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Abstract: Generative adversarial networks (GANs) are a type of neural network that are characterized
by their unique construction and training process. Utilizing the concept of the latent space and
exploiting the results of a duel between different GAN components opens up interesting opportunities
for computer vision (CV) activities, such as image inpainting, style transfer, or even generative art.
GANs have great potential to support aerial and satellite image interpretation activities. Carefully
crafting a GAN and applying it to a high-quality dataset can result in nontrivial feature enrichment.
In this study, we have designed and tested an unsupervised procedure capable of engineering new
features by shifting real orthophotos into the GAN’s underlying latent space. Latent vectors are a
low-dimensional representation of the orthophoto patches that hold information about the strength,
occurrence, and interaction between spatial features discovered during the network training. Latent
vectors were combined with geographical coordinates to bind them to their original location in the
orthophoto. In consequence, it was possible to describe the whole research area as a set of latent
vectors and perform further spatial analysis not on RGB images but on their lower-dimensional
representation. To accomplish this goal, a modified version of the big bidirectional generative
adversarial network (BigBiGAN) has been trained on a fine-tailored orthophoto imagery dataset
covering the area of the Pilica River region in Poland. Trained models, precisely the generator and
encoder, have been utilized during the processes of model quality assurance and feature engineering,
respectively. Quality assurance was performed by measuring model reconstruction capabilities
and by manually verifying artificial images produced by the generator. The feature engineering
use case, on the other hand, has been presented in a real research scenario that involved splitting
the orthophoto into a set of patches, encoding the patch set into the GAN latent space, grouping
similar patches latent codes by utilizing hierarchical clustering, and producing a segmentation map
of the orthophoto.

Keywords: machine learning; generative adversarial networks; feature engineering; orthophoto;
unsupervised segmentation

1. Introduction

There is no doubt that aerial imagery is a source of valuable information about
geographical space. The rapid development of remote sensing technology supported by
a significant improvement in access to remote sensing imagery [1] led to an increased
interest in the potential use of the collected material among academia, government, and
private sector representatives in areas such as urban planning, agriculture, transport,
etc. Substantial quantities of image data have become available in recent years thanks to
opening public access to images acquired by satellites such as Landsat 8 [2], Sentinel-2
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A/B [3], and Pléiades [4]. Furthermore, due to the epidemiological situation in Poland, the
government decided to open access to national orthophoto resources [5]. Access to high-
quality and properly curated image repositories undoubtedly promotes the development
of new ideas and contributes to the emergence of various methods and techniques for
analyzing collected data.

The use of aerial and satellite images in the basic task of remote sensing that deals with
land cover and land use classification is indisputable. At an early stage of remote sensing
development, the possibility of distinguishing certain spatial units by interpreting the
spectral, textural, and structural features of the image was indicated. Olędzki postulated
extracting homogenous fragments of satellite images called photomorphic units. These
units were similar in terms of structure and texture and originated from natural processes
and man-made transformations of the environment [6,7]. Descriptive definitions of image
features were soon replaced by mathematical formulas [8]. Further development has led to
the introduction of object classification procedures, in which, in addition to the brightness
parameters of the image pixels, their neighborhood and the shape and size of the distin-
guished objects were taken into account [9]. Object-oriented analysis is based on databases
and fuzzy logic. Probably the most popular implementation of this paradigm in remote
sensing applications is in the one originally developed in eCognition [10]. These techniques
have been successfully applied to research on landscape structure and forestry [11]. Re-
ferring to division units used in physico-geographic regionalization [12,13], Corine Land
Cover [14,15], or for the purposes of ecological research [16,17], an additional meaning and
hierarchical structure [18,19] can be also given to units distinguished from the landscape.
At the same time, it is important to properly take care of the appropriate adjustments of
the scale of the study and data relevant for the analyzed problem, so as not to overlook im-
portant features of the area that may affect the reliability of the analysis, i.e., to mitigate the
issues connected with spatial object scaling and the scale problem [20]. What is important
is that the separation of landscape units cannot be based only on image data [21]. It is also
necessary to take into account data on lithology, morphogenesis, terrain, geodiversity [22],
water, and vegetation. The latter is interesting due to the fact that vegetation is represented
in remote sensing imagery to the greatest extent both in terms of properties and structure.
Therefore, it has great potential for being utilized in landscape quantification [23]. It should
be mentioned that the process of identifying landscape units is also affected by human ac-
tivity and created by the cultural landscape. Another major achievement in remote sensing
image classification is the introduction of algorithms based on neural networks [24].

