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Abstract: Multitemporal very-high-resolution (VHR) satellite images are used as core data in the
field of remote sensing because they express the topography and features of the region of interest
in detail. However, geometric misalignment and radiometric dissimilarity occur when acquiring
multitemporal VHR satellite images owing to external environmental factors, and these errors cause
various inaccuracies, thereby hindering the effective use of multitemporal VHR satellite images. Such
errors can be minimized by applying preprocessing methods such as image registration and relative
radiometric normalization (RRN). However, as the data used in image registration and RRN differ,
data consistency and computational efficiency are impaired, particularly when processing large
amounts of data, such as a large volume of multitemporal VHR satellite images. To resolve these
issues, we proposed an integrated preprocessing method by extracting pseudo-invariant features
(PIFs), used for RRN, based on the conjugate points (CPs) extracted for image registration. To this
end, the image registration was performed using CPs extracted using the speeded-up robust feature
algorithm. Then, PIFs were extracted based on the CPs by removing vegetation areas followed by
application of the region growing algorithm. Experiments were conducted on two sites constructed
under different acquisition conditions to confirm the robustness of the proposed method. Various
analyses based on visual and quantitative evaluation of the experimental results were performed
from geometric and radiometric perspectives. The results evidence the successful integration of the
image registration and RRN preprocessing steps by achieving a reasonable and stable performance.

Keywords: multitemporal very-high-resolution satellite image; image registration; relative radiometric
normalization; integrated preprocessing; pseudo invariant features; conjugate points

1. Introduction

Very-high-resolution (VHR) satellite images provide highly reliable information based
on detailed descriptions of complex terrain and features. VHR satellite images have
attracted considerable research attention for generating high-value data in the field of
remote sensing. The practical value of such images is acknowledged globally; hence,
various countries are developing and operating satellites equipped with VHR sensors such
as WorldView, GeoEye, IKONOS, and KOMPSAT. As the accessibility of VHR satellite
images increases, they are being used in a wide range of applications such as mapping,
object extraction, disaster monitoring, and change detection [1].

During multitemporal VHR satellite images acquisition, geometric misalignment
and radiometric dissimilarity occur owing to the satellite acquisition angle and attitude,
absorption and scattering of the atmosphere, seasonal effects, and solar surface sensor
interaction [2]. These geometric and radiometric dissimilarities cause fatal problems, par-
ticularly when using VHR multitemporal images that describe an object in detail [3,4].
For example, in the change detection field, geometric misalignment and radiometric dis-
similarities result in false detection [5]. In the vegetation-monitoring field, radiometric
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dissimilarities generate a distorted vegetation index (VI) [6]. In addition, they inhibit the
mosaic image generation [7] and limit the construction of the homogeneous time-series
VHR satellite imagery [8]. Therefore, minimization of these errors is required to effectively
use VHR multitemporal images [8].

Image registration is a process that minimizes geometric misalignment by unifying
coordinates between bitemporal or multitemporal images [9–12]. Image registration gen-
erally involves four steps: (1) feature extraction, (2) feature matching, (3) transformation
model construction, and (4) image warping [12]. The processes of feature extraction and
matching are integrated into the step for extracting conjugate points (CPs), which are
key data for performing the image registration [13]. In manual image registration, when
CPs are extracted through user intervention, the accuracy depends highly on the user’s
proficiency [14]. Moreover, if the image to be registered is large and complex, it demands
labor-intensive and time-consuming work because of the difficulties in extracting numer-
ous well-distributed CPs [15]. Therefore, automatic image registration without manual
extraction of CPs between images is required.

Automatic image registration is classified into area-based and feature-based matching
methods depending on the CPs extraction manner [12,16,17]. The area-based matching
method sets a template of a certain size between images. This template moves within
images, measures the similarity between regions, and extracts the center point of the
highest similarity position as the CPs [18,19]. The area-based matching method can be used
effectively in areas without spatial characteristics that are identified in the image, such as
forests, water, and farmland. However, this method has low accuracy when the geometric
misalignment between images is large [20]. A representative area-based matching method
includes normalized cross-correlation, mutual information, least-squares matching, and
phase correlation.

Unlike the area-based matching method, the feature-based matching method extracts
points, lines, and polygon-based features identified as interest points in the image; then,
these interest points are matched to CPs via the description process [13,21,22]. The feature-
based matching method can extract CPs that are robust to scale, translation, and rotation;
therefore, it can effectively perform registration even when the geometric misalignment
between images is large. However, CPs extraction in areas without features is difficult
using this method. A representative feature-based matching method includes the scale-
invariant feature transform (SIFT) from Lowe [23] and speeded-up robust features (SURF)
from Bay et al. [24]. Compared with the area-based matching method, it is more suitable
for image registration between VHR images [9,25].

Radiometric correction is the process of minimizing the difference in brightness val-
ues between images caused by radiometric dissimilarity. This method includes absolute
radiometric correction (ARC) and relative radiometric normalization (RRN) [26–29]. ARC
converts the brightness value to the scaled surface reflectance by using an atmospheric
correction model with inputs from the spectral profile provided in the satellite images’
metadata, atmospheric data, and ground observation data [8,27,30]. However, applying
the ARC is limited because of the difficulties of collecting the atmospheric and ground
observation data [8,31,32]. On the other hand, RRN can minimize the difference in bright-
ness values by estimating the relative change in brightness values between images without
ancillary data, and complex atmospheric models [33–35]. The RRN performs normaliza-
tion by considering linear characteristics between images [26,36–38] or by reflecting their
nonlinear characteristics [8,32,39–41].

In general, RRN is classified into global statistical (GS) and radiometric control set
sample (RCSS) methods [36,42]. The GS method uses the brightness value of all the pixels
in the image [36,42], whereas the RCSS method uses the selected invariant features be-
tween images [8,39]. When the images exhibit similar radiometric characteristics, the GS
method can rapidly and simply minimize the difference in brightness values between im-
ages [43,44]. However, the accuracy of the GS method is low in images containing different
radiometric characteristics, such as a large portion of changed areas or seasonal differences
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in vegetation areas [39,45]. A representative GS method includes mean–standard deviation
(MS) regression, minimum–maximum (MM) regression [46], simple regression (SR) [47],
and histogram matching [48]. Unlike the GS method, the RCSS method uses invariant
features with similar radiometric characteristics between images [8]. Therefore, the distor-
tion resulting from performing RRN can be minimized, leading to effective normalization
between images [26,39,40]. A representative RCSS method includes a dark–bright set based
on the Kauth–Thomas transformation [46], no change based on a scattergram between
near-infrared images [49], and pseudo-invariant features (PIFs)-based regression. Among
the RCSS methods, PIFs regression is commonly used because it is effective to linearly
explain the invariant characteristics between multitemporal images [43].

