 1, hotspot = 0.1. Similarly, some parameters
are also fixed in the PROSAIL model, they are: Cbrown = 0, hotspot = 0.1.

In the learning dataset, the MFS model and the PROSAIL model generate 168,480 cases,
respectively. After the learning dataset is generated, we randomly divided the learning
dataset into three parts: 60% of the learning dataset is used to “train” BPNNs, and this
learning dataset is also called the training dataset; 20% of the learning dataset is used to
validate the network, and this learning dataset is also called the validating dataset. The
remaining learning dataset was used to “test” the network, and this learning dataset is also
called the testing dataset.

2.3.2. Training Network

A BPNN includes an input layer, hidden layer, and output layer. In this step, we used
the “training dataset” and “validation dataset” to train the network. The calculation of
BPNNs is divided into two steps: forward propagation and backward error propagation.
Based on the above two steps, the final parameters of the network can be determined;
hence, the “test dataset” is used to produce the final reference data table.

In forward propagation, the activation function is used to construct a network. This
study uses the Sigmoid function, and its expression is:

f (I) =
1

1− eI (7)

where I is a neuron function, which is commonly expressed as a one-dimensional linear
function, and its expression is wjiyj + bj. wji is the weight in the network, yj is the output
value of the network, and bj is the bias of the network.

In backward error propagation, the momentum method (hyperparameters) is used to
adjust the error to the minimum in the network. It improves the “learning efficiency” (to
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find the optimal solution of the network at the shortest time, the “training” of less than ten
cycles almost achieves the minimum deviation, see Figure 1b,f), and its expression is:

wij(p + 1) := wij(p) + α
∂F

∂wij
+ β

[
wij(p)− wij(p− 1)

]
(8)

bj(p + 1) := bj(p) + α
∂F
∂bj

+ β
[
bj(p)− bj(p− 1)

]
(9)

where := is a mathematical symbol of “defined as”, α is the learning efficiency, and its
expression is α := α/λ(i). This expression is an adaptive function which automatically
adjusts step length to find the optimal solution in the training. β is the damping coefficient
(or momentum), which updates the previous gradient value to speed up the convergence.
The range of the value is 0 < β < 1. P is the number of network cycles. F is the cost
function, which is used to control the error. The cost function used in this study is

F =
p

∑
i=1

l

∑
j=1

(
yij − ŷij

)
(10)

where ŷij is the estimated value when the BPNN is “trained”. Here, the MFS model
combined with the BPNN is referred to as the MFS + BPNN, and the PROSAIL model
combined with a BPNN is referred to as the PROSAIL + BPNN. The number of nodes in
the hidden layer has a large influence on the performance of BPNNs. To determine the
number of nodes in the hidden layer, we analyzed the variation of deviation during the
network cycles in the MFS + BPNN and PROSAIL + BPNN (Figure 1). When the number
of nodes hidden layer is 6, the deviation of the MFS + BPNN is the smallest (blue line in
Figure 1c or red box in Figure 1d). Therefore, the number of nodes in the hidden layer
in the MFS + BPNN is set to 6. Similarly, the number of nodes in the hidden layer in the
PROSAIL + BPNN is set to 14 (purple line in Figure 1g or red box in Figure 1h). The other
parameters in BPNNs can be seen in Table 2.

Table 2. The input parameters of the BPNNs in the program.

Number of Network
Cycles (P)

Number of Nodes in the Layers Learning
Efficiency (α)

Damping
Coefficient (β)Input Hidden Output

value 414 3 6 (MFS + BPNN) 1
0.01 0.1specific

contents

545 nm (r)
660 nm (r)
782 nm (r)

14 (PROSAIL_BPNNs) FVC
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Figure 1. The variation of deviation during network cycles in the MFS + BPNN and PROSAIL + BPNN. (a) The variation of
deviation during network cycle in the MFS + BPNN, (b) the most obvious position for deviation reduction in MFS + BPNN,
(c) the deviation of the MFS + BPNN at the last few cycles, and (d) the deviation of the MFS + BPNN at the last cycle, (e) the
variation of deviation during network cycle in MFS + BPNN, (f) the most obvious position for deviation reduction in the
MFS + BPNN, (g) the deviation of the MFS + BPNN at the last few cycles, and (h) the deviation of the MFS + BPNN at the
last cycle. Here, red boxes in Figure 1d,h are the number of nodes in the hidden layer when the deviation is minimum, and
the symbol H is an abbreviation for the number of nodes in the hidden layer.

2.3.3. Retrieving FVC

When the network is trained, the “test dataset” is substituted into the network. Then,
an “output test dataset” can be generated. We used the “output test dataset” to retrieve the
FVC corresponding to the spectrum in the pixels. In this study, we used spectral angle as a
retrieving algorithm.