The influence of machine learning and deep learning on contemporary remote sensing
techniques and their support in geographical space analysis is undeniable [25]. There
are multiple fascinating applications of machine learning (ML) and deep learning (DL)
in the remote sensing domain like land use classification [26], forest area semantic seg-
mentation [27], species detection [28], recognition of patches of alpine vegetation [29,30],
classification of urban areas [31], roads detection [32], etc.

What a significant part of these studies have in common is the focus on utilizing
convolutional neural network (CNN) architectures capable of solving problems that can
be brought down to traditional computer vision (CV) tasks like semantic segmentation,
instance segmentation, or classification. This is directly associated with the underlying
mechanism that enables the network to encode complex image features. CNN’s convo-
lutional filters are gradually trained to gain the ability to detect the presence of specific
patterns. Frequently, the training routine is performed in a supervised manner. The model
is presented with target data and uses it to learn the solution. Supervised learning is
capable of achieving extraordinary results but at the same time relies on access to manually
labeled data. Another incredibly interesting approach is to train the neural network without
any pre-existing labels to let it discover the patterns on its own. Although unsupervised
learning algorithms like clustering are well-known among remote sensing researchers,
utilizing convolutional neural networks is still to gain trust. The way of training a neural
network can be even more intriguing when you exchange human supervision with machine
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supervision, and let multiple neural networks control their learning progress and work
like adversaries.

Generative adversarial networks (GANs) are constructed from at least one discrimina-
tor and one generator network. The main goal of these two networks is to compete with
each other in the form of a two-player minimax game [33]. The generator tries to deceive
the discriminator by producing artificial samples, and the discriminator assesses whether it
is dealing with real or generator-originating samples. The generator network is producing
samples from a specified data distribution by transforming vectors of noise [34]. This
technique was successfully applied in multiple remote sensing activities from upsampling
satellite imagery [35], deblurring [36] to artificial sample generation [37]. GANs’ artificial
data creation capabilities are not the only aspect that makes them interesting for remote
sensing. When exploring the theory behind GANs, one should observe that, to perform
its work, the generator retains all the information needed to produce a complex sample
using only a much simpler representation called the latent code [33]. In terms of spatial
analysis, this means that the network is able to produce a realistic image of an area using
only a handful of configuration parameters as input. In the classic approach to GANs, this
image recipe is reserved only for artificially generated samples. It was the introduction of
bidirectional GANs and adversarial feature learning [38] that allowed to extract the latent
code from ground truth (real) samples. The novelty of this approach when applied to aerial
imagery is that it allows performing advanced spatial analysis using lower-dimensional
representations of the orthophoto computed by a state-of-the-art neural network rather
than utilizing raw image data. This method resembles algorithms like principal component
analysis (PCA) but, instead of treating the image on the pixel level, it operates on the
spatial features level and, therefore, offers a richer analysis context. The projection, a latent
vector, serves as a lightweight representation of the image and holds information about
the strength, occurrence, and interaction between spatial features discovered during the
network training. This interesting capability opens up new possibilities for geographical
space interpretation such as

• extracting features to fit in a variety of machine learning and spatial analysis algo-
rithms like geographically weighted regression, support vector machines, etc.;

• minimizing resource consumption when processing large areas;
• discovering new features of analyzed areas by carefully exploring the network la-

tent space.

The principal goal of our study is to evaluate the potential of bidirectional generative
adversarial networks in remote sensing feature engineering activities and unsupervised
segmentation. Therefore, the following hypotheses have been defined:

1. The image reconstruction process is strong enough to produce artificial images that
closely resemble the original;

2. Similar orthophoto patches can produce latent space codes that are close to each other
in the network latent space, therefore, preserving the similarity after encoding;

3. Latent codes enhanced by geographical coordinates can serve as artificial features
used during geographical space interpretation by classical algorithms such as agglom-
erative clustering.