In performing PIFs-based RRN, PIFs are extracted from the invariant area of the same
location between multitemporal images. Therefore, image registration for aligning the coor-
dinates between multitemporal images is performed prior to PIFs extraction [2,31,33,50,51].
Next, the PIFs are manually or automatically extracted. These data extraction processes for
image registration and RRN are performed separately, thus complicating the preprocess-
ing [31,50]. The complicated preprocessing impairs data consistency and computational
efficiency, particularly when processing large amounts of data such as a large volume of
multitemporal VHR satellite images. In addition, manpower and time costs are increased
due to complex preprocessing. Thus, Li and Davies [50] incorporated preprocessing by
comparing the similarity between CPs and their neighboring pixels to extract PIFs. Klaric
et al. [51] used the integrated preprocessing approach devised by Li and Davies [50] in
the development of geospatial change detection and exploitation, a VHR satellite image-
based automatic change detection system. Kim et al. [31] selected initial PIFs with similar
radiometric characteristics among CPs, and then integrated the preprocessing method by
extracting numerous PIFs via analysis of the radiometric similarity between the initial
PIFs and neighboring pixels. In addition, Armin et al. [36] used CPs extracted based on a
block-wise KAZE detector to extract PIFs by using grid interpolation and the K-nearest
neighbor (KNN) algorithm. Comprehensively, previous studies were conducted based on
the characteristics of CPs which are extracted from the invariant area extracted using the
feature-based matching method [52–54].

The preprocessing method can be effectively integrated via the PIFs extraction method
based on the CPs extracted through the feature-based matching method. However, such an
integrated preprocessing method has certain issues in terms of RRN. The first issue is that
the PIFs should be extracted from invariant areas between images. In the abovementioned
integrated methods, however, CPs are extracted from vegetation areas sensitive to seasonal
and atmospheric components as well as environmental changes [31]. Therefore, PIFs
extracted based on CPs contain substantial vegetation data that cause distortion when
applying RRN. The second issue is encountered when extracting the PIFs based on CPs in
terms of extracted amounts. If there are few changed areas between images, radiometric
similarity can be minimized with a small number of PIFs [8]. However, the portion of the
changed area between images varies depending on the acquired scene. Thus, numerous
PIFs are generally required for performing RRN [27,28,32,55]. For these reasons, in previous
studies, pixels with radiometric characteristics similar to those of CPs were extracted as
PIFs by analyzing the radiometric characteristics of pixels within the neighborhood region
centering on CPs [31,36,50]. Generally, this method can perform RRN with high accuracy
by extracting numerous PIFs. However, if the number of CPs are low, the neighborhood
region must be largely adjusted to extract numerous PIFs. In this case, the consistency
of the radiometric characteristics of CPs will not be maintained, which will result in
an error. The final issue encountered in the existing integrated preprocessing methods
is that the quality of the PIFs extracted from the CPs is yet to be analyzed. Previous
studies have only considered results used for PIF-based RRN. The lack of CPs-based PIFs
quality determination results in low reliability of the experiments. Therefore, developing
an improved integrated preprocessing method and various experimental executions are
essential for solving the abovementioned issues.
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In this study, we propose an improved integrated preprocessing method aimed at
reducing the problems of existing integrated preprocessing methods. The main purpose
of the proposed method is to efficiently extract numerous high-quality PIFs based on CPs
for improving the performance of the integrated preprocessing. In the first step, CPs are
extracted between images using the SURF algorithm followed by outlier removal. Image
registration is then performed by constructing the improved piecewise linear (IPL) model
proposed by Han et al. [56] using the CPs. Subsequently, the CPs extracted from vegetation
areas are eliminated by using a normalized difference vegetation index (NDVI) mask. In
addition, to consider the radiometric characteristics of all bands when extracting PIFs,
Z-score images based on the difference images for each band are integrated and then
normalized. Based on the pixels of the integrated normalization Z-score (INZ-score) image
corresponding to the CPs location, the region growing algorithm is applied to extract the
PIFs. Finally, RRN is performed using numerous PIFs extracted by the proposed method.
To analyze the performance of the proposed method, the image registration accuracy and
PIFs quality are determined. Furthermore, the proposed method is compared with other
RRN algorithms by implementing two datasets constructed with VHR images showing
diverse properties.

In summary, this study provides three main contributions: (1) the proposed method
effectively integrates the preprocessing process by optimizing the characteristics of CPs
suitable for the PIFs selection conditions; (2) the proposed mechanism extracts numerous
high-quality PIFs based on CPs between VHR multitemporal satellite images, and thus it is
possible to perform a more stable RRN of integrated preprocessing; and (3) detailed analysis
and discussion of the proposed method focusing on performance in image registration and
radiometric correction are provided by implementing two datasets constructed with VHR
images. In particular, we confirm the superiority of the proposed method through the PIFs’
quality analysis and comparative analysis with other RRN algorithms.

The rest of this manuscript is organized as follows: Section 2 describes the integrated
preprocessing methodology proposed herein; Section 3 describes the data and experimental
design used in the experiment; Section 4 describes the experimental results; and a detailed
analysis of the results is given in Section 5. Finally, Section 6 presents the conclusions.

2. Methodology

Figure 1 shows the workflow of the integrated automatic preprocessing method
proposed herein. The CPs were extracted between the reference and sensed images using
the SURF algorithm. The outliers included in the extracted CPs were eliminated using affine
transformation coefficients and root mean square error (RMSE) values. Based on the CPs
that underwent outlier elimination, the IPL was constructed for warping the sensed image
to the reference image’s coordinates. Subsequently, the CPs extracted from vegetation
areas were eliminated using the NDVI mask. The INZ-score image was generated for
PIFs extraction performed by considering the radiometric characteristics of all bands
based on the CPs. The PIFs were extracted by applying the region growing algorithm
centered around the pixels of the INZ-score image corresponding to CPs. Finally, RRN was
conducted by constructing a linear regression using the extracted PIFs.

2.1. Image Registration Using CPs Extracted from the SURF Algorithm and Outlier Removal

To apply the feature-based matching method, which is suitable for automatic image
registration between VHR satellite images, interest points must be extracted from images.
Representative interest point extraction methods include the SIFT algorithm proposed
by Lowe [23] and the SURF algorithm proposed by Bay et al. [24]. The SIFT algorithm
can perform highly accurate image registration by extracting CPs based on interest points
robust in scale, translation, and rotation. However, the processing time increases when the
difference of Gaussian (DoG) operation for the scale space and the 128-dimensional vector
component in the extraction and description of interest points are used [53,57]. Conversely,
the SURF algorithm uses an integral image and approximated Hessian box filters to extract
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interest points faster than the SIFT algorithm. In addition, the SURF algorithm utilizes
64-dimensional vector components, i.e., half the number used by the SIFT algorithm, to
improve the processing speed [24]. According to the literature [57–59], the matching
performance of the SIFT algorithm is similar to that of the SURF algorithm. Therefore, we
used the SURF algorithm to extract the CPs due to its good computational efficiency.
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CPs extracted from the SURF method include outliers unsuitable for estimating trans-
formation coefficients. In this study, we considered an affine transformation model to
eliminate the outliers. The affine transformation model is defined by Equation (1):

X = a0 + a1x + a2x
Y = b0 + b1y + b2y

(1)

where X, Y represent the coordinates of reference image’s CPs; x, y represent the coordinates of
the sensed image’s CPs; and a0, b0 . . . a2, b2 are independent affine transformation coefficients.

