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Abstract: Few ecological studies have explored landscape suitability using the gradient concept of
landscape structure for wildlife species. Identification of conditions influencing the landscape ecology of
endangered species allows for development of more robust recovery strategies. Our objectives were to
(i) identify the range of landscape metrics (i.e., mean patch area; patch and edge densities; percent land
cover; shape, aggregation, and largest patch indices) associated with woody vegetation used by ocelots
(Leopardus pardalis), and (ii) quantify the potential distribution of suitable woody cover for ocelots across
southern Texas. We used the gradient concept of landscape structure and the theory of slack combined
with GPS telemetry data from 10 ocelots. Spatial distribution of high suitable woody cover is comprised
of large patches, with low shape-index values (1.07–2.25), patch (27.21–72.50 patches/100 ha), and edge
(0–191.50 m/ha) densities. High suitability landscape structure for ocelots occurs in 45.27% of woody
cover in southern Texas. Our study demonstrates a new approach for measuring landscape suitability
for ocelots in southern Texas. The range of landscape values identified that there are more large woody
patches containing the spatial structure used by ocelots than previously suspected, which will aid in
evaluating recovery and road planning efforts.

Keywords: carnivore conservation; gradient concept; landscape metrics; landscape suitability models;
Leopardus pardalis; slack

1. Introduction

Habitat suitability models are widely used for assessing habitat quality for plant and
animal species worldwide [1–3]. These models are part of the family of models dealing
with resource selection analyses [4–6]. However, unlike most resource selection analyses,
habitat suitability models quantify the amount and spatial distribution of habitat based on
characteristics deemed important to a species [1,4,7]. Habitat suitability models generate
an index that is used to determine the suitability of an area to be habitat for a species [6].
This differs from traditional resource selection functions (RSF), which use logistic regression
to relate a binary response of used versus available points to a nonlinear or linear function
of environmental resource variables [6]. Further, MaxEnt species distribution models differ
in that they use machine-learning maximum entropy to fit resource selection functions
and environmental variables based on presence-only data [6,7]. Sound conservation and
management approach for species and structured decision-making processes require a
strong understanding of the quality of the habitat characteristics deemed important for the
species, not necessarily the abundance of a species [8,9]. Consequently, habitat or landscape
suitability models are often considered a fundamental tool for species survival planning,
ecological assessments, and conservation planning (e.g., reintroductions, translocation,
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restoration, rewilding) [8–11]. This need has increased in the number of habitat/landscape
models for diverse taxa at various scales [7,12,13].

Landscape-based models for predicting habitat/vegetation use, suitability, or distri-
butions have used different types of frameworks (i.e., patch-mosaic, the gradient concept
of landscape structure) to describe the patterns and processes that govern ecological pro-
cesses which drive animal-land or vegetation cover relationships [3,14,15]. Traditionally,
landscape ecologists have used the patch-mosaic model of landscape structure to describe
landscape spatial heterogeneity; a simple but widely used approach for defining discrete
patches [15–18]. The patch-mosaic model generates predictions based on a mosaic of
discrete or categorical patches with dominant land cover classes when predicting use or
suitability [3]. However, these patch mosaic model predictions are problematic because of
inaccuracies in boundary placement, class divisions, and ecological landscape variability
that occur at different scales and resolutions along a continuum of interacting variables
across the landscape [16,18]. Such distortions of underlying ecological patterns and inaccu-
racies can obfuscate actual spatial heterogeneity and pattern–process relationships [16].

Animals tend to experience landscape structure as gradient patterns that can vary in space
based on the distance at which an organism perceives landscape patterns [14,16,19–22]. To
correctly address landscape structure and avoid ecological distortions or errors in spatial het-
erogeneity, use of the gradient paradigm of landscape structure improves the patch-mosaic
model [14]. Although studies have used the gradient concept for mapping vegetation communi-
ties cf. [22–25], few applications in wildlife studies exist cf. [26–28]. Further, future applications of
the gradient paradigm have potential to inform habitat management and conservation strategies
for wildlife populations across large regional areas.