2. Materials and Methods

Figure 1 presents an overview of the proposed procedure composed of the following
steps: preparing an orthophoto patches dataset, training the big bidirectional generative
adversarial network (BigBiGAN), utilizing the network encoding module to convert or-
thophoto patches to their latent codes, enriching the data with geographical coordinates,
and performing geospatial clustering on enriched latent codes.
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Figure 1. Investigation overview.

2.1. Research Area

To be able to produce precise results, generative models need to be trained on high-
quality datasets. The dataset needs to be large enough to cover the variety of spatial
features that the encoder will be able to utilize when interpreting the input image. The
authors decided to utilize RGB orthophotos of the Pilica River and Sulejowski Reservoir
regions in Poland. The area from which the samples have been obtained includes the Plica
River valley between Maluszyn and Tomaszów Mazowiecki together with adjacent areas
(see Figure 2).

According to the physico-geographical regionalization of Poland [13], the southern
and eastern parts of the area are located in the province of Polish Uplands, the macrore-
gion of the Przedbórz Upland, the mesoregions of Włoszczowa Basin, Radomsko Hills,
Przedbórz-Małogoszcz Range, and Opoczno Hills. The northwestern part is located in the
mesoregions of the Piotrków Plain and the Białobrzegi Valley, which are part of the South
Mazovian Hills macroregion in the Central European Lowland Province. The consequence
of the location in the border zone of the Polish Uplands and the Central European Low-
land is the interpenetration of features characteristic of both provinces and the relative
diversification of the natural environment of the area.

According to the tectonic regionalization [39], a fragment of the area located south
of Przedbórz includes the Szczecin–Miechów Synclinorium, constructed mainly from
Cretaceous rock formations. The rest of the area belongs to the Mid-Polish Anticlinorium,
dominated by Jurassic carbonate rocks.

The axis of the selected area is the Pilica River valley. The chosen section of the valley
is in a natural condition. The Pilica River flows in an unregulated, sinuous to a meandering
channel that is not embanked along its entire length from Maluszyn to the vicinity of
Sulejów. There, it reaches the Smardzewice dam waters of the Sulejowski Reservoir. The
valley floor descends from 211 m above sea level in the south to 154 m above sea level in
the north, and the stream gradient equals 0.51%. The width of the valley varies from about
300 m in the vicinity of Sulejów and Przedbórz to over 3 km near Łęg Ręczyński. It reaches
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its greatest width in places of well-formed levels of over-flood terraces occurring on both
sides of the floodplain.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 22 
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Figure 2. Research area, source: own elaboration based on physico-geographical regionalization of
Poland [13] and Head Office of Geodesy and Cartography data [40]. Mesoregions codes are consistent
with those introduced in the referenced paper and therefore enable precise localization of the research
area within Polish mesoregions.

The valley cuts down the adjacent plain and undulating moraine uplands to about
20–25 m. These landforms were formed in the Quaternary, mainly during the Pleistocene
glaciations of the Middle Polish Complex. Within the uplands on both sides of the Pilica
River, the thickness of Quaternary sediments decreases from the north to the south. The
surface area of Mesozoic outcrops increases, which is a result of the weakening of the
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landforming capacity of the ice sheets as they entered the uplands. Absolute heights
of culminations, in the form of isolated hills built of Mesozoic Jurassic and Cretaceous
rocks within the Radomsko and Opoczno Hills, are also increasing, e.g., Diabla Góra
272 m, Czartoria Range 267 m, Bąkowa Góra 282 m, the form of ridges in the Przedbórz–
Małogoszcz Range exceeding 300 m above sea level, or Bukowa Góra 336 m.

