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Abstract: Photovoltaic (PV) technology is becoming more popular due to climate change because it
allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently,
many countries have been attempting to generate electricity through PV power plants over the
last decade. Monitoring PV power plants through satellite imagery, machine learning models, and
cloud-based computing systems that may ensure rapid and precise locating with current status on a
regional basis are crucial for environmental impact assessment and policy formulation. The effect
of fusion of the spectral, textural with different neighbor sizes, and topographic features that may
improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This
study mapped PV power plants using a random forest (RF) model on the Google Earth Engine
(GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence
Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index
(NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water
Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar
Topography Mission (SRTM) as input variables. We found that the textural features from GLCM
prominent enhance the accuracy of the random forest model in identifying PV power plants where
a neighbor size of 30 pixels showed the best model performance. The addition of texture features
can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall
accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight
improvement in modeling. This study extends the knowledge of the effect of various variables in
identifying PV power plants from remote sensing data. The texture characteristics of PV power plants
at different spatial resolutions deserve attention. The findings of our study have great significance for
collecting the geographic information of PV power plants and evaluating their environmental impact.

Keywords: machine learning; Google Earth Engine; cloud computing; remote sensing; solar power

1. Introduction

Solar energy is the most commonly available renewable energy source with a great
potential to replace fossil fuels while reducing greenhouse gas (GHG) emissions to limit
climate change [1,2]. Photovoltaic (PV) technology can convert solar energy directly
into electricity with large arrays of solar panels [3]. With PV technology and industry
development, the cost of electricity generated by PV power plants has declined to the
same level as that generated by traditional fossil-fuel power plants [4]. According to the
International Energy Agency (IEA), the global installed PV capacity has increased from
about 1.25 GW in 2000 to more than 627 GW in 2019. With the establishment of the carbon
neutrality goal of the majority of countries worldwide, the generation capacity of PV power
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plants will continue to increase at high speed in the future. However, the development of
PV power plants requires a large amount of land because the energy generated per square
meter of a PV power plant is much lower than that of traditional fossil fuels plants [5,6].
Utility-scale PV power plants caused many potential environmental impacts during the
process of construction and operation. The environmental impacts include changes in
local microclimate [7–11], changes in albedo [1,12,13], changes in vegetation cover [14,15],
land use and land cover change [16,17], and impacts on habitat biodiversity [18,19]. The
construction of PV power plants in various landscapes, such as desert, mountain, coast,
lake [20–22], has also led to the differences in their environmental effects. Researchers need
to urgently evaluate these effects and issues with the rapidly growing PV power plants [23].
However, datasets on the distribution of PV power plants are still scarce in many regions.
Consequently, the distribution of PV power plants needs to be mapped out rapidly and
precisely for policy management and environmental assessment.

Satellite observations can offer detailed spectral and geospatial information for PV
power plants identification. Researchers have recently mapped PV power plants on a
regional and global scale using remote sensing images [24–34]. Some researchers build PV
power plant datasets based on manual annotation and visual interpretation methods with
remote sensing imagery [26,34]. However, manual annotation or visual interpretation from
high spatial resolution images has high accuracy but low efficiency, making it unsuitable
for classification tasks in large areas or long time series imagery [27,31]. The hyperspectral
sensors that acquire hundreds of narrow spectral bands can provide the PV power plants’
detailed and unique spectral information to filter them from other features. Nonetheless,
the high cost of hyperspectral data acquisition and processing makes it challenging to
currently recognize features in a large region.

Machine learning is widely used in the remote sensing community as a practical
empirical approach for regression and classification [35,36]. Machine learning methods,
such as random forest (RF), convolutional neural networks (CNN), and deep learning, have
been applied to map PV panels or PV power plants with various remote sensing images
from the regional to continental scale [24,25,28–30,32,33]. Machine learning algorithms can
model complex class signatures with high accuracy by accepting various input variables
and not making assumptions about the data distribution [37]. However, these studies
scarcely focus on the texture and topology and multispectral information from remote
sensing images over large regions.