ϑ = arccos
(

A · B
|A||B|

)
(11)

where A and B are the reflectance of the two spectra on the bands. In this study, the MFS +
BPNN and the PROSAIL + BPNN used spectral angle to retrieve FVC, and their threshold
was 0.05.
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3. Experiment and Data Preparation

In this study, the in-situ measurements were collected in Zhongwei City, Ningxia Hui
Autonomous Region, China (Figure 2a). The Yellow River passes through the region, and
Zhongwei City is a typical area of irrigation agriculture. In Zhongwei City, the farmland
on the south bank of the Yellow River is more concentrated. Therefore, this study chose
farmland on the south bank of the Yellow River as a study area (Figure 2b). The main
species of the study area include rice, corn, and wolfberry (strictly speaking, wolfberry is
an economic forest planted in row mode). For the estimation issues of FVC of row crops,
we measured the early growth status of the crop, and its measurement time was performed
from 1–2 July 2016. In this time, the measured crops exhibited a significant row structure.
To be consistent with the high spatial resolution (World-View 3 image in Figure 2c), the
plot area was selected 2 m × 2 m. The specific correlation measurements are shown below:
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and (c) World-View 3 image of farmland in Zhongwei city. The green points in (c) are the measuring sample, the blue area
in (c) is the planting area of wofberry, and the red area in (c) is the mixed planting area of rice and corn.

3.1. Field Measurement Data
3.1.1. Endmember Spectrum and Normalized Vegetation Index

There are two ways to obtain the spectrum of endmembers. The first way is directly
obtained from remote sensing images through pure pixel analysis [33], and the second way
is obtained via ground measurement. Since pure pixel analysis is more convenient, we
used it to extract endmember spectrum in the World-View 3 image. Figure 3a,b shows
the endmember spectrum for U-SMA-2, U-SMA-5, C-SMA-2, and C-SMA-5. In NDVI
measurement, we selected 30 samples sites involved in the remote sensing image and used
a canopy analyzer (SperctroSense 2+ multi-channel canopy spectrum measurement system)
to measure the normalization difference vegetation index (NDVI) (Figure 2c). Based on
the measured NDVI and the measured FVC (Section 3.1.2), we established a regression
equation to calculate the FVC of row crops (Figure 3c).
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3.1.2. Fractional Vegetation Cover

In FVC measurement, we selected 30 samples sites involved in the remote sensing
image (Figure 2b). Digital cover photography (DCP, non-fisheye lens) was used to measure
the FVC of row crops. According to the different types of crops, the measured distance
between the camera lens and the top of the canopy was between 2 m, and the number of
photos in each quadrat was not less than three to obtain the average value of FVC. In the
processing photos taken by DCP, we used Lab’s spatial conversion technology to convert
the captured color photos into binary images. In the binary images, the pixel value of 0
represented the soil, and the pixel value of 255 represented the area covered by vegetation.
We counted the number of pixels in the vegetation component to obtain FVC in the photos
(Figure 3d).

3.2. Remote Sensing Data, Preprocessing, and Implementation of Estimated Algorithm of FVC

In this study, we used a high spatial resolution image (World-View 3) as remote
sensing data. The related introduction of World-View 3 is shown in Table 3. In remote
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sensing preprocessing, we used ENVI software to process the image. First, we performed
a radiometric calibration on the image and converted the DN value into radiance. Then,
based on ground control points, we performed a geometric correction in the images. To
obtain the reflectance of ground objects, we used FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) in the ENVI software to conduct an atmospheric correc-
tion on World-View 3 image [43]. Moreover, we used IDL computer language to write all
the estimated algorithms of FVC involved in this study, i.e., empirical method, U-SMA-2,
U-SMA-5, C-SMA-2, C-SMA-5, MFS + BPNN, and PROSAIL + BPNN. The version of IDL
was 8.3 Microsoft Windows (Win32 x86_64 m64). To address images in ENVI software, we
used the image processing module in the ENVI function library.

Table 3. The introduction of World-View 3.

Satellite Height Band Acquisition Date and Time Spatial Resolution

617 km

Coastal (400 nm–450 nm)

2 July, 12:15:34 (Beijing time) 2 m

Blue (450 nm–510 nm)
Green (510 nm–580 nm)
Yellow (585 nm–625 nm)

Red (630 nm–690 nm)
Red–Edge(705 nm–74 nm)
NIR–1 (770 nm–895 nm)
NIR–2 (860 nm–1040 nm)