The varied topography and the near-surface geological structures, in addition to the
humidity conditions, shape the mosaic of land cover types. The area is poorly urbanized.
The ground moraine plateaus are dominated by arable land, fluvioglacial plains, and
other sandy areas largely occupied by forests and abandoned arable lands. In the valley,
the over-flood terraces are characterized by complex systems of arable land, fallow land,
forests, and meadows. The floodplain is dominated by meadows and pastures, in many
places overgrown with shrubs and trees after their agricultural use ceased [41].

2.2. Dataset

The Pilica River region dataset covers the area of 691.86 km2 and was generated using
138 orthophoto sheets that intersect with a 4 km buffer around the Pilica River from Sulejów
to Maluszyn and Sulejowski Reservoir in Łódź Voivodeship in Poland. All orthophotos
were acquired using GEOPORTAL2 [42] and possess three channels—R-red, G-green, and
B-blue with 25 cm pixel ground sample distance (see Figure 3).
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Figure 3. Examples of the Pilica River region dataset samples (512 px × 512 px patches). From the
upper left corner: forest and a barely visible forest path outline, farmlands cut by a sandy road
planted with trees, forest with an adjacent land abandonment, forest, farmlands, river valley, forest
and an overgrown meadow, forest with clearly outlined shadow and a dirt road, farmlands, water
reservoir, forest cut by a road, recently plowed farmland with balks, and a young forest.

During the preprocessing phase each image was split into 128 px × 128 px, 256 px
× 256 px, 512 px × 512 px, and 1024 px × 1024 px patches. This step was crucial for
electing the optimal image size and resizing approach to satisfy the requirements of the
chosen neural network architecture and its internal complexity. The choice of image size
directly influences hardware requirements, the ability of the neural network to learn image
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features needed during the assessment of the reconstruction process, and, important from
a GAN perspective, overall dataset size. It was highly important to utilize the patches large
enough to be described by complete and interpretable spatial features. Image size also
affects the size of the input and output tensors and the handful of technical parameters
that a processing unit can handle. The authors decided that, during the research, a single
GPU (Nvidia Titan RTX in US) and CPU (AMD Threadripper 1950 in US) will be used, and
all computations have to fit their representative capacity. This is due to ensuring that the
results can be reproduced without using a multi-GPU cluster. In consequence, the authors
decided to utilize:

• A series of 256 px × 256 px patches for encoder input, which were resized from 512 px
× 512 px patches using bilinear interpolation. Although 256 px × 256 px is either the
network nor hardware limit, it gives the opportunity to choose a larger batch, which
significantly affects BigBiGAN performance. Furthermore, 512 px × 512 px (128 m ×
128 m) patch is richer in spatial information;

• A series of 128 px × 128 px patches for image discriminator input, explicitly defined
by BigBiGAN architecture for 256 px × 256 px encoder input;

• A series of 128 px × 128 px patches for generator output, which were the minimal
interpretable patch size.

Geographical references of each patch and source image metadata have been preserved
to enable reprojecting the results back to their original location. Patches acquired from
137 images were divided, in accordance with the established practice of machine learning,
into two subsets of 512 px × 512 px images in the following proportions 0.95 and 0.05,
forming a training set (39826 patches) and validation set (2096 patches). Remaining images
were also processed and formed two test sets—one containing 1224 (256 px × 256 px)
patches and another containing 306 (512 px × 512 px) patches. The authors introduced
an additional test set of 256 px × 256 px patches that were smaller than the defined
training size to verify whether the solution is capable of handling input material potentially
containing less spatial information than it was trained on.

Afterward, a data augmentation procedure was defined to increase the diversity
of managed datasets by applying specified image transformations in a random manner.
Augmentation of the dataset is important from the point of view of GAN because the
network has a higher chance to adapt to different conditions such as lighting or spatial
feature shape changes, and at the same time, less data is needed for the network to converge.
The authors decided to utilize basic post-processing computer vision techniques, such as
adding or subtracting a random value to all pixels in an image, blurring the image using
gaussian kernels, applying random four-point perspective transformations, rotating with
clipping, or flipping the image. What is important, each transformation was applied only
during the training phase and the decision of whether to apply it was random. Finally, a
TensorFlow data processing pipeline(US; Mountain View; California) was implemented to
ensure that reading and augmenting the data would efficiently utilize all computational
resources. The main goal was to support the GPU with constant data flow orchestrated by
the CPU and enable shuffling across batches, which turned out to be crucial when working
with complex network architectures and utilizing a relatively small batch size, i.e., below
128 samples.