The textural features are realized as spatial autocorrelation in remote sensing, esti-
mated by statistical techniques within moving windows of different sizes [38]. The Grey
Level Co-occurrence Matrix (GLCM) is a popular method for obtaining textural features
of remote sensing images. Texture measures from the GLCM include average, variance,
homogeneity, contrast, entropy, correlation, and dissimilarity [39]. Several studies in land
cover and land use classifications have proved that including textural variables calculated
from GLCM may provide extra information to improve classification performance [40–45].
The PV power plants produce textural features in specific resolutions, from a few meters
to hundreds of meters, of satellite images and pixel window or neighborhood sizes due
to the scale of PV power plants and the regular spatial distribution of PV arrays, roads,
and generation facilities. As a result, the texture can improve the model’s performance to
classify the PV power plants. Nonetheless, the effect of the texture of different window
sizes on the model’s performance when classifying PV power plants is still unclear.

Additionally, topographic features are important variables in machine learning for
identifying ground features [35,46–48]. Topography is also an important factor in site selec-
tion for PV power plants [21,49–51]. Moreover, thermal bands could be helpful information
in the machine learning model because the difference in land surface temperature (LST)
exists between a PV power plant and its surroundings [13,52].

This study evaluated the random forest (RF) model’s performance and identified PV
power plants on the Google Earth Engine (GEE) platform with Landsat-8 (L-8) imagery.
The GEE platform can improve model calculation and data acquisition efficiency due to
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its cloud computing ability. The RF is an ensemble learning method that uses a set of
decision trees for classification and regression tasks with advantages of high precision,
efficiency, and stability [53]. The L-8 is a medium-resolution multispectral satellite that
has the advantage of providing free images worldwide with spatial resolution at 30 m,
a revisiting period of 16 days, and multispectral information simultaneously to map PV
power plants.

In consequence, the main goals of this research were to (1) evaluate the effect of textural
variables of different neighborhood sizes on the RF model’s performance, (2) evaluate the
effect of topography and thermal spectral variables on the RF model’s performance, and
(3) map the utility-scale photovoltaic power plants based on the optimized model. The
main novelty of our work is evaluating textural, topological, and thermal variables in an
RF model to classify PV power plants with medium-resolution multispectral satellites. Our
study has great significance for collecting the geographic information of PV power plants
and evaluating their environmental impact.

2. Materials and Methods
2.1. Study Area

This study classified PV power plants of utility-scale with a generation capacity over
1 MW or an area exceeding 0.21 km2 [17] in Ningxia autonomous region (short as Ningxia),
China. Ningxia locates in the arid area of northwest China with abundant solar energy
resources (Figure 1a) and has the forefront installed capacity of PV power plants. The
elevation difference of Ningxia is about 1000 m. The diverse types of landscape, such as
mountain, river, desert, plain, forest, shrubland, grass, and farmland, also make Ningxia
an ideal region to test the model’s performance for the classification of PV power plants.

Figure 1. (a) The terrain of the Ningxia autonomous region; the gray bounds refer to the footprint of Landsat-8 sense used in
this study. The path/row of the senses included 130/032, 130/033, 129/033, 131/034, 130/034, 129/034, 128/034, 130/035,
129/035, 128/035, 129/036, 128/036; (b) The true-color image from Landsat-8 over the Ningxia autonomous region and the
training samples; the blue cross represents non- photovoltaic (PV) labeled points, while the red cross represents PV points.
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2.2. Landsat-8 Surface Reflectance Imagery and Composite Image