4. Results

Figure 4 shows the comparison of FVC of row crops estimated from different algo-
rithms in World-View 3. The FVC values of row crops estimated by U-SMA-2, C-SMA-2,
U-SMA-5, and C-SMA-5 (Figure 4c–f) are significantly higher than the FVC values of
row crops estimated by the MFS + BPNN, PROSAIL + BPNN, and empirical method
(Figure 4a,b,g). In Figure 4, vegetation planted in the red area is wolfberry, and its FVC is
low. Vegetation planted in the khaki area (Figure 4a,b,g) or green area (Figure 4c–f) are rice
or corn, and their FVC is high. In U-SMA-2, C-SMA-2, U-SMA-5, and C-SMA-5, most FVC
values are estimated by U-SMA-2, C-SMA-2, U-SMA-5, and C-SMA-5 are high, and the
values are located at 0.9 (red or yellow area in Figure 5c–f). The FVC values estimated by
the MFS + BPNN, PROSAIL + BPNN, and empirical method are low, and the most values
are located in 0.5–0.6 (red or yellow area in Figure 5a,b,g)). Compared with the SMA in
Figure 5c–f, the scatter points in Figure 5a,b,g are more concentrated, which implies the
FVC of row crops estimated by the MFS + BPNN, PROSAIL + BPNN, and empirical method
are strongly related with NDVI. There is a significant exponential relationship between
NDVI and FVC estimated by the MFS + BPNN and PROSAIL + BPNN (Figure 5a,b). In the
exponential relationship between NDVI and FVC, the continuity of results estimated by
the MFS + BPNN is better than that of the PROSAIL + BPNN. It is worth noting that these
discontinuous points displayed in Figure 5b are shown as the steep change of grayscale,
i.e., green point distribution in the yellow area in Figure 5b. The maximum FVC estimated
by the PROSAIL + BPNN is greater than that of the MFS + BPNN (red circle in Figure 5b).
In Figure 5g, the FVC of row crops estimated by the empirical method has linear relations
with NDVI. In the U-SMA-2 and U-SMA-5, FVC has many values greater than 1 or less
than 0, see the points outside the red dotted line in Figure 5c,e. The FVC of row crops
estimated by C-SMA-2 and C-SMA-5 is between 0 and 1.

In Figure 6, the field measurement data is used to evaluate the performance of esti-
mated algorithms of the FVC of row crops for World-View 3 data. The scatter point of the
FVC estimated by MFS + BPNN and those calculated from the field photos (Figure 3d) have
high consistency, i.e., R = 0.9763, RMSE = 0.0305 in Figure 6a. The overall performance us-
ing all the field measurement data presented satisfactory results, which further confirms the
reasonability and reliability of the MFS + BPNN. In Figure 6b,g), the calculation accuracy
of the PROSAIL + BPNN (R = 0.9166, RMSE = 0.0665) and empirical method (R = 0.9463,
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RMSE = 0.0378) is lower than that of MFS + BPNN. Some scatter points are distributed
in the upper left of the 1: 1 line, which implies that the PROSAIL + BPNN and empirical
method have a slight overestimation when estimating FVC of row crops (Red circle in
Figure 6b,g). The row crop’ FVC estimated by U-SMA-2, C-SMA-2, U-SMA-5, and C-SMA-5
presents a significant overestimation, and its calculation accuracy is low (RMSE > 0.0792).
In general, the estimated results of U-SAM-5 and C-SAM-5 (RMSE > 0.0792) are better
than that of U-SMA-2 and C-SMA-2 (Their RMSE > 0.0755). In Figure 6c–f, the difference
between RMSEs in U-SMA-2, C-SMA-2, U-SMA-5, and C-SMA-5 is small. Combined
with Figure 5c–f, constraint conditions are considered, which avoids outliers. However,
constraint conditions can be ignored in SMA for the improvement of estimation accuracy
of the FVC of row crops in World-View 3.
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5. Discussion

This study compared prevailing algorithms for the FVC estimation of row crops from
World-View 3. In our results, the physical model-based method and empirical method
achieved satisfactory accuracy for the FVC of row crops compared to the field measurement.
Different from the empirical method, the physical model-based method is automatically
operated without any prior knowledge on the land cover, with no human interaction and
empirically obtained parameters. This method can overcome the difficulties in determining
the parameters in the empirical method. Therefore, the physical model-based method has
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the potential to operationally estimate the FVC of row crops from a high spatial resolution
image. To achieve good calculation accuracy, the choice of model in the physical model-
based method is very important. In this study, the MFS + BPNN considered a row crops
model (MFS model) to estimate the FVC of row crops, and thus the MFS + BPNN obtained
an optimal accuracy (R = 0.9755, RMSE = 0.0312). MFS + BPNNs have the potential to
estimate the FVC of row crops in precision agriculture, which indirectly predicts the early
growth status of crops.