2.3. Generative Adversarial Network

The authors decided to use the bidirectional generative neural network (BiGAN) [38]
architecture as a starting point and gradually updated its elements to end up with the
final solution closely resembling BigBiGAN. An interesting, proven property of these
architectures is the ability to perform the inverse mapping from input data to the latent
representation. This makes BiGAN and BigBiGAN great candidates to address the research
problem, i.e., finding a transformation capable of mapping a multichannel image to a fixed
size vector representation. BigBiGAN can be used to shift a real image to the latent space
using the encoder network.
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The resulting latent space code can be then utilized as generator input to reconstruct
an image similar to the original encoder input. Achieving the same input and output is
hard or even impossible due to the fact that the pixel-wise reconstruction quality is not
even a task for bidirectional GANs, and therefore, there is no loss function assigned to
assess it. One can think of reconstruction as a process of enabling a mechanism of lossy
image compression and decompression that operates—not on pixel level—but feature
level. The similarity measure can be chosen arbitrarily but has to have sufficient power to
reliably score the resemblance of the input and output images passed through the encoder
and generator. A high-quality encoder is powerful enough to store information regarding
crucial spatial features of the input image, thus making it a great candidate for the main
module in an automatic feature engineering mechanism to automatically generate large
numbers of candidate properties and selecting the best by their information gain [43].

To avoid recreating an existing solution, the authors decided to focus on reusing the
BigBiGAN design and adjusting it to processing orthophoto images (see Figure 4). BigBi-
GAN consists of five neural networks—a generator and an encoder, which are accompanied
by discriminators that assess their performance in producing respectively artificial images
and latent codes. Results from both intermediate discriminators are then combined by the
main discriminator. In the research, a modification of BigBiGAN was utilized to tackle the
problem of encoding orthophoto patches to the network underlying latent space. Although
the generator and main discriminator architectures have been preserved, the encoder and
intermediate discriminators went through a minor modification. As suggested in a study
on the BigBiGAN [44], the RevNet model was simplified to reduce the number of parame-
ters needed to train the encoder. Intermediate discriminators contained fewer multilayer
perceptron modules (MLP), which were composed of smaller numbers of neurons. In
consequence, this enabled the use of slightly bigger batches and, therefore, yielded better
results at the cost of a training time increase. The final architecture was implemented in
TensorFlow 2 and Keras. Figure 4 presents the final model training sequence blueprint.

2.4. Hierarchical Clustering

Latent space code is a 120-dimensional vector of real numbers produced by applying
a GAN encoder on an orthophoto patch. Such code contains information regarding spatial
features present in the scope of the encoded patch. Each part of the code controls the
strength and occurrence of one or more spatial features discovered during the neural
network training. One of the important features of the latent space is that codes that are
closer to each other in terms of the Euclidean distance (L2 norm) are more similar in terms
of the represented features, i.e., two forest area patches will be closer in the latent space
than a forest area and farmland patches [45].

Furthermore, each patch holds information regarding its georeferences. To simplify
further analyses, georeferences were expressed as the location of the patch center. Patch
center geographical coordinates were preserved during the computation and combined
with corresponding latent codes. This opened the possibility to describe a larger area, com-
posed of multiple patches, in the form of a 120-dimensional point cloud where each point
holds the information regarding its original location. The combination of georeferences
and latent space code is called a georeferenced latent space for the purpose of this research
(see Figure 5).