L-8 surface reflectance (SR) product was used in this study [54]. The total number
of L-8 senses used in this study is 234. The Thermal Infrared Sensor (TIRS) and the
Operational Land Imager (OLI) are the two instruments aboard L-8 (TIRS). The OLI has
seven reflective bands with a 30 m spatial resolution and a panchromatic band with a 15 m
spatial resolution. At a spatial resolution of 100 m, the TIRS provides two thermal infrared
bands. In this study, we used six reflective bands, including blue, green, red, near-infrared
(NIR), two shortwave infrared bands (SWIR1 and SWIR2), and two thermal infrared, or
brightness temperature (BT), bands, which are named as B2, B3, B4, B6, B7, B10, and B11 in
L-8 imagery, respectively. L-8 SR products have been atmospherically and topographically
corrected. Using the pixel quality control band integrated with the product, we removed
the pixels contaminated by clouds and shadows in each image (only keeping the pixels
with a quality control value equal to 0). We further composited L-8 image datasets using
the median value of six reflective bands and two thermal bands in 2020, respectively. With
the scenes provided in one year, the composite image was robust against extreme values
and can provide enough information [55].

2.3. Google Earth Engine Cloud Computing Platform and Random Forest Classification

Identifying the fast growth of PV power plants on a regional scale needs extensive
computing and storing resources. The Google Earth Engine (GEE), a cloud geospatial
computing platform with flexible programming that supports massive remote sensing
data and multiple machine learning methods [56], is an appropriate tool to solve model
computing and data storing difficulties. With GEE’s support, researchers in the remote
sensing community have completed numerous classification works on a continental plan-
etary scale [48,57–66]. As a result, we used GEE to estimate and evaluate the model and
classify the PV power plants in this study.

We used a pixel-based RF algorithm on the GEE to map the PV power plants in this
study. The RF classifier is an ensemble classifier that uses a set of decision trees to predict
with advantages of high precision, efficiency, and stability, which is also less sensitive than
other machine learning classifiers to the quality of training samples and overfitting [47,53].
The RF classifier has also been proven to be better than other standard-used machine
learning classifiers on the GEE platform [67,68]. In this study, we set the number of trees
as 500 for the RF classifier [69,70]. We set the rest of the parameters as default settings
on GEE.

2.4. Training and Validation Samples Collection

Training an applicable RF model requires massive training samples to cover as much
of the system parameter space as possible. The RF classifier is sensitive to the sampling
design [53]. Suitable training samples could ensure classification accuracy and stable
performance of an RF-trained model. In this study, we collected and labeled data as PV
region and non-PV region. We primarily collected the PV sample dataset from Dunnett’s
dataset in Ningxia, a global solar plants dataset annotated by volunteers [26]. The pixels on
the edge of the PV power plants mixed by PV panels and non-PV features could weaken
the classification model and affect the result. As such, we further manually modified this
dataset by visual interpretation with Google Earth’s background in 2017 to ensure the PV
samples were located inside the PV power plants.

We manually selected and edited the extent of some extra PV power plants which were
not annotated in Dunnett’s dataset by visual interpretation with Google Earth’s background.
We stored this dataset as polygon vectors and then sampled points from the polygons.
We collected non-PV region samples from (1) adjacent regions of PV power plants within
five-kilometer buffer regions, (2) the samples from manfully selected typical land types,
including cropland, forest, water, urban area, and barren area, and (3) the samples from
the whole Ningxia autonomous region. In total, we prepared 4000 points labeled as PV
region and 20,000 points labeled as the non-PV region in this study (Figure 1b). At last, we
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randomly chose 75% of the total points as the training set and the left 25% as the validation
set. We used the hold-out method to repeat ten times of choosing training set and validation
set to eliminate the impact of sampling differences on model assessment [71,72].

2.5. Variables Estimation

We separated the variables into four groups, which are reflectance spectra (G1), gray
texture (G2), topography (G3), and thermal infrared spectra (G4). The variables from
reflectance spectra include six bands and three calculated indices. The six bands were blue,
green, red, near-infrared, and two shortwave infrared bands. The three indices were the
Normalized Difference Vegetation Index (NDVI) [73], the Normalized Difference Built-up
Index (NDBI) [74], and the Modified Normalized Difference Water Index (MNDWI) [75]
(Table 1). The NDVI, NDBI, and MNDWI are sensitive to variations of vegetation, water,
and buildings, respectively, and are commonly used in the RF model as variables to classify
land cover types [76–78].