The ocelot (Leopardus pardalis) is a medium-sized felid with a large geographic range that
spans from Uruguay to coastal southern Texas [29,30]. Ocelots have been described as a forest-
dependent species, preferring areas of increased woody cover [31–34]. Populations in Texas are
remnants of a wider historical distribution and are now genetically and geographically isolated
from populations in northeastern Mexico [35]. Ocelots are endangered (<80 individuals)
in the United States [36,37] and exist in two populations in southern Texas. The “ranch
population” occurs on large private ranchlands in Kenedy and Willacy counties with at least
80% of resident ocelots [31,38], and a smaller “refuge population” occurs on Laguna Atascosa
National Wildlife Refuge in eastern Cameron County [32,36,39–41]. In southern Texas, ocelots
have been observed in semi-arid thornshrub communities with dense and mixed canopies, and
live oak forests (Quercus virginiana) with thornshrub understories [31,36–38,40,41]. Population
declines in southern Texas have been linked to road mortality, loss of genetic diversity, and
large-scale woody cover loss in the early to mid-20th century [32,35,42–44]. Ninety percent of
native woodlands were removed near the US-Mexico border [43] and from 1987 to 2016, there
was a loss of large woody patches (>100 ha) in the counties in which ocelots occur [44].

Over the last two decades there has been an increase in the number of studies that
have suggested the importance of landscape structural metrics in describing ocelot habitat
use patterns [31,32,39,41,45]. To date, only two studies have focused on suitability across
southern Texas [46,47]. Tewes and Everett [46] recorded <1.6% suitability across an exten-
sive 13-county region in southern Texas, whereas Connolly [47] estimated <20% suitability
in the same area. However, Tewes and Everett [46] excluded large woody patches with
live oak (Quercus virginiana) forest or less than 95% canopy cover; areas that have been
used by ocelots [31,38]. Recent advancements in spatial analyses (e.g., availability of higher
resolution of satellite imagery) can predict suitability at different resolutions and spatial
scales for ocelots in southern Texas.

Our objectives were to use the gradient concept of landscape ecology to (i) identify the
range of cover metrics associated with woody vegetation used by ocelots, and (ii) quantify
the potential distribution of suitable woody cover patches for ocelots across southern Texas.
Based on ocelot ecology, we predicted the landscape structure for ocelots will contain
woody patches with lower shape indices, lower patch densities, adjacent to other patches.
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We also predicted there a greater proportion of suitable cover for ocelots than previously
believed, particularly in the western and northern half of southern Texas.

2. Materials and Methods
2.1. Study Area

Our study area encompassed 54,170 km2 in southern Texas encompassing the Texas-
Tamaulipan Thornshrub, Coastal Sand Plain, Lower Rio Grande Valley, Rio Grande Flood-
plain, Northern Nueces Alluvial Plain, Rio Grande Floodplain and Terraces, Southern
Subhumid Gulf Coast Prairie, West Gulf Coast Floodplains and Terraces, and Laguna
Madre Barrier Islands and Coastal Marshes eco-regions (Figure 1; [48]). This area includes
the counties of San Patricio, Nueces, Kleberg, Kenedy, Willacy, Cameron, Hidalgo, Brooks,
Starr, Zapata, Jim Hogg, Jim Wells, Duval, Webb, and parts of Live Oak, McMullen, La
Salle, Dimmit, and Maverick counties. These areas have diverse land use types includ-
ing varying densities of urban development, industrial facilities for oil and natural gas,
row-crop agriculture, rangelands for cattle production, as well as natural areas composed
of mid-grass prairie, coastal and inland wetlands, inland salt lakes, and a mosaic of di-
verse woody communities (e.g., live oak forest and thornshrub) [42]. The region has a
network of high-speed (80–120 kph) state and county highways (60–80 kph) that increase
in density and traffic volume closer to micropolitan and metropolitan areas (i.e., Kingsville,
Brownsville, Laredo, Corpus Christi, McAllen) and near the US-Mexico border.
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2.2. Ocelot Spatial Data