First, the RMSE was estimated to determine the difference in the distance between
the affine transformation coefficients estimated on the basis of the reference and sensed
images’ CPs. Then, the CPs with the largest RMSE were identified as outliers and thus
eliminated. Finally, the remaining CPs were used again to estimate the affine transformation
coefficients to remove outliers by comparing the RMSE. By repeating this process, the CPs
corresponding to the RMSE that were lower than the threshold value were selected as final
CPs. The threshold value was set to 5 pixels based both on our previous analysis [60] and
empirical analysis on the study sites.

Image registration minimizes the geometric misalignment between images using a
CPs-based transformation model. The piecewise linear (PL) model proposed by Gosh-
tasby [61] generates Delaunay triangulation based on CPs, estimates affine transformation
coefficients for each triangulation, and performs local image registration at each corre-
sponding triangular region between images. In particular, the PL is effective for image
registration between VHR satellite images, affected by relief displacement and local dis-
tortion [62]. However, severe distortion may occur in areas where triangulation is not
constructed [63]. Therefore, we used the IPL transformation model proposed in [56]. The
IPL transformation model additionally extracts pseudo-CPs along the boundary of the
image for constructing the triangulation in outlying areas of the image so that it improves
the registration performance on the areas.

2.2. Extraction of Initial PIFs from CPs on Non-Vegetation Areas

PIFs, the core data for performing RRN, should be extracted from the invariant areas
with similar radiometric characteristics [38,64]. Typically, most CPs based on the feature-
based matching method are extracted from regions having invariant characteristics between
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images [36,50,65], thus satisfying the criteria of PIFs selection. However, some CPs are
extracted from vegetation areas where the radiometric characteristics sensitively change
according to the season and environment. According to previous studies [30,36,66], it
is noticed that PIFs extracted from vegetation areas have a negative effect on the RRN
accuracy. Therefore, we eliminated CPs extracted from vegetation areas by using the NDVI
defined as Equation (2):

NDVI =
NIR− Red
NIR + Red

(2)

where NIR and Red are the brightness values of the NIR and red bands, respectively.
The threshold for each NDVI was then estimated using the Otsu algorithm to generate

the binary NDVI images. Through the two binarized NDVI images, the pixels showing
the vegetation in both the reference and geo-rectified sensed images were allocated to the
vegetation pixels to generate the final NDVI mask. A median filter was then applied to
eliminate the noise included in the NDVI mask. Finally, CPs extracted from the NDVI mask
were eliminated and the remaining CPs were used as initial PIFs.

2.3. Extraction of PIFs Using Z-Score Image and Region Growing Algorithm

Eliminating the CPs extracted from vegetation areas using the NDVI mask reduces
the number of samples. The small number of samples can cause distortion when the nor-
malization coefficients required for performing RRN are estimated [27,28,32,55]. Therefore,
additional PIFs should be extracted; here we used the region growing algorithm to this end.

The region growing algorithm selects seed points (SPs) and segments the region
by extracting pixels with similar radiometric characteristics between the SPs and their
neighborhood pixels [67]. The initial PIFs were selected as SPs for region growing so
that the number of PIFs can be increased because a plurality of pixels with radiometric
characteristics similar to those can be extracted. However, the VHR satellite images were
generally composed of multispectral bands and had an n-dimensional pixel space, where n
is the number of bands. Therefore, to extract PIFs that consider all the bands’ characteristics,
the n-dimensional pixel space should be converted to a one-dimensional one [50].

To convert an n-dimensional pixel space into a one-dimensional space, difference
images of each band were generated using Equation (3). Subsequently, the mean and
standard deviation of the difference images for each band were estimated and the Z-score
images for each band were generated as shown in Equation (4). The Z-score images
of each band were integrated and normalized based on Equation (5). The INZ-score
image expressed the radiometric characteristics based on the intensity of changes in the
corresponding bands between images and expressed near-zero values for the invariant
areas between images.

Di = Xi −Yi (3)

Zi =
Di − Di

σDi

(4)

INZ− score =

√√√√ N

∑
i=1

(Zi)
2 (5)

where Xi and Yi represent the reference and geo-rectified sensed images of band i, respec-
tively; Di is the difference image of the geo-rectified sensed image and reference image for
band i; Di is the mean value of the difference image for band i; σDi is the standard deviation
value of the difference image for band i; Zi is the Z-score of the difference image for band i;
N is the total number of bands in the reference image and geo-rectified image; and INZ is
the integrated normalization Z-score image.

The INZ-score value of the SPs, which are initial PIFs, was compared with its neighbor-
ing pixels’ values in four directions to perform the region growing as shown in Equation (6).
A neighboring pixel having the smallest value difference was selected as the pixel with
similar radiometric characteristics to SPs, as shown in Equation (7). If the RD(r, s) lies
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within the threshold value (we set this to 0.2 in consideration of computational efficiency
and extraction accuracy), the pixel s is selected as the region for extracting PIFs.

RD(r, ni) = |INZ(r) − INZ(ni)| (6)

RD(r, s) = min
i=1,...,4

{RD(r, ni)} (7)

where RD(r, ni) represents the difference of the INZ-score values between the reference
pixel r and ith neighborhood pixel ni; i is the number of neighborhood pixels (i = 1, . . . , 4);
and RD(r, s) is the difference of the INZ-score values between the reference pixel r and
pixel s, showing the smallest INZ-score value.

After finding the radiometrically closest pixel to the SP, the reference INZ-score
value was repeatedly updated by calculating the average value of the INZ-score. After
that, the region growing process was repeatedly performed by Equations (6) and (7).
Whenever a new pixel was extracted, the reference INZ-score value was updated as shown
in Equation (8):

INZk+1(r) =
kINZk(r) + INZ(s)

k + 1
(8)

where INZk+1(r) is the new reference INZ-score value, INZk(r) is the kth reference INZ-
score value, INZ(s) is the INZ-score value of the pixel with the smallest INZ-score differ-
ence; and k is the number of previously extracted pixels. This updating repeated until no
additional new neighborhood pixels were extracted. Numerous pixels can be extracted as
PIFs through the process being conducted on every SP.