Table 1. The variables from G1, G2, G3, and G4 were used to classify the PV power plants in the study area.

Group Number of Variables Variables References

Spectral (G1) 10

Red, Green, Blue,
Near-infrared,

Shortwave infrared1,
Shortwave infrared2,

Normalized Difference Vegetation Index (NDVI),
Normalized Difference Built-up Index (NDBI),

Modified Normalized Difference Water Index (MNDWI)

[54,73–75]

Texture (G2) 8

Angular Second Moment,
Contrast,

Correlation,
Entropy,
Variance,

Inverse Difference Moment,
Sum Variance,
Dissimilarity

[39]

Terrain (G3) 3
Elevation,

Slope,
Aspect

[79]

Thermal (G4) 2 Brightness temperature1
Brightness temperature2 [54]

We computed the texture variables from the Gray Level Co-occurrence Matrix (GLCM)
from the gray image scaled from the NIR band. The NIR band could help recognize the
texture of PV power plants due to the spectral characteristics of vegetation and sand with
high reflectance and solar panel with low reflectance in the NIR band [31]. The GLCM is
a matrix that tallies frequencies of values for clusters of pixels, normalizing probabilities
within a neighborhood, which can be used to calculate various statistical texture measures.
We set the neighborhood sizes of GLCM as 1, 5, 10, 15, 20, 25, 30, 35, and 40 pixels in
this study. We selected eight variables from GLCM, including angular second moment,
contrast, correlation, entropy, variance, inverse difference moment, sum variance, and
dissimilarity [39,41].

Topography variables included elevation, slope, and aspect calculated from the Shuttle
Radar Topography Mission (STRM) DEM [79].

2.6. Model Assessment

We evaluated the pixel-based RF model by out-of-bag error (OOB). OOB is a method of
measuring the internal prediction error of RF utilizing bootstrap aggregating (bagging) [80].
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We also evaluated the variable importance in the model measured by the mean de-
crease in Gini (MDG). The Gini index measures the node impurity, and the MDG measures
the average of the total decrease in node impurities from splitting on the variable [81–83].
The variable importance measures are used as variable selection criteria to reduce variables
and improve classification results.

We further evaluated the model performance with a validation set classified by a
trained RF model. By comparison with the confusion matrix of categorized and labeled
points in the validation set, we used the kappa coefficient, overall accuracy (OA), producer’s
accuracy (PA), and user’s accuracy (UA) of the validation set to assess the performance of
a model [84]. The kappa coefficient calculated from the confusion matrix is widely used to
check consistency and evaluate model performance. The overall accuracy is measured to
examine the overall efficacy of the model. The producer’s accuracy indicates the proportion
of truth samples correctly judged as the target class. The user’s accuracy indicates the
proportion of samples judged as the target class on the classification map present as
truth samples.

We also used the McNemar test to assess whether the difference in classification results
is significant [85]. The test of McNemar is based on a chi-square (χ2) statistic that calculated
from a 2 × 2 matrix of the corrected and incorrect pixels of classified results, computed
as follows:

χ2 = ( f12 − f21)
2/( f12 + f21) (1)

where f 12 is the number of pixels correctly classified by method one while incorrectly
classified by method two, and f 21 is the number of pixels correctly classified by method
two while incorrectly classified by method 1.

The workflow of our methodology is shown in Figure 2. The L-8 and DEM datasets,
raster calculation, GLCM calculation, RF classifier, kappa, OA, PA, and UA calculated from
the confusion matrix are available on the GEE platform. The McNemar test was calculated
in the R language.

Figure 2. The flowchart of this methodology. Please note the * indicated validation set
and the ** indicated processed image.