In addition, previous studies on FVC estimation mainly focused on kilometric resolu-
tion remote sensing data, a small amount of decametric resolution remote sensing data, and
several kilometric resolution FVC products generated from SPOT-VET, MERIS, MODIS,
and AVHRR sensors [9,25,26,44–49]. This study compared prevailing algorithms for FVC
estimation of row crops from 2 m-resolution data (World-View 3), which is a new approach.
Since the sensor can further detect the row structure of crops when the spatial resolution of
the sensor is improved, the row crops model (MFS model) needs to be used to estimate
the FVC of row crops. Figure 5b showed a density plot of the relationship between the
NDVI and FVC estimated by the PROSAIL + BPNN. In this result, although the scatter
points were exhibited an exponential relationship, estimated FVC values were discrete
distribution. The main reason was that the row structure does not take into account the
continuous crop model (PROSAIL model), which led to a mixed relationship between
row closure reflectance and the reflectance of the between-row that cannot be calculated,
and further affected the continuity of estimated FVC based on remote sensing reflectance
data. Moreover, since the continuous crops did not have a between-row, the continuous
crop model used the calculation method of the vegetation component to calculate the
multiple scattering of this area, which led to an overestimation of reflectance in the canopy
of row crops. FVC and leaf area index are closely related: leaf area index is the optical
thickness of the vegetation. The optical thickness of the vegetation affects multiple scatter-
ing, eventually affecting the reflectance. Based on the above logic analysis, we suggested
that the multiple scattering of the model influences FVC estimation. This conclusion is
well shown in Figure 5b. In Figure 5b, when NDVI values are more than 0.8, the FVC of
row crops calculated by the PROSAIL + BPNN was greater than the FVC of row crops
calculated by the MFS + BPNN (red circle in Figure 5b). This illustrated that the vegetation
structure is not negligible for FVC estimation of the heterogeneous canopy in high spatial
resolution images.

In this study, we chose the early growth status of crops (i.e., row crops) as a target
of FVC estimation. The constraint conditions in C-SAM (C-SMA-2 and C-SMA-5) were
considered to eliminate the abnormal points of the estimated FVC (FVC > 1 or FVC < 0
in Figure 4c,e), but the accuracy of the estimation of the FVC of row crops was not par-
ticularly obvious. Similar to the previous study [21], the FVC estimated by SMA had the
overestimation (Figure 5c–f) in the early growth status of crops, and was not suitable for
FVC estimation in the early growth stage of crops. Compared to the estimation results of
SMA, the PROSAIL + BPNN and the empirical method presented improved calculation
accuracy. There is still a slight overestimation in these algorithms. Previous studies have
found that the FVC is affected by soil background reflectance [21,50]. The soil background
in the row crops is large, hence we also support this conclusion. Analyzing the algorithms
involved in the comparison, MFS + BPNN was a nice choice to estimate the FVC of row
crops, which also addressed the overestimation in the early growth status of crops.

NDVI was usually strongly related to FVC at a small regional scale and used in
the empirical method and SMA [1,7,10]. Therefore, if the estimated FVC had a strong
relationship with NDVI at a small regional scale, it could indicate that the estimated
FVC was reasonable. In this study, the MFS + BPNN, PROSAIL + BPNN, U-SMA-2,
C-SMA-2, U-SMA-5, C-SMA-5, and empirical method had a relationship with NDVI.
Among them, strongly related with NDVI was the FVC estimated by the MFS + BPNN and
empirical method, which further implied that these two algorithms were more reasonable
for estimating the FVC of row crops. Different from the empirical method, the MFS + BPNN
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was an automation algorithm, which can form a streamlined workflow to estimate the
FVC of row crops from World-View 3. Therefore, the MFS + BPNN is more suitable for the
generation of products in the high spatial resolution image. In our study, the FVC of row
crops and NDVI have exponential relationships. The same relationship can be found in
previous studies [30,31], which implies that the range of FVC of row crops is below the level
at which NDVI saturates. We suggest that the FVC is more suitable as a greenness indicator
to more accurately reflect farmland growth, and will have more application prospects in
precise agriculture.

6. Conclusions

To find a reasonable algorithm for estimating the FVC of row crops in the high
spatial resolution images, further serving precision agriculture, this study introduced
a canopy reflectance model of row crops coupled with BPNNs to estimate the FVC of
row crops. Comparing the prevailing algorithms, the accuracy for the canopy reflectance
model of row crops coupled with BPNNs was higher, which again shows that the canopy
reflectance model of row crops is more suitable for estimating the FVC of row crops. As
high spatial resolution remote sensing images are increasingly used in precision agriculture,
the vegetation structure of the heterogeneous canopy needs to be considered in the FVC
estimation. In future FVC estimation, the reflectance model of the heterogeneous canopy
will require more and more attention. Therefore, the MFS + BPNN has the potential to
estimate the FVC of row crops based on a high spatial resolution image.
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