2.4. Relative Radiometric Normalization Using PIFs Based on CPs

In this study, a linear regression model was constructed to perform RRN using PIFs
based on CPs. A linear regression model was defined as Equation (9), where the gain (ai)
and offset (bi) of normalization coefficients were estimated using the PIFs (Equation (10)).
Based on the linear regression model constructed, the radiometric dissimilarity between
images was minimized by normalizing the radiometric characteristics of the geo-rectified
sensed image to those of the reference image.

Y′ i = aiXi + bi (9)

ai =
σPIFs

Yi

σPIFs
Xi

, bi = YPIFs
i − aiXPIFs

i (10)

where ai and bi are the gain and offset of the normalization coefficients for band i; Xi
is the sensed image of band i, Y′ i is the normalized image of band i; σPIFs

Yi
and σPIFs

Xi
are standard deviation values of PIFs in band i for the reference and sensed images,
respectively; and YPIFs

i and XPIFs
i are mean values of PIFs in band i for the reference and

sensed images, respectively.

3. Dataset Description and Experimental Design
3.1. Dataset Description

To analyze the performance of the proposed method, the Gwangju downtown and
industrial areas, South Korea, were selected as experimental sites, as shown in Figure 2.
The multitemporal VHR satellite images of the Gwangju downtown and industrial areas
acquired from KOMPSAT-3A and WorldView-3, respectively, were used as the experimental
data, as shown in Figure 3. The specifications of the experimental dataset are listed in
Table 1.
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Table 1. Specifications of KOMPSAT-3A and WorldView-3 satellite images.

Site Site 1 Site 2

Sensor KOMPSAT-3A WorldView-3

Acquisition date 09/25/2018
(Reference image)

10/19/2015
(Sensed image)

05/26/2017
(Reference image)

05/04/2018
(Sensed image)

Azimuth angle 260.52◦ 152.64◦ 180.40◦ 133.30◦

Incidence angle 11.42◦ 0.43◦ 24.10◦ 31.20◦

Spatial
resolution

Panchromatic: 0.55 m
Multispectral: 2.2 m

Middle Infrared: 5.5 m

Panchromatic: 0.31 m
Multispectral: 1.24 m

Spectral bands

Panchromatic: 450–900 nm
Blue: 450–520 nm

Green: 520–600 nm
Red: 630–690 nm

Near Infrared: 760–900 nm
Middle Infrared: 3.3–5.2 µm

Panchromatic: 450–800 nm
Coastal: 400–452 nm

Blue: 448–510 nm
Green: 518–586 nm
Yellow: 590–630 nm

Red: 632–692 nm
Red-edge: 706–746 nm

Near Infrared 1: 772–890 nm
Near Infrared 2: 866–954 nm

Radiometric
resolution 14 bit 11 bit

Location Gwangju downtown area,
South Korea

Gwangju industrial area,
South Korea

Processing level Level 1R Level 2A

Image size 3000 × 3000 pixels 4643 × 5030 pixels

KOMPSAT-3A is a satellite equipped with a VHR sensor developed and operated
by the Korea Aerospace Research Institute (KARI). This satellite provides panchromatic
(spatial resolution: 0.55 m), multispectral (2.2 m), and high spatial resolution in middle
infrared (5.5 m) images with a radiometric resolution of 14 bits. In this study, we used
Level 1R processed multispectral images of the Gwangju downtown area. The Level 1R
data is the product processed for coarse radiometric and sensor distortions. The size of
the experimental images was 3000 × 3000 pixels. To perform the experiment, we visually
and statistically checked the KOMPSAT-3A images acquired at site 1 and selected the
image showing the better contrast as the reference image and the other as the sensed image.
Accordingly, the image acquired on 25 September 2018 (Figure 3a) was selected as the
reference image, and the image acquired on 19 October 2015 (Figure 3b) was selected as the
sensed image. The reference and sensed images of site 1 were acquired during the same
season. However, radiometric characteristics of the reference image are clear and bright,
whereas those of the sensed image are relatively blurry and dark; thus, strong radiometric
dissimilarity exists between these images, rendering site 1 suitable for evaluating the RRN
performance of the proposed method.

The WorldView-3 satellite equipped with a VHR sensor, operated by DigitalGlobe,
provides panchromatic (spatial resolution: 0.31 m) and multispectral (1.24 m) images with a
radiometric resolution of 11 bits. The WorldView-3 provides multispectral images compris-
ing eight bands, but as same with the case of site 1, the blue, green, red, and near-infrared
images of site 1 were used in this experiment. The image used in the experiment is a Level
2A product that has been processed with coarse geometric and atmospheric corrections.
The size of the experimental images was 4643 × 5030 pixels. The reference and sensed
images for the experiment were selected in the same manner as those of site 1. Accordingly,
images acquired on 26 May 2017 (Figure 3c) and 4 May 2018 (Figure 3d) were selected as
the reference and sensed images, respectively. The site 2 images were acquired during the
same season. Unlike the KOMPSAT-3A images of site 1, the Worldview-2 images were
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processed with coarse atmospheric correction; hence, the radiometric characteristics were
relatively similar. However, the areas between the reference and sensed images changed
markedly. Various conditions must be considered to extract PIFs from the remaining in-
variant areas, excluding widely changed areas. Therefore, site 2 is suitable for evaluating
the PIFs extraction performance focusing on these properties.

3.2. Method for the Analysis of Experimental Results

In this study, three types of assessments were performed to analyze the performance
of the proposed method. These assessments focused on the following points of aspect:

Assessment 1: image registration accuracy of the proposed method.
Assessment 2: overall characteristics and quality of the PIFs extracted by the proposed method.
Assessment 3: performance analysis of the proposed method through comparative analysis
with other RRN algorithms.

In Assessment 1, we analyzed the image registration accuracy by generating a chess-
board image and estimating the correlation coefficient (CC). The chessboard image, gen-
erated by combining two images, is effective for visual analysis because the geometric
misalignment between the images is intuitively depicted along the boundaries between
the images. The CC is an index representing the similarity between images and is defined
by Equation (11) as follows:

CC(I1, I2) =
σI1 I2√
σI1 σI2

(11)

where CC(I1, I2) represents the CC between the two images I1 and I2; σI1 and σI1 are the
standard deviations of the two images; and σI1 I2 is the covariance between the two images.

The CC ranges from 0 to 1; values close to 1 indicate that the images are significantly
similar, while values close to 0 indicate the opposite. Therefore, if there is a geometric
misalignment between the images, the CC index is low owing to different land cover
characteristics in the same location. Conversely, if the geometric misalignment between the
images is minimized, the CC index is high owing to similar land cover characteristics in
the same location.