3. Results
3.1. The Effect of GLCM Neighbor Sizes on the Performance of the Random Forest Model

By comparing the model trained with variables from reflectance to the model trained
with additional textural variables, we discovered that the additional textural variables



Remote Sens. 2021, 13, 3909 7 of 16

positively impact the model’s performance in identifying PV power plants (Figure 3). The
additional textural variables with different neighbor sizes, except the size of 1, significantly
improved the model’s performance (p < 0.01) with different effects, such as decreasing
the OOB of the model and increasing kappa values and accuracies from validation sets.
The variations in OOB were consistent with the variations in kappa and OA among the
model with different variable sets. The OOB decreased as the kappa coefficient and overall
accuracy increased. As can be seen, the model’s kappa values and OA increased as the
neighbor sizes increased from 1 to 30, peaked at 30, and then remained relatively constant
or even dropped as the neighbor sizes exceeded 30. Similar to the variations of kappa and
OA, the UA and PA of PV power plants or non-PV power plants all reached their maximum
value at the neighbor size of 30 to 40 (Figure 3d–g). Given the extra computation of larger
neighbor sizes, we deemed that the textural variables with a neighbor size of 30 fitted
the model best. According to the assessment of the model trained with only variables
from reflectance (G1), the additional textural variables (G2) with the neighbor size of 30
decreased the model’s OOB by 0.78%, from 2.47% to 1.69%, increased the model’s kappa by
0.034, from 0.904 to 0.938, and increased the model’s OA by 0.88%, from 97.45% to 98.33%
(Table 2).

Figure 3. The mean value (dot) and stand deviation (error bar) of (a) Out-Of-Bag error (OOB), (b) Kappa coefficient, (c)
Overall Accuracy (OA), (d) User’s Accuracy of non-PV power plants (UA NPV), (e) User’s Accuracy of PV power plants
(UA PV), (f) Producer’s Accuracy of non-PV power plants (PA NPV), and (g) Producer’s Accuracy of PV power plants
(PA PV) for the model trained with spectral variables and textural variables in different GLCM sizes. The dashed line was
the mean value for the model trained with only spectral variables. The paired t-test was used to determine the difference
between the model trained with only spectral variables and the model trained with spectral and textural variables; black
and white points indicated statistically significant at p > 0.01 and p < 0.01 levels, respectively.
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Table 2. Validation parameters for the model trained model with different variables sets.

Variable OOB (%) Kappa OA (%) UA NPV
(%) UA PV (%) PA NPV (%) PA PV (%)

G1 2.47 ± 0.04 0.904 ± 0.05 97.45 ± 0.14 97.63 ± 0.18 96.40 ± 0.53 99.34 ± 0.11 87.98 ± 1.05
G1 + G2 1.69 ± 0.04 0.938 ± 0.04 98.33 ± 0.09 98.32 ± 0.11 98.39 ± 0.32 99.70 ± 0.06 91.37 ± 0.71

G1 + G2 + G3 1.58 ± 0.04 0.942 ± 0.05 98.44 ± 0.11 98.44 ± 0.11 98.43 ± 0.30 99.70 ± 0.05 92.14 ± 0.73
G1 + G2 + G3 + G4 1.53 ± 0.04 0.943 ± 0.05 98.47 ± 0.12 98.45 ± 0.11 98.53 ± 0.33 99.72 ± 0.06 92.19 ± 0.69

Note: Out-of-bag error (OOB), kappa coefficient, overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA), Reflectance
(G1), Texture (G2), Topography (G3), Thermal (G4). The detailed information of variables can be found in Table 1.

We further compared the variable importance in the model trained by textural vari-
ables with different neighbor sizes. The result showed that the sum importance of the
textural variables increased from 38.06% to 45.37% as the neighbor size increased from
1 to 40 (Figure 4b). Among the importance of the textural variables, the sum average from
GLCM consistently ranked at the top. In contrast, other textural variables’ ranks changed
slightly in the model with each neighbor size. However, the importance of each textural
variable all increased as the neighbor size increased from 1 to 40.

Figure 4. Variable importance in the Random Forest model to identify PV power plant trained with spectral variables and
texture variables in different neighborhood sizes, (a) importance for each variable, (b) sum importance of variables from
texture and spectrum.