Data collection occurred in northeastern Willacy and southeastern Kenedy counties.
Ocelots were captured on the East Foundation’s El Sauz Ranch; a large working ranch
managed to promote the advancement of land stewardship through cattle ranching, science,
and education. This has the largest known breeding population of ocelots in the United
States [31,37,38]. The ranch is located among a mosaic of expansive private rangelands in
Willacy and Kenedy counties.

From March 2013 to May 2017, and March 2019 to May 2020, we captured 20 ocelots
(16 adults; 4 juveniles) with single-door, 108 × 55 × 40 cm steel wire Tomahawk (Tomahawk
Trap Company, Tomahawk, WI, USA) box traps. We used a pole syringe to sedate adult
ocelots with a mixture of zolazepam and tiletamine HCl (Telazol, Fort Dodge Laboratories,
Fort Dodge, Iowa, USA) at 5 mg/kg [45] from 2013 to 2017 [38,49]. From 2019 to 2020, we
sedated ocelots with a mixture of medetomidine HCl 0.05 mg/kg and ketamine hydrochlo-
ride at 4–5 mg/kg and used a reversal of 5 mg of atipamezole per 1 mg medetomidine
(ZooPharm, Laramie, WY, USA). Juvenile ocelots were released without being sedated.

We attached Lotek Minitrack or Litetrack global positioning system (GPS) (Lotek
Wireless™, Newmarket, ON, Canada) Iridium-satellite collars on 16 adult ocelots (seven
males, nine females). We used a variety of temporal fix schedules (based on prior project
objectives) to record GPS relocations of ocelots. Following data collection, we removed
outlying locations that may have been the result of pre-deployment testing and locations
collected within 24 h of capture to minimize bias due to live capture [7,38]. We applied a
geographic filter to exclude locations that had a dilution of precision >10 and coverage
from less than four satellites and removed geographic outlier locations determined to be
erroneous [38]. For this analysis, we split the dataset into historic observed locations (2013
to 2015) and current data (2016 to 2020). To ensure standardization among different fix
schedules across datasets, we calculated the Euclidean distance (m) between successive
locations and used Pearson’s correlation analysis (significance p = 0.05) to determine the
similarity between pairs of successive steps at different temporal intervals [50]. Based on
lower temporal autocorrelation among successive locations at two hours, we used ArcMap
10.8 (ESRI, Redlands, CA, USA) to subsample GPS telemetry data every 2 h for further
spatial analyses.

2.3. Landscape Suitability Analyses

We acquired 2018 LANDSAT 8 satellite imagery (30-m) to evaluate the range of
landscape structure metrics believed to influence the spatial distribution and structure
of woody cover for ocelots across the study area. We acquired five LANDSAT images
from March to May 2018 with minimal cloud cover (<10%) through the U.S. Geological
Survey Global Visualization Viewer [44,51]. We followed methodologies and classifications
defined by Lombardi et al. [44] for classifying land cover types in southern Texas using
an unsupervised image classification in ERDAS IMAGINE 2018 (Hexagon Geospatial,
Norcross, GA, USA). We defined six land cover classifications including woody cover,
herbaceous cover, croplands, water, barren soil, and urban areas (Figure 1). To classify the
maximum extent of urban areas, we used spatial data of urban areas obtained from the
U.S. Census from the Texas Natural Resource Information System (Texas Natural Resource
Information System, Austin, TX, USA), digitized new development, and merged the layers
to the unsupervised classification. We performed accuracy assessments for each image
using 200 random points using a confusion matrix [31,34,44] that produced a mean 91.9%
accuracy for image classifications.