In Assessment 2, we statistically analyzed the overall characteristics and quality of
the PIFs extracted from each site. By calculating the CC and the coefficient of determina-
tion (R2), the overall characteristics of PIFs were analyzed, and a t-test and F-test were
performed for PIFs quality analysis. The CC, which was defined in Equation (11), increases
with increasing similarity in the radiometric characteristics of the extracted PIFs. The R2

value, which ranges from 0 to 1, is a statistical index indicating the appropriateness of the
data used in constructing the regression model. If the extracted PIFs fit the linear regression
model, a relatively high R2 value is obtained. The quality of the normalized images can be
evaluated via t-test and F-test [30,68]. Since PIFs are core data in performing RRN, they
directly affect the normalized image quality. Therefore, the quality of the PIFs can be evalu-
ated by analyzing the quality of the normalized images using the PIFs via the t-test and
F-test. These tests are performed based on the null hypothesis that the mean and standard
deviation of the invariant areas between the images are equal [30]. Generally, both the tests
accept a null hypothesis if the p-value is larger or equal to 0.05 for the 5% significance level.
In other words, when reliable results are obtained, t-stat and F-stat are estimated to be close
to 0 and 1, respectively [30,68]. In this study, we performed normalization using 70% of
the PIFs extracted through the proposed method and performed the t-test and F-test by
selecting the remaining 30% of PIFs.

In Assessment 3, we used a histogram and various indices to determine whether the
proposed method outperforms the other RRN algorithms. The comparison was performed
using algorithms such as the MM regression, MS regression, HM, iteratively re-weighted
multivariate alteration detection (IR-MAD) [30], and the recently introduced CPs-based
RRN method proposed by Armin et al. [36], which extracts PIFs based on CPs using grid
interpolation and the KNN algorithm. Although it is intuitive to visually compare and
analyze the results, slight changes in brightness values between images are difficult to
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see clearly [29,31]. Therefore, qualitative analysis was conducted using a histogram based
on the selected test pixels. Moreover, the Euclidean distance between each histogram
frequency density was calculated to analyze the histogram distance (HD). A lower HD
value represents that the histogram of each image is similar. Subsequently, we used various
indices to conduct a quantitative comparison. The normalized absolute error (NAE),
structural content (SC), peak signal-to-noise ratio (PSNR), and RMSE were utilized to
compare their performance. NAE, SC, PSNR, and RMSE are defined as follows:

NAE(RT, i, ST, i) =
∑n

j=1

∣∣∣Rj
T,i − Sj

T,i

∣∣∣
∑n

j=1

∣∣∣Rj
T,i

∣∣∣ (12)

SC(RT, i, ST, i) =
∑n

j=1

∣∣∣Rj
T,i − Sj

T,i

∣∣∣
∑n

j=1

∣∣∣Rj
T,i

∣∣∣ (13)

PSNR(RT, i, ST, i) = 10 log10

 (2nb − 1)2

1
n ∑n

j=1 (Rj
T,i − Sj

T,i)
2

 (14)

RMSE(RT, i, ST, i) =

√√√√∑n
j=1 (Rj

T,i − Sj
T,i)

2

n
(15)

where RT, i and ST, i represent the test pixels of the reference and sensed images for band
i, respectively; n is the total number of test pixels; and nb is the number of bits. A lower
value of the NAE and RMSE, ca loser value of SC to 1, and a higher value of PSNR indicate
that the radiometric characteristics between images are similar and thus the RRN result
is superb.

The proposed method and other RRN algorithms were implemented under MATLAB
R2020b from a PC with a Ryzen 9 5900X at 4.2 GHz with a 12-core CPU, a GeForce RTX
3060 graphics card, and 64 GB of RAM.

4. Experimental Results
4.1. Image Registration Results

To perform integrated preprocessing based on the proposed method, interest points
in each dataset were extracted using the SURF algorithm. The first to second distance ratio
for extracting the CPs was set to 0.6, which is a generally recommended value [24]. Sub-
sequently, to eliminate outliers, the RMSE of the CPs relating to the affine transformation
model was estimated. Next, CPs of the estimated RMSE lower than 5 were considered as
outliers and eliminated. Consequently, 3080 and 4304 CPs were extracted in sites 1 and
2, respectively. As shown in Figure 4, CPs were mostly extracted from invariant areas
comprising various artificial structures such as roads, flat roofs, and low-rise rooftops
(notably, images were contrasted by performing 2% linear stretch to clearly visualize the
CPs distribution).

To effectively minimize the geometric misalignment between images, using a transfor-
mation model suitable for images is necessary. Here, we performed image registration by
constructing an IPL transformation model [56] (Figure 5). In Figure 5, green and purple
points represent CPs and pseudo-CPs, respectively. Owing to the pseudo-CPs selected
from the outlying area of the image, the Delaunay triangle network was evenly formed
to the entire image over a triangular region. Image registration was performed using the
Delaunay triangle network constructed on the basis of the CPs and pseudo-CPs extracted
from each image.
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To visually analyze the registration result, we generated the chessboard image as
shown in Figure 6. The reference image was expressed as a true-color image, and the
sensed and geo-rectified sensed images were expressed as a false-color image. Objects
and lines were inconsistent between chessboard blocks formed between the reference and
sensed images (Figure 6a,c). This geometric inconsistency was effectively minimized after
performing the image registration, which can be seen from chessboard blocks formed
between the reference and geo-rectified sensed images (Figure 6b,d). Some parts of the
chessboard image before and after conducting the image registration were magnified,
as shown in Figure 7. The geometric inconsistency existing between the images prior to
image registration was effectively minimized through the proposed method (denoted using
orange circles in Figure 7).

To quantitatively analyze the geometric accuracy, we estimated the CC between the
images before and after performing image registration. Table 2 lists the estimated CC for
each site. Before performing image registration, the CC values of sites 1 and 2 were 0.260
and 0.680, respectively. After performing image registration, the CC values of sites 1 and
2 were improved to be 0.665 and 0.731, respectively. As a result, the geometric accuracy
of sites 1 and 2 was improved by 60.90% and 6.98%, respectively, compared to that of the
raw image. The geometric accuracy of site 1 was significantly improved compared to that
of site 2 because the WorldView-3 image was processed to coarse geometric correction,
whereas the KOMPSAT-3A image did not perform any geometric correction as mentioned
in Section 3.1.
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Table 2. Image registration accuracy obtained using CC.