3.2. The Effect of Topology and Thermal Spectra on the Performance of the Random Forest Model

After determining the fittest neighbor size of GLCM textural variables, we further
evaluated the effect of topology on the model’s performance based on reflectance variables
and the textural variables with a neighbor size of 30. The result showed that the topographic
variables further improved the performance of the model that significantly decreased the
model’s OOB by 0.11%, from 1.69% to 1.58% (p < 0.01), increased the model’s kappa values
by 0.04, from 0.938 to 0.942 (p < 0.01), and increased the model’s OA by 0.11%, from 98.44%
to 98.33% (p < 0.01). It is worth noting that the improvement of kappa and OA could
be ascribed to the improvement of the producer’s accuracy of PV power plants, which
increased by 0.77%, from 91.37% to 92.14% (p < 0.01).
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We also evaluated the thermal spectra as BT of L-8 on the model’s performance since
the LST of PV power plants is different from their adjacent regions [13,52]. However,
the extra variables from thermal spectra did not significantly improve the classification
performance of the model.

Figure 5 showed the variable importance in the model trained with variables from
reflectance spectra, texture (neighbor size of 30), topography, and thermal spectra. We
found that NDBI, NDVI, and MNDWI ranked the 1st, 2nd, and sixth most important
variables, respectively. Apart from the three indices, the top three variables from individ-
ual reflectance spectra were NIR, SWIR1, and green, ranked as the 4th, 12th, and 13th,
respectively. For the variable importance of textural variables, sum variance, variance and
correlation ranked at the 5th, 8th, and 9th of all variables. The importance of variables from
topography was quite different. Elevation ranked as the 3rd, respectively, while aspect
ranked at the bottom of all variables. Lastly, the two thermal bands ranked 14th and 16th.

Figure 5. Variable importance in the Random Forest model trained with variables from reflectance spectra, texture,
topography, and thermal spectra; the pie indicated the importance of each group.

3.3. Classified Map of PV Power Plants

We mapped the PV power plants in the Ningxia autonomous region with the pixel-
based RF model with different variable sets (Table 2) from L-8 composite images. We used
the training set with the best performance from the ten-time random hold-out sampling.
We also calculated the areas mapped from the model with different variables and made a
McNemar test between different variable sets with the validation dataset. The classified PV
power plants in the Ningxia autonomous region were from 343.70 to 432.80 km2 (Table 3).
Based on the McNemar test, Table 4 showed that the classified results based on extra G2
variables were significantly different from those based on only G1 variables. The classified
results based on extra G3 or G3 and G4 variables were insignificantly different from the
classified result based on G1 and G2 variables. We also calculated the area of PV power
plants labeled in Dunnett’s harmonized global dataset [26], which covered 71.76 km2. Our
RF model can provide more information about the distribution of PV power plants than
the published dataset. We developed an interactive online app from the GEE platform to
show our classified results in China’s Ningxia autonomous region (Figure 6). The website
of this app is (https://xunhezhang.users.earthengine.app/view/ningxia-pv-power-plants
(accessed on 29 September 2021)).

https://xunhezhang.users.earthengine.app/view/ningxia-pv-power-plants
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Table 3. Area of PV power plants in Ningxia autonomous region classified from Landsat-8
based model.

Variable Area (km2)

G1 432.80
G1 + G2 378.81

G1 + G2 + G3 356.81
G1 + G2 + G3 + G4 343.70

Note: Reflectance (G1), Texture (G2), Topography (G3), Thermal (G4). The detailed information of variables can
be found in Table 1.

Table 4. Matrix of McNemar test showing the statistical significance of differences between all
variable sets. McNemar’s test values (χ2) are on the left side of the diagonal, p-values on the
right side.

G1 G1 + G2 G1 + G2 + G3 G1 + G2 + G3 + G4

G1 <0.05 <0.05 <0.05
G1 + G2 4.01 0.84 0.58

G1 + G2 + G3 5.12 0.03 0.75
G1 + G2 + G3 + G4 5.62 0.3 0.1

Note: Reflectance (G1), Texture (G2), Topography (G3), and Thermal (G4). The detailed information of variables
can be found in Table 1.