We identified the range of characteristics of woody patches and the landscape veg-
etation structure used by ocelots based on the 2016–2020 GPS telemetry dataset using
the theory of slack (hereafter slack; [52]). Slack introduces the idea that the 90% range of
different patch configurations and complexities lead to optimal habitat conditions within
a fully usable space [28,52]. Using slack, we defined the range of values for each metric
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from five to 95 percentiles and reclassified each landscape metric raster into habitat (1) and
non-habitat (0) [28,52].

We used Fragstats (Fragstats 4.2, [53]) to obtain landscape metrics of woody cover that
have been previously shown to characterize the spatial distribution and structure of woody
cover related to ocelot occurrence and space use across their geographic range (including
southern Texas) (Table 1) [31–34,39–41,54]. We estimated the size (mean patch size [MPA;
ha]), patch density (PD; the number of patches/100 ha), and complexity of woody cover
patches (landscape shape index (LSI), which yield an index of patch fragmentation. We
examined the aggregation of woody cover patches (aggregation index; AI) and the amount
of edge per unit area (edge density (ED; m/ha). We used the largest patch index (LPI; %)
to examine the percentage of area covered by the largest patch of woody cover and the
total proportion of woody cover (PLAND; %) on the landscape. We then created focal
raster layers for each landscape metric and the entire study area using a moving window
analysis to address the role of these patterns and processes to a wider extent. To inform
these focal raster layers, we calculated focal radii based on the average distance between
two successive locations (2 h; 116 m) to derive the range of values for each landscape metric
used by ocelots for each pixel across the study area. We quantified descriptive statistics for
each landscape metric in SPSS (IBM SPSS v23;). Using the 90% range of values for each
metric [51], we reclassified each raster using a classification of nonhabitat (0) and habitat
(1) and used a raster calculator to sum the resulting layers into one suitability model of
seven metrics. To create the final suitability model, we reclassified this summed raster of
seven metrics into four suitability categories: high (6–7 metrics), medium (3–5 metrics),
low (1–2 metrics), and none (0 metrics).

Table 1. A priori predictions and justification for landscape metrics of woody cover for inclusion in gradient + slack
landscape suitability model for ocelots (Leopardus pardalis) in southern Texas.

Landscape Metric Prediction Citation

Landscape Shape Index Ocelots use a range of values with lower
shape values on the landscape Jackson et al., 2005, Lombardi et al., 2020

Percent Landscape (%) Ocelots use a range of higher percentage
of woody cover on the landscape

Tewes and Everett 1986, Jackson et al.,
2005, Haines et al., 2006, Connally 2009,
Massara et al., 2018, Paolino et al., 2018,
Wang et al., 2019, Lombardi et al., 2020,

Blackburn et al., 2020

Patch Density (patches/100 ha)
Ocelots use a range of lower patch

densities, indicative of large patches on
the landscape

Wang et al., 2019, Blackburn et al., 2020

Largest Patch Index (%) Ocelots use a range of larger woody
patch indices on the landscape

Tewes and Everett 1986, Jackson et al.,
2005, Haines et al., 2006, Connally 2009,
Massara et al., 2018, Paolino et al., 2018,
Wang et al., 2019, Lombardi et al., 2020,

Blackburn et al., 2020

Edge Density (m/ha)
Ocelots use a range of lower edge

densities, indicative of a forest -interior
species on the landscape

Garcia-R et al., 2019

Mean Patch Area (ha) Ocelots use the largest mean patch areas
on the landscape

Jackson et al., 2005, Lombardi et al., 2020,
Wang et al., 2019

Aggregation Index Ocelots use a range of larger aggregation
indices on the landscape Blackburn et al., 2020

2.4. Model Validation

To verify our gradient suitability map, we used ocelot telemetry locations from the
historic 2013 to 2015 dataset (n = 6 individual ocelots). Using the extract values-to-point
tool in ArcMap 10.8.1, we extracted the expected suitability (none, low, medium, and
high) values from observed ocelot locations from the historic dataset and the expected
ocelot location data set used to generate the suitability map. We used a chi-squared
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(χ2) statistical test for significant differences between observed ocelot locations for each
year (2013–2015) and expected suitability [55]. If no significant differences were reported,
the woody cover suitability model for ocelots may be applicable to be used at different
spatio-temporal periods.