Site
CC

Raw Image Geo-Rectified Sensed Image

Site 1 0.260 0.665

Site 2 0.680 0.731

4.2. PIFs Extraction Result

To extract PIFs, the NDVI mask was generated, and CPs extracted on the mask were
eliminated. The remaining CPs were then used as SPs to perform the region growing-based
PIFs extraction by using the INZ-score values. The number of SPs used to extract PIFs
was 2006 and 2628 for sites 1 and 2, respectively. Figure 8 shows the distribution of SPs
over the INZ-score images. The invariant areas in the INZ-score images were assigned
values close to zero; thus, they are presented as dark areas. As one can see from Figure 8,
the SPs are located in dark areas of the INZ-score images that show a high probability of
invariant areas.

Adjacent pixels with the SPs having similar values to the INZ-score were selected
as PIFs by applying the region growing algorithm. Consequently, numerous PIFs were
extracted at each site as shown in Figure 9 (PIFs and SPs were denoted using yellow and
green marks, respectively). As a result, a total of 30,544 and 211,295 PIFs were extracted
from sites 1 and 2, respectively. Table 3 summarizes the extracted numbers of CPs, SPs, and
PIFs in each site. In the case of site 1, PIFs were intensively extracted from low-rise rooftops
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and roads among various invariant areas (Figure 9a,b). In site 2, PIFs were primarily
extracted from roads among various types of invariant areas (Figure 9c,d). Moreover,
dramatically changed regions from large-scale agricultural areas to barren areas, located in
the lower-left part of the site, and vegetation regions including mountainous areas, located
in the upper left part of the site, were excluded from the PIFs extraction.
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Table 3. Number of CPs, SPs, and PIFs extracted using the proposed method.

Site CPs SPs PIFs

Site 1 3080 2006 30,544

Site 2 4304 2628 211,295

4.3. Analysis of PIFs Characteristics and Quality

To analyze the overall characteristics and quality of the PIFs, we randomly sampled
70% of the PIFs for modeling the RRN and the remaining 30% was used for testing the
model. Accordingly, 21,381 and 147,907 PIFs were extracted for modeling and 9163 and
63,388 PIFs were used as test pixels in site 1 and site 2, respectively. Figure 10 presents
a band-by-band linear regression model of each site, and the CC and R2 of each linear
regression model are estimated in Table 4. Each linear regression model was generated
with a positive correlation showing a linear characteristic by estimating the CC and R2 as a
high value of over 0.9 and over 0.8, respectively.

Table 4. CC and R2 estimation results of band-by-band PIFs for each site.

Site 1 Site 2
Band 1 Band 2 Band 3 Band 4 Band 1 Band 2 Band 3 Band 4

CC 0.919 0.933 0.927 0.935 0.986 0.968 0.985 0.978
R2 0.844 0.871 0.858 0.873 0.972 0.937 0.969 0.957

We further analyzed the quality of PIFs in detail by conducting the RRN for each site
(Figure 11). Images in Figure 11 were displayed as the raw and normalized images (i.e., no
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image stretch performed) to intuitively express radiometric variations. Before performing
RRN, the radiometric characteristics were expressed differently between reference and
geo-rectified sensed images (Figure 11a,b,d,e). As shown in Figure 11c,f, the radiometric
characteristics of the geo-rectified sensed images were normalized similar to those of the
reference images. In particular, the proposed method effectively minimized the radiometric
dissimilarity, even at site 1, where the radiometric dissimilarity was severe compared to
that of site 2.
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To evaluate the quality of PIFs from a statistical perspective, we performed via t-test
and F-test based on the test pixels. Table 5 summarizes the t-test and F-test results obtained
using the test pixels of site 1. There was a difference between the mean value of the geo-
rectified sensed and the reference image, whereas the mean value of the normalized image
was estimated similarly to that of the reference image. As a result of the t-test, the t-stat
of bands 1 and 2 was close to 0, and the p-value was estimated to be larger than 0.85. The
t-stat of bands 3 and 4 was −0.6696 and −0.5272, respectively, which had relatively large
deviations compared to other bands, but the p-value was estimated to be over 0.5. The
standard deviation value of the geo-rectified sensed image was about 2 times smaller than
that of the reference image, whereas the normalized image was similar to the reference
image. As a result of the F-test, the F-stat of each band was close to 1, and the p-value was
also derived to be more than 0.6.

Table 6 summarizes the t-test and F-test results obtained using the test pixels of site
2. The mean and standard values of the normalized image were estimated similarly to
the reference image. Although different values of t-stat for each band were estimated, the
p-value was estimated to be over 0.14; thus, it can be considered as statistically similar
because the null hypothesis has been accepted. In the case of the F-test, the F-stat of all
bands was estimated to be close to 1, and the p-value was estimated to be more than 0.79,
which is a reliable result.

In summary, performing RRN using the PIFs extracted via the proposed method
became significantly similar to the mean and standard deviation between the reference
and normalized images in both sites. These results are demonstrated by the p-values of
the t-test and F-test, estimated as higher than 0.05 in both sites. In other words, the null
hypothesis that the mean and standard deviation of the invariant areas between the images
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were equal was accepted. Therefore, these results demonstrate that the PIFs extracted by
the proposed method were superb.
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geo-rectified sensed image of site 2, and (f) normalized geo-rectified sensed image of site 2.

Table 5. Comparison of means and standard deviations with statistical tests in site 1.

Band 1 Band 2 Band 3 Band 4

Geo. mean 2828.16 2964.95 2372.27 3124.70
Ref. mean 2734.95 3035.89 2508.81 3502.35
Nor. mean 2734.25 3036.00 2513.02 3506.85

t-stat 0.1490 −0.0181 −0.6696 −0.5272
p-value 0.8816 0.9855 0.5032 0.5981
Geo. std 464.93 751.69 892.05 1288.52
Ref. std 1098.07 1621.19 1660.16 2102.99
Nor. std 1097.37 1625.77 1667.01 2114.51

F-stat 1.0013 0.9944 0.9918 0.9891
p-value 0.9525 0.7908 0.6992 0.6083

4.4. Relative Radiometric Normalization Performance

Through the quality assessment of the PIFs with the proposed method, we confirmed
that the extracted PIFs have superior quality; however, it was unknown whether the
proposed method has superior performance compared with other RRN algorithms. To
this end, we performed a comparative analysis of various RRN algorithms such as MM
regression, MS regression, HM, IR-MAD, and the method of [36].

To comparatively analyze various RRN algorithms, geo-rectified sensed images of
each site were normalized using the proposed method and various RRN algorithms.
Subsequently, histograms were constructed based on test pixels to intuitively analyze
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changes in the radiometric characteristics of the normalized images. The histogram of the
reference image was presented in red, that of the geo-rectified sensed image in blue, and
that of the normalized image of each RRN algorithm in black. As the distribution of bins in
the histogram for each image was different, the sum of the density frequency constituting
the histogram was normalized to be less than 1. Subsequently, the HD value between
histograms was estimated to analyze their similarity. In addition, to quantitatively perform
the comparative analysis on the proposed and other RRN methods, the NASE, SC, PSNR,
and RMSE were estimated based on the test pixels. In the case of the NASE, SC, and PSNR,
line graphs were generated based on the value of each index to intuitively compare and
analyze the performance. Moreover, the computation time of each RRN algorithm was
estimated for comparison.