The similarity between patches, precisely between their encodings, and informa-
tion regarding geographical location can serve as input for methods and techniques of
geospatial clustering. During their research, the authors focused on utilizing hierarchical
clustering to discover a predefined number of clusters in a patch dataset describing a single
test orthophoto. Hierarchical clustering is a general family of clustering algorithms that
build nested clusters by successively merging or splitting them [46]. The metric used for
the merge strategy is determined by the linkage strategy. For the purpose of clustering
the georeferenced latent space, Ward’s linkage method [47] was used. Ward’s method
minimizes the sum of squared differences within all clusters. It is a variance-minimizing
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approach and, in this sense, is similar to the k-means objective function but tackled with an
agglomerative hierarchical approach. The connectivity matrix has been calculated using
the k-nearest neighbors algorithm (k-NN).Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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3. Results
3.1. Model Training

Multiple model training session revealed that tackling the objective of training an
orthophoto patch encoder is inseparably related to preparing generator and discriminator
neural networks that are complex enough to learn all the features present in the input
orthophoto. The networks have to be able to produce high-quality artificial images and
determine whether the image is artificially generated or not, respectively. This directly
influences the following:

• The overall size of the neural network, which is crucial due to GPU memory limitations
and affects training duration;

• Maximum patch size that can be used as input during training and inference phases
and is related to the level of detail offered in the processed dataset;

• Batch size, which has a significant influence on the stability and quality of generative
adversarial models [44].

Initially chosen BiGAN architecture utilizes many concepts from previously designed
networks such as deep convolutional GAN (DCGAN) [48] that, due to their simplicity,
are not suitable for processing complex or large images. Therefore, their usefulness in the
analysis of aerial imagery is limited. Although BiGAN offered all of the required earlier
features, it was not capable of processing an orthophoto patch of size exceeding 32 pixels in
both dimensions. This was a huge limitation due to the fact that, with a given 25 cm pixel
ground sample distance, this method covered roughly the area of 64 m2. In consequence,
the processed patch did not carry enough details to allow a reliable assessment of the
similarity between real and artificial images. Attempts to increase the maximum processed
input size led to swapping default BiGAN generator and discriminator models with other
network types based on deep residual blocks [49] and inception modules [50]. The overall
architecture of the generator and discriminator pair resembled BigGAN [51].
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After multiple experiments, the authors confirmed that, despite the ability to gen-
erate images up to 512 px × 512 px, the network was not capable of learning a reliable
bidirectional mapping between the image and the latent space. This was due to the fact
that the encoder architecture was lacking in comparison with its powerful counterparts.
This problem has been addressed and mitigated in the paper describing large adversarial
features learning and the big bidirectional generative adversarial network (BigBiGAN) [44]
by introducing intermediate discriminators and proposing a stronger encoder model (Sup-
plementary Materials).

3.2. Reconstruction

BigBiGAN neural network was trained for 200,000 steps with a batch containing
32 randomly picked patches from the training set. The trained model was saved during
each reconstruction period that occurred every 1000 steps. During this period, patches from
the validation set were fed, in inference time, to the encoder and generator to measure their
power in creating artificial samples and close to the inversible encoding in terms of spatial
features. Three types of metrics were calculated for each saved model to evaluate the
reconstruction quality—pixel-wise mean absolute error (MAE) of image values normalized
between –1 and 1, Fréchet inception distance (FID) [52] on a pre-trained InceptionV3 model,
and by performing perceptual evaluation similar to that presented in the Human Eye
Perceptual Evaluation (HYPE) paper [53]. MAE above 0.5 was used to discard low-quality
models that were not able to effectively reconstruct input images in the early stages of the
training. Then, FID values of all preserved models were compared and 20 with the highest
score were selected. The average FID score was equal to 86.36 ± 7.28 in contrast to the
state-of-the-art BigBiGAN baseline FID, which was equal to 31.19 ± 0.37.

The final model was selected by comparing the results of human evaluation of 21 arbi-
trarily chosen samples from the validation dataset with their reconstructed counterparts
created by the network for each model. The human reader had an objective to assess
whether each of the 42 images is real or artificial. The last verification phase resulted in
selecting the model from the 170th reconstruction period, which yielded the least accuracy
during human perceptual evaluation (accuracy: 59.5%, f-score: 0.6663). Samples and their
reconstruction results are presented in Figure 6.