Figure 6. An example part of the classified map of PV power plants in Ningxia autonomous region, China, from a pixel-
based RF model with different variable sets. The total detailed result is showed online with an app developed with the help
of the Google Earth Engine platform. The App’s website is (https://xunhezhang.users.earthengine.app/view/ningxia-pv-
power-plants (accessed on 29 September 2021)).

4. Discussion
4.1. The Importance of Textural Variables in the RF Model to Map PV Power Plants

The reflectance spectrums are the essential information used to extract ground features
from remote sensing. The PV panels are made of monocrystalline or polycrystalline silicon.
The PV panels are also covered by transparent materials such as glass and ethylene-vinyl

https://xunhezhang.users.earthengine.app/view/ningxia-pv-power-plants
https://xunhezhang.users.earthengine.app/view/ningxia-pv-power-plants
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acetate (EVA) on the surface of PV panels. The PV panels have a relatively low reflectance
(less than 0.05) in the spectrum’s visible and near-infrared portion (0.45 to 0.90 µm) due
to the characteristics of these materials. They have relatively higher reflectance of about
0.10 and 0.07 at the wavelength of 1.6 µm and 2.2 µm, respectively [31]. The spectral
characteristic of PV power plants is quite different from other ground features, such as
desert, water, crops, and buildings. Thus spectrums are the primary variables to identify the
PV power plants. The reasonably good performance of the RF model trained with variables
from reflectance (G1) also suggests that spectral information is essential for identifying PV
power plants.

However, PV power plants are a mixture of PV arrays, shadows, and different types
of soil or vegetation [14]. The mixture inevitably leads to PV power plants having similar
spectrums with other objects on a pixel scale over large regions [27,31]. As a result, valuable
features outside the spectrum are also essential in improving the accuracy of mapping
PV power plants. Spatial autocorrelation commonly exists among the pixels of ground
features. The texture as a pattern of spatial autocorrelation is crucial for recognizing
ground features in remote sensing [38]. The regular spatial distribution of PV arrays, roads,
generation facilities, and even construction scale produce texture features in a PV power
plant (Figure 7b). To test the texture of PV power plants from L-8, we examined the effect
of eight texture variables calculated from GLCM with different sizes on the RF model. The
statistic values from texture are closely related to the neighborhood or window size in the
GLCM techniques. An unsuitable window size that is too large or small fails to maximize
the use of texture information to improve the model’s performance [42,86]. The acquisition
of texture information is also related to the resolution of remote sensing images [86]. In
our study, the pixel resolution of imagery from L-8 is 30 m. The texture of PV power
plants from the width of PV panels and the distance between PV panels, which are only
within meters, is hardly be detected by the L-8 sensor. The result that the texture with
one neighbor size, equal to a moving window of 3 by 3, has little effect in improving the
model’s accuracy proves the resolution of L-8 is too coarse to acquire the texture produced
by the PV panels and spaces between PV panels. In our study, the model’s fittest neighbor
size of GLCM texture was about 30 pixels, equal to a moving window of 61 pixels by
61 pixels or a square of 1800 m by 1800 m. The texture of PV power plants, which the L-8
sensor could detect, can only be produced on a similar scale. This texture comes from the
regular distribution of the roads and generation facilities, such as buildings for inverters
and controllers (Figure 7b). Our result showed that PV power plants have prominent
texture characteristics over hundreds of meters that the satellite platform could detect with
medium resolution imagery.

Figure 7. An example to show the texture of PV power plant from Landsat-8 imagery. (a) the true-color imagery from
Google Earth, (b) the true-color imagery from Landsat-8, and (c) the gray-scale imagery from B5 of Landsat-8.

The additional textural variables with a neighbor size of 30 increased the model’s
overall accuracy from 97.45% to 98.33%. Our finding demonstrated the importance of
textural variables in recognizing PV power plants. Nevertheless, the model trained by



Remote Sens. 2021, 13, 3909 12 of 16

textural variables from such a big moving window can increase the overall accuracy.
However, it may not benefit from identifying PV power plants that lack texture information
because their small construction areas are much smaller than the moving window.