Table 6. Comparison of means and standard deviations with statistical tests in site 2.

Band 1 Band 2 Band 3 Band 4

Geo. mean 365.74 455.05 312.13 446.38
Ref. mean 339.04 419.15 292.53 408.56
Nor. mean 339.01 419.00 292.35 408.71

t-stat 0.4655 1.1801 1.4578 0.8003
p-value 0.6415 0.2379 0.1449 0.4235
Geo. std 89.53 122.28 135.48 167.88
Ref. std 100.87 137.73 152.45 177.72
Nor. std 100.96 137.81 152.37 177.62

F-stat 0.9980 0.9988 1.0011 1.0011
p-value 0.7977 0.8719 0.8889 0.8878

The histogram and HD value of site 1 are shown in Figure 12 and Table 7, respectively.
Although the histogram of the geo-rectified sensed image was generated with a similar
structure to the reference image, the frequency density was different due to the radiometric
dissimilarity. The HD values of the corresponding bands between the reference and geo-
rectified sensed images were estimated as a range from 0.2355 to 0.3896, and the average
value was estimated to be 0.3269. In the case of using MM regression, the overall brightness
value increased or decreased; hence, the HD values were slightly higher than those of
the geo-rectified sensed images, except for band 2. By applying the MS regression, the
brightness value was irregularly normalized, resulting in higher HD values than those
of the MM regression. In the case of using HM, the histograms of the normalized image
were constructed similarly to the reference image in bands 3 and 4, but histograms of
bands 1 and 2 were represented differently. However, the HD values decreased compared
to the values of the geo-rectified sensed image in all bands. This is because the range of
high-density frequency of the histogram in the normalized image is similar to that of the
reference image. The histograms when applying IR-MAD represented that the brightness
value was biased in one or both directions. As a result, the HD values were estimated
higher than those of the geo-rectified sensed image, except for band 3. The histograms
of the method of [36] were constructed similarly to HM, and the HD values were also
estimated to be low. In the case of using the proposed method, although the histograms
were constructed similarly to HM and the method of [36], the HD value was estimated to
be on average 0.1694, which is the lowest value compared to the other RRN algorithms.

The graphs of NAE, SC, and PSNR before and after performing the RRN methods
in site 1 are shown in Figure 13, and the RMSE and computation time are summarized in
Table 8. Although the MM regression and MS regression methods’ had short computation
times, the values of all the indices achieved compared to those of geo-rectified sensed
image were poor. In the case of HM, the NAE and RMSE values were lower than those
of the geo-rectified sensed image, the SC value was close to 1, the PSNR value was high,
and the computation time was relatively short. The NAE and RMSE values of IR-MAD
were lower than those of the geo-rectified sensed image, but the SC values were higher
than 1.2, except for band 1. Moreover, the computation time was 45.547 s, the highest
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time among the algorithms. When applying the method of [36], the computation time and
NAE, SC, and RMSE values were similar to HM, but the PSNR value tended to be slightly
higher than that of HM. The RMSE of the proposed method was estimated to have the
lowest value around 602.89, and the NAE, SC, and PSNR was measured to have similar
or improved values compared to those of HM and the method of [36]. However, it had a
relatively longer computation time, similar to that of IR-MAD.

Table 7. Result of estimating HD for each band of site 1.

Method Band 1 Band 2 Band 3 Band 4 Average

Geo-rectified sensed image 0.3896 0.3408 0.3415 0.2355 0.3269

MM regression [46] 0.4288 0.3167 0.3341 0.2283 0.3270

MS regression [46] 0.4836 0.4701 0.4435 0.3245 0.4304

HM [48] 0.2202 0.2290 0.2149 0.0954 0.1899

IR-MAD [30] 0.4252 0.3418 0.3258 0.2507 0.3359

Method of [36] 0.2398 0.2031 0.1970 0.1345 0.1936

Proposed method 0.2270 0.1815 0.1705 0.0987 0.1694
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The histogram and HD values of site 2 are shown in Figure 14 and Table 9, respectively.
The Worldview-3 images of site 2 were processed to coarse atmospheric correction as
described in Section 3.2. Therefore, the histogram of the geo-rectified sensed image was
generated similarly to that of the reference image, and the HD values were estimated to be
relatively lower than those of site 1. Histograms of MM regression and MS regression were
constructed with a different range from the reference image, and their HD values were
estimated to be higher than those of the geo-rectified sensed image. In the case of HM, the
histogram of the normalized image was constructed similarly to that of the reference image;
thus, the HD value was significantly improved compared to the geo-rectified sensed image.
Similarity, the IR-MAD method achieved reliable normalization results by reducing the HD
values, except for band 4. Although the histograms of the method of [36] were constructed
similarly to the reference image, the HD values were estimated to be higher than those of
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HM. The proposed method obtained a considerable improvement in normalization results
by achieving an HD value of 0.0218 on average, which was the lowest value compared to
the other RRN algorithms.

Table 8. Comparison of RRN methods based on RMSE and computation time (site 1).

Method
RMSE

Comp. Time
Band 1 Band 2 Band 3 Band 4 Average

Geo-rectified sensed image 700.69 957.98 891.41 1094.04 911.03 -

MM regression [46] 760.01 1040.02 895.12 1063.76 939.73 0.313 s

MS regression [46] 905.35 1279.20 1216.94 1582.62 1246.03 0.274 s

HM [48] 468.22 582.70 698.75 871.43 655.28 3.233 s

IR-MAD [30] 506.81 772.55 721.06 1018.93 754.84 45.547 s

Method of [36] 481.08 656.85 654.24 838.13 657.50 3.988 s

Proposed method 438.45 582.30 589.67 801.14 602.89 44.412 s

Table 9. Result of estimating HD for each band of site 1.

Method Band 1 Band 2 Band 3 Band 4 Average

Geo-rectified sensed image 0.0788 0.2576 0.0695 0.1336 0.1349

MM regression [46] 0.587 0.4411 0.0695 0.124 0.3054

MS regression [46] 0.2422 0.3914 0.1145 0.5635 0.3279

HM [48] 0.0222 0.0550 0.0173 0.0117 0.0266

IR-MAD [30] 0.0606 0.2756 0.0784 0.2818 0.1741

Method of [36] 0.0113 0.0559 0.0272 0.0372 0.0329

Proposed method 0.0118 0.0138 0.0326 0.0289 0.0218

The graphs of NAE, SC, and PSNR before and after applying the RRN methods in site
2 are shown in Figure 15, and the RMSE and computation time are reported in Table 10. The
MM regression and MS regression could not minimize the radiometric dissimilarities as in
site 1. HM, IR-MAD, and the method of [36] could minimize radiometric dissimilarity, but
the accuracy of HM was lower than that of IR-MAD and the method of [36]. This occurred
mainly due to the large-scale changed area between images because HM performs RRN
utilizing the all of the pixels including changed areas, unlike IR-MAD and the method
of [36], which utilize PIFs only. The accuracy of the proposed method was superior to
those of the other RRN algorithms as in site 1. However, the longest computation time was
measured as 152.957 s.
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Table 10. Comparison of RRN methods based on RMSE and computation time (site 2).