3. Results

Landscape metrics associated with woody patches were ED range: 0–551.72 m/ha;
MPA range 0–4.60 ha; PD range 0–306.51 patches/100 ha; LSI: 0–3.37 (Table 2). There was a
variation of small and large patches of woody cover intermixed across the region (PLAND:
0–100%; LPI range 0–100%; AI: 0–100; Table 2).

Table 2. Summary statistics for defining the optimal range of woody cover conditions for ocelots in
southern Texas. Values were derived from moving window analysis and GPS relocations for ocelots.
The criterion of suitability scores was representative of the 90% range of values (1) and the bottom
5%, and the top 5% were excluded from analysis (0).

Landscape Metric Criterion Score

Landscape Shape Index
0–1.07 0

1.07–2.25 1
2.25–3.37 0

Percent Landscape (%) 0–41.3 0
41.3–100 1

Patch Density (patches/100 ha)
0–22.6 0

22.7–72.4 1
72.5–306.5 0

Largest Patch Index (%) 0–34.3 0
34.4–100 1

Edge Density (m/ha) 0–191.5 1
191.6–551.7 0

Mean Patch Area (ha)
0–0.86 0

0.87–4.4 1

Aggregation Index 0–54 0
55–98 1

Suitable woody cover for ocelots was characterized by a 90% range of small densi-
ties of large and naturally shaped patches (PD range: 22.60–72.40 patches/100 ha; MPA
range: 0.87–4.40 ha, LSI range: 1.07–2.25), indicating a range of less fragmented patches.
Ocelots used a combination of large patches of woody cover (PLAND range: 41.4–100%;
LPI range: 34.04–100%; AI range: 55–98%) and a lesser amount of edge per unit area
(ED: 0–191.50 m/ha; Table 2). High projected landscape woody suitability for ocelots
across southern Texas was 45.27% (24,429.67 km2); medium, 11.42% (6160.52 km2); low,
12.08% (6519.97 km2); and none, 31.23% (16,858.41 km2) (Figure 2). Across our study area,
the largest areas of high suitability exist in the northern and southwestern areas (i.e., Texas-
Tamaulipan Thornshrub eco-region). We also observed large and isolated highly suitable
patches in the eastern mid-coastal areas (i.e., eastern Coastal Sand Plain and upper Laguna
Madre Coastal Marsh eco-region) parts of our study area.
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Figure 2. Suitability map of landscape woody cover structure (high (6–7 metrics), medium (3–5
metrics), low (1–2 metrics) none (0 metrics)) for ocelots in southern Texas.

Percentage of combined ocelot locations in high suitability cover was 84.8% (observed
in this study from 2016 to 2020). We observed variation in the percentage of historical ocelot
relocations in high suitable cover (2013: 90.9%, 2014: 64.4%, and 2015: 87.9%). Percentage
of ocelot relocations observed in this study in medium and low suitable cover was 6.92%
and 4.10% (2016–2020), respectively. Model verification indicated percentages of expected
ocelot relocations and observed historical ocelot relocations were not statistically different
between 2013–2015, except for 2014 (χ2 = 38.6, α = 0.05; df = 3; Table 3).
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Table 3. Chi-square (χ2) analysis for woody cover suitability model verification based on historic
ocelot GPS relocations from the East Foundation’s El Sauz Ranch. Recent ocelot GPS relocations
from 2016 to 2020 were used in the moving window analysis as the expected dataset for this analysis.
Tabulated χ2 values > 7.81 (α = 0.05, df = 3) indicate a statistical difference (*) in suitability model
and observed location data from ocelots.