4.2. The Effect of Topographic Variables and Thermal Infrared on the RF Model to Map PV Power Plants

Theoretically, the topographic variables do not improve the classification accuracy
in regions with a homogeneous topography, such as plains. Additionally, in terms of
construction, the elevation of the PV power plants is not as specific a required standard
compared with the slope and aspect [21,49]. PV power plants are mainly built in areas of a
gentle slope. In hilly or mountainous areas, the terrain aspect for constructing PV power
plants should also try to face south to obtain more solar energy in the northern hemisphere.

However, the topographic variables positively affect the model’s accuracy to map
the PV power plants. The importance of elevation is much higher than that of the slope
and aspect from variable importance. The result is related to the local topography and
distribution of the PV power plants. In Ningxia, the PV power plants are typically built
in low-elevation and flat areas rather than high-elevation and steep areas. As a result, the
model also tended to identify these pixels under similar topographic conditions as PV
power plants in Ningxia based on the training samples. The elevation of the PV power
plants in other regions varies greatly [13]. As a result, the variable of elevation may even
decrease the generalization ability in other regions. The impact of topographic variables on
the accuracy of the RF model used to classify PV power plants in various regions warrants
further investigation. Additionally, due to the requirements of the design standards for PV
power plants on topographic factors, setting the threshold of topographic factors may be
more effective in excluding non-PV areas.

The thermal bands which stand for BT that can retrieve LST also provide important
information to classify various land covers [87]. The land surface temperature of the PV
power plants is different from the surrounding features [13,52]. However, our results
suggest that the thermal bands from L-8 imagery have little effect on the model’s accuracy
in Ningxia. The surface temperatures of the PV power plants and other ground objects
are more likely to be similar over a large region. Compared with other ground features,
the thermal characteristics of PV power plants are not more apparent than reflectance
characteristics. Meanwhile, this result may also be due to the thermal infrared bands
(100 m) compared to the other six spectral bands that weakened the surface temperature
information.

4.3. The Different Platforms to Map the PV Power Plants

Nowadays, some satellite and sensor platforms, such as Sentinel-2 and Worldview-3,
also can provide comparable multispectral and higher spatial resolution images than
Landsat-8 [88,89]. These sensors can observe more details inside the PV power plants and
get various textural features with different spatial resolutions. However, acquiring higher
spatial resolution images requires higher costs for data storage and analysis. The high
spatial resolution images have the advantage and potential to identify PV arrays with small
sizes, such as the distributed PV arrays on the roof of building in the urban areas.

Additionally, synthetic aperture radar (SAR) sensors, such as Sentinel-1, which can ac-
quire imagery regardless of the weather globally, can potentially identify PV arrays [90,91].
The difference of reflected electromagnetic waves in different directions between PV arrays
and other ground features can provide the machine learning model. As a result, these
remote sensing data sources are worth exploring in future studies.

5. Conclusions

With global climate change, PV power plants are rapidly expanding. Rapid and accu-
rate mapping of solar power facilities is critical for policy management and environmental
assessment. This study evaluated the effect of textural variables of different neighborhood
sizes and topographic and thermal spectral variables on an RF model’s performance to
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identify the PV power plants with L-8 imagery. We demonstrate that the variables of
texture positively affect the RF model’s ability to identify PV power plants. The textural
variables with a neighbor size of 30 fitted the model best with the L-8 imagery. The effect of
topographic variables on the model’s ability to classify PV power plants in various regions
warrants further investigation. The extra variables from thermal spectra had little effect on
the performance of the model.

Our study extends the knowledge of the effect of various variables in identifying
PV power plants. We also provide an example of using the GEE platform to evaluate the
RF model’s performance to classify ground features in large regions. Our research is of
great significance for collecting the geographic information of PV power plants and further
evaluating their environmental effects.
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