The overall quality of the reconstruction was assessed as sufficient during both quanti-
tative and qualitative verification. For the selected model evaluated on non-scaled images
(pixel values between 0 and 255), MAE was 27.213, structural similarity index (SSIM) [54]
was 0.942, and peak signal-to-noise ratio (PSNR) [55] was equal to 42.731. From the analysis
of human reader’ misclassifications, it was clear that the chosen model is exceptionally
good in reproducing areas like forests, land abandonment, and farmlands. The characteris-
tic spatial features are preserved after encoding. Shadows cast by trees are consistent and
natural. In the majority of cases, artificial and real images are indistinguishable. Mediocre
results were achieved for urbanized areas. Reconstructed roads keep their linear character
and surface type information. Although the model is capable of generating buildings, due
to the high variety of housing types present in the research area and possible undersam-
pling, the results are far from realistic. It is interesting that the link between residential
areas and roads was maintained in multiple samples. Unfortunately, the generator is
not capable of serving samples that contain water areas such as rivers or lakes. From all
analyzed images from the training and validation set only a few presented water, which
indicates weak encoding capabilities. Furthermore, all were significantly disrupted. The
authors confirmed that this is related to undersampling and the insufficient information
present in the RGB orthophoto. To tackle this issue, access to rich, multispectral imagery or
digital terrain model (DTM) is required, or the model itself needs to be enriched to utilize
additional class embeddings that could be derived from existing thematic maps or projects
like Geoportal TBD [56].
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3.3. Feature Engineering

BigBiGAN encoder possesses an interesting capability that enables it to shift the input
image into the latent space constructed during network training. The encoding, a 120-
dimensional vector, should be considered simultaneously a compressed version of the
input orthophoto and a recipe for generating a similar artificial image in terms of spatial
features. The latter phenomenon is called representation learning. What is important, due
to the nature of latent space, similar data points, i.e., those that were encoded from similar
images, are closer to each other. This opens an interesting possibility to understand the
structural similarity between images by performing the analysis not on the raw image
input but only using latent codes.
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In the research, the authors utilized the trained encoder to perform inference on a
set of 256 px × 256 px test patches (see Figure 7). The 1224 test patches were converted
into their latent space codes and represented as a geopandas [57] data frame containing
1224 rows, 120 encoding value columns, identifier, and a geometry column. Afterward,
distance weights between patch centroids were calculated utilizing the k-NN algorithm [58].
The data frame and distance weights served as input parameters to the agglomerative
clustering algorithm. Figure 8 represents the results for a specified number of clusters.
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Simultaneously, ground truth segmentation masks were prepared by manually divid-
ing the test image into a fixed number of regions. For the number of clusters between 2 and
10, there was an average of 17.97% ± 8.7% patch-wise difference between ground truth
and the unsupervised approach results. The more clusters were predicted the difference
was larger. Figure 9 represents the best result, which was acquired for six clusters where
the unsupervised approach misclassified 6% of patches.
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4. Discussion

Utilizing a neural network as a key element of a feature engineering pipeline is a
promising idea. The concept of learning the internal representation of data is not new
and was extensively studied after the introduction of autoencoders (AE) [59]. Unlike
regular autoencoders, bidirectional GANs do not make assumptions about the structure or
distribution of the data making them agnostic to the domain of the data [38]. This makes
them perfectly suited for use beyond working with RGB images and opens the opportunity
to apply them in remote sensing where processing hyperspectral imagery is a standard
use case.

One of the main challenges when utilizing a GAN is determining how big a research
dataset is needed to feed the network to obtain the required result. The performance of
the generator and, therefore, the overall quality of the reconstruction process and network
encoding capabilities are tightly coupled with the input data. To be able to properly encode
an image, BigBiGAN needs to learn different types of spatial features and discover how
they interact with each other. In the early stages of the research, we identified that the
size of the dataset had a positive influence on reconstruction quality. We initially worked
with around 10% of the final dataset in order to rapidly prototype the solution. The results
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were not satisfying, i.e., we were not able to produce artificial samples that resembled
ground truth data. This prompted us to gradually increase the dataset’s size. Authors are
far from estimating the correct size of the dataset that could yield the best possible result
for a specific research area. We are sure that addressing this issue will be important in the
future development of this method.