Method
RMSE

Comp. Time
Band 1 Band 2 Band 3 Band 4 Average

Geo-rectified sensed image 33.31 47.64 37.87 60.09 44.73 -

MM regression [46] 71.46 120.32 37.87 59.04 72.17 0.921 s

MS regression [46] 54.17 78.92 58.16 102.68 73.48 0.742 s

HM [48] 24.01 51.32 34.94 48.24 39.63 3.935 s

IR-MAD [30] 26.80 38.12 23.61 55.23 35.94 92.906 s

Method of [36] 18.94 31.18 30.15 52.08 33.09 4.976 s

Proposed method 18.03 29.31 29.46 47.77 31.14 152.957 s

5. Discussion

In this study, we proposed an integrated preprocessing method by extracting numer-
ous PIFs based on CPs. In addition, the accuracy and performance of the proposed method
were analyzed through various assessments: (1) image registration accuracy, (2) evaluation
of the overall characteristics of PIFs and their quality, and (3) performance analysis through
comparative analysis with other RRN algorithms. The detailed discussion of the achieved
results will be given in this section.

With respect to the results of image registration, the proposed method effectively
reduced the geometric misalignment between images. This was demonstrated through
geometric consistency represented by chessboard images generated between reference
and geo-rectified images and increased CC values after image registration. Although the
applied SURF-based CPs extraction with geometric restriction-based outlier removal is not
a novel approach in terms of the image registration, the contribution can be found from the
fact that the CPs were used as seed points to extract PIFs.

The overall characteristics of PIFs were analyzed via measurement of CC and R2

values of each band-by-band linear regression model estimated from the PIFs. The CC and
R2 of PIFs were estimated as high values, between approximately 0.8 and 0.9. Moreover,
the quality of PIFs was statistically analyzed by performing a t-test and F-test based on test
pixels. The p-values of the t-test and F-test were estimated to be higher than 0.05, and the
t-state and F-state were estimated to be close to 0 and 1, respectively. Therefore, the overall
characteristics and quality of extracted PIFs were found to be reliable for performing RRN.

Finally, to analyze the RRN performance of the proposed method, a comparative
analysis was performed using the proposed method and other RRN algorithms: MM
regression, MS regression, HM, IR-MAD, and the method of [36]. As a result, the proposed
method obtained a superlative RRN performance over the other methods in both sites.
Furthermore, we can confirm several facts through the comparative analysis results in
Section 4.3.
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First, the MM regression and MS regression are not suitable for minimizing the
radiometric dissimilarity between VHR satellite images. These methods forcefully convert
the brightness value of entire pixels only using the calculated maximum–minimum and
average–standard deviation values without considering the radiometric characteristics
between images. Therefore, the brightness value of the normalized image obtained using
the MM and MS regressions was distorted so poor results were obtained even before
applying the RRN.

Second, in the case of severe radiometric dissimilarity showing between images, such
as in site 1, PIFs should be extracted more carefully. Regions such as vegetation that can
be affected by even subtle changes of the radiometric properties due to the difference of
acquisition conditions or seasons should be removed from the PIFs extraction process.
The proposed method excluded the vegetation areas to extract the PIFs, whereas IR-
MAD and the method of [36] extracted PIFs without consideration of the vegetation areas.
Accordingly, these methods showed lower accuracy than the proposed one.

Third, a nonlinear method such as HM could effectively minimize radiometric dissim-
ilarity. HM utilizes the entire pixel brightness values of the image like MM regression and
MS regression but considers them nonlinearly. Therefore, it was relatively less affected by
vegetation data, and radiometric dissimilarity was minimized even in site 2, where a large
portion of changed areas occurred between images.

The method of [36] and the proposed method, extracting PIFs based on CPs, effectively
minimized both the geometric and radiometric dissimilarity at both sites. These results
indicate that PIFs extracted based on CPs are suitable to perform RRN. In terms of accuracy,
the proposed method outperformed the method of [36] at both sites. This result was
related to the number of extracted PIFs and consideration of the vegetation areas for their
extraction. The proposed method extracted approximately two and nine times more PIFs
than the method of [36] in site 1 and site 2, respectively, although the vegetation areas
were removed for extracting them. Consequently, the proposed method could estimate
normalization coefficients with characteristics more robust to radiometric dissimilarity than
the comparison method. However, the proposed method requires more computation time
because it extracts PIFs in a way that repeatedly considers CPs and their neighboring pixels.
Particularly, the proposed method in site 2 required about 40 times more computation time
than the method of [36], though the accuracy was slightly improved. This is because the
simple linear regression model estimated by the PIFs has a limitation of entirely showing
an effect in performing normalization while considering complex elements of nonlinearity.
These problems remain to be addressed in our future work.

6. Conclusions

In this study, we proposed an integrating preprocessing method by extracting PIFs
necessary for performing RRN based on CPs required for image registration. In the first
step of the process, the CPs were extracted using the SURF algorithm, and outliers were
eliminated. IPL transformation was implemented to perform image registration. Subse-
quently, the CPs without vegetation areas were selected as SPs for the region growing-based
PIFs extraction approach. Finally, RRN was performed by constructing a linear regression
model based on the extracted PIFs. To analyze the performance of the proposed method,
VHR images acquired from KOMPSAT-3A and WorldView-3 were used for constructing
two experiment sites showing different properties.

We showed that the proposed method was effective in reducing geometric misalign-
ment between images of each site. The overall characteristics and quality of PIFs were
analyzed by using various statistical indices. As a result, the PIFs of the proposed method
were found to be reliable for performing RRN. In addition, we confirmed that the proposed
method effectively minimized the radiometric dissimilarity through a comparative analysis
with various RRN algorithms by using radiometric normalization assessment measures
such as HD, NAE, SC, PSRN, and RMSE. However, the proposed method had a problem
with respect to the computational efficiency due to the region growing-based extraction
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of PIFs. Future research will proceed to improve the efficiency of the proposed method
when extracting PIFs. Furthermore, we will conduct research related to nonlinear modeling
using the CPs-based PIFs, reflecting the potential of nonlinear normalization confirmed
through this study.
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