Year High Medium Low None χ2

Expected 84.8 6.92 4.1 4.18
Observed 2013 90.9 2.2 4.5 2.4 4.42
Observed 2014 65 15.8 13.8 5.4 39.6 *
Observed 2015 87.9 8.1 1.83 6.5 2.85

4. Discussion

This study demonstrated a new approach for measuring vegetation cover suitabil-
ity by applying the gradient concept of landscape structure and slack for developing a
landscape suitability model for the endangered ocelot populations in southern Texas. We
show that the range of landscape vegetation structure metrics important for ocelot use is
composed of low patch densities of large and naturally shaped patches, suggesting forest-
dependent species [31,33]. This strengthens growing support for use of landscape metrics
in quantifying woody cover patch patterns, configurations, shapes, and densities that may
be used by ocelots in Texas [31,32,39,41]. We have combined rigorous advancements in
remote sensing and landscape ecological analyses using current relocation data to identify
a larger extent of suitable landscape structure of woody cover than previously known.
This model also was partially effective in identifying the suitable landscape structure of
observed ocelot relocations in high suitability patches of woody cover across years.

Ocelots used a range of conditions that reflected areas containing woody cover that
had more naturally shaped patches with extremely low edge densities compared to the
surrounding study area, indicating a range representation of non-fragmented areas. Our
results are consistent with Garcia-R. et al. [45] who suggested ocelots occurring in the
northern Andes Mountains in Colombia had lower indices of occurrence in areas with high
edge density of forested cover. Further, some of our findings at 30 m resolution are similar
to a recent study by Lombardi et al. [31] at finer spatial resolutions (i.e., 1 m imagery),
which is indicative that the range values for mean patch area and landscape shape indices
may be consistent across spatial scales.

Increased mean patch area, large patch index, and percentage of woody cover are
related to increasing forested cover, which has been widely linked to the occurrence of
ocelots throughout their range [31,33,45,54,56]. Preference for large areas of forested cover
possibly indicates use for specific behaviors such as for reproduction [57], prey [32,58,59],
and may play a key role in facilitating coexistence with competitor species [59–61]. In areas
of the Atlantic Forest in Brazil, ocelot occurrence has been strongly linked to large patches
of undisturbed forest, similar to southern Texas and believed to be rare, particularly in
human-modified landscapes [54,61,62]. This study reveals ocelots use a wide range of
configurations, complexities, and distribution of woody cover. Ocelots did not exhibit
landscape structural specialization, which is consistent with studies in Central and South
America [33,45,54,60–62].

This model successfully identified the suitable landscape vegetation structure for areas
in our study area in which ocelots were observed. We were able to successfully predict
observed relocations in high suitable woody cover patches in 2013 and 2015. Observed
significant differences detected in 2014 were likely a result of targeted trapping efforts and
subsequent ocelot home ranges within a transition zone of extensive wetlands and small-
disjointed patches of thornshrub and forest. Our results indicate that the gradient and slack
model developed for ocelots has strong predictive ability across time and space. These
results can be further refined using ocelot GPS relocation data from adjacent populations
in northeastern Mexico and the more fragmented population on the Laguna Atascosa
Wildlife Refuge.
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Our model also reflects a new standard in estimating the amount of potential woody
cover conditions that may be used by ocelots across the study area. Over the last 35 years,
advancements in remote sensing approaches (i.e., aerial visual surveys vs. landsat imagery)
provide the ability to quantify large regions of woody vegetation with greater accuracy
and precision than before. Tewes and Everett [46] using early remote sensing techniques
from aerial transects estimated that the southern 13 counties of southern Texas comprised
1.6% of suitable canopy cover for ocelots. An important distinction between the previous
study and our methods, is the inclusion of live oak forests (and thornshrub understories),
to ensure the full range of woody cover conditions used by ocelots. The inclusion of live
oak now yields more potential woody cover with suitable landscape structure of woody
cover. Furthermore, these results also indicate the impact of agriculture and urbanization
on suitability indices, as suitable patches in the southeastern region of the study area are
smaller and more fragmented. Consequently, this model provides a strong framework to
also show the impact that human activity (Figure 2) on suitability indices for potentially
suitable woody cover for ocelots.