The method of measuring the training progression of generative models still remains
a problematic issue. The standard approach of monitoring the loss value during training
and validation is not applicable due to the fact that all GAN components interact with each
other, and the loss value is calculated against a specific point in time during the training
process and, therefore, is ephemeral and incomparable with previous epochs. There are
multiple ways of controlling how the training should progress, e.g., by using Wasserstein
loss [60], applying gradient penalty [61], or spectral normalization [62]. Nevertheless, it is
difficult to make a clear statement of what loss value identifies a perfectly trained network.
Furthermore, applying GAN to tackle the problems within the remote sensing domain
is still a novelty. It is difficult to find references in the scientific literature or open-source
projects that could be helpful in determining the proper course of model training.

Although nontrivial, measuring the quality of bidirectional GAN image reconstruction
capabilities seems to be a valid approach to the task of model quality assurance. An encoder,
by design, always yields a result. It is just as true for a state-of-the-art model and its poorly
trained counterparts. Encoder output cannot be directly interpreted, which makes it hard
to evaluate its quality. The generator, on the other hand, produces a visible result that can
be measured. According to the assumptions of bidirectional models, the encoding and
decoding process should to some extent be reversible [38]. Hence, the artificially produced
image should resemble, in terms of features, its reconstruction origin, i.e., the real image
in which latent code was used to create an artificial sample. In other words, checking
generator results operating on strictly defined latent codes determines the quality of the
entire GAN.

A naive method of verification of the degree to which an orthophoto generated image
looks realistic would be to directly compare it to its reconstruction origin. Pixel-wise mean
absolute error (MAE) or a similar metric can give the researchers insight, to a limited
extent, regarding the quality of produced samples. Unfortunately, this technique only
allows getting rid of obvious errors such as a significant mistake in the overall color of
the land cover. This is due to MAE not promoting textural and structural correctness,
which may lead to poor diagnostic quality in some conditions [63]. One can approach a
similar problem when using PNSR. To some extent, SSIM addresses the issue of measuring
absolute errors by analyzing structural information. On the other hand, this method is
not taking into account the location of spatial features. BigBiGAN reconstruction process
only preserves features and their interaction not their specific placement in the analyzed
image. Inception score (IS) and Fréchet inception distance (FID) address this problem by
measuring the quality of the artificial sample by scoring the GAN capability to produce
realistic features [34]. The main drawback of the IS is that it can be misinterpreted in case
of mode collapse [64], i.e., the generator is able to produce only a single sample despite
the latent code used as input. FID is much stronger in terms of assessing the quality of the
generator. What is important, both metrics utilize a pre-trained Inception classifier [50]
to capture relevant image features and therefore are dependent on its quality. There are
multiple pre-trained models of Inception available. Many of them were created using
large datasets such as ImageNet [65]. The authors are not aware of whether a similar
dataset for aerial imagery exists. The use of FID is advisable and, as confirmed during
the research, it is valuable in proving the capabilities of the generator, but it needs an
Inception network trained on a dedicated aerial imagery dataset to be reliable. This way,
the score calculated would depend on real spatial features existing in the geographical
space. What is more, this approach is only applicable to RGB images. To perform FID
calculation for hyperspectral images, a fine-tailored classifier should be trained. Not
surprisingly, one of the most effective ways of verifying the quality of artificial images is
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through human judgment. This takes on even greater importance when approaching the
research subject requires specialized knowledge and skills, as exemplified by the analysis
of aerial or satellite imagery. Unfortunately, qualitative verification is time-consuming and
has to be supported by a quantitative method, which can aid in preselecting potentially
good samples.

BigBiGAN accompanied by hierarchical clustering can be effectively used as a building
block of an unsupervised orthophoto segmentation pipeline. The results of performing
this procedure on a test orthophoto (see Figure 9) proves that the solution is powerful
enough to divide the area into a meaningful predefined number of regions. Particularly