These results contradict findings by Haines et al. [36] and more recently Lehnen
et al. [40]) in southern Texas. Haines et al. [36] predicted 11 patches of suitable habitat in
the areas where ocelots are known to exist, based solely on canopy cover. Lehnen et al. [40]
used GPS data from 2012 to 2017 with coarse (50 m) resampled LiDAR and satellite imagery
to predict suitability for ocelots at the second-order (home range; [63]) for each population
in Texas. Each study did not account for the potential of ocelots to occur in forested cover
in addition to thornshrub and used data from Laguna Atascosa National Wildlife Refuge
without forested cover to extrapolate their results across larger areas. Because of our broad
woody cover classification, which includes oak forests and thornshrub, we now can report
that the forested cover adjacent to and surrounding those previously identified patches in
Kenedy and Willacy counties contain high suitable landscape vegetation structure, and
include areas with resident ocelot populations (i.e., El Sauz; [31,38]). The presence of
ocelots in areas previously deemed unsuitable [36,40,46], and recent research suggesting
that dense thornshrub canopy cover may not be the sole factor determining woody cover
use by ocelots in Texas, may reflect greater behavioral plasticity by ocelots for mixed
canopies in live oak and thornshrub communities than previously believed [31].

Our approach and findings offer opportunities for advancing ocelot recovery and
road planning efforts, such as informing recovery mitigation strategies. In Texas, to achieve
the first “downlisting” criterion of the Ocelot Recovery Plan, at least 200 ocelots must
exist in current populations with a new reintroduced population established within the
historic range [37,56]. Our suitability model allows for rapid assessment of other regions
outside our study area for future translocation. We project the largest areas for potential
reintroduction exist in the extensive northern and southwestern regions of the study area
occurring within the Texas-Tamaulipas Thornshrub eco-region and select large patches
along the middle coastal areas (i.e., directly north of current ocelot populations), and not in
highly urbanized areas near the Texas-Mexico border. However, due to the presence of high-
speed (120 kph) roadways bisecting areas with suitable woody cover across southern Texas,
we recommend these findings be incorporated into future road planning efforts to ensure
dispersal and connectivity among woody patches where there is a reasonable likelihood of
resident ocelot populations [64]. These results can also be applied for recovering ocelots in
other parts of their geographic range, like Brazilian Atlantic Forest, an area also marked by
heavy fragmentation and extensive road networks [54,61,62,65].

We acknowledge that our ocelot GPS dataset derived from a small geographic area
and when extrapolating across larger regional areas, we recommend using caution in
interpreting results. The landscape suitability map produced in this study projects the
potential suitability of woody cover landscape structure based on the range of values used
by ocelots and should not be interpreted as a probability map of ocelot occurrence [18,66,67].
These results can be used to develop initial planning steps to identify suitable areas for
ocelot habitat. However, they will need to be complemented with incorporation of other
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finer scale variables that may also influence ocelot distribution such as shrub height and
density [68], road density [69], prey availability [59], and climatic variables [10].

5. Conclusions

This approach demonstrates the ability of using the gradient concept and slack to
identify suitable landscape structure of woody cover that may help inform conservation
strategies for medium-sized felids or carnivores. The transferability and validation of this
study are other examples of the importance of incorporating these landscape metrics into
examining the landscape structure of vegetative cover in studies on ocelots or other highly
mobile medium-sized felids. We recommend these results be incorporated into future
ocelot recovery efforts and applied to other threatened and endangered carnivore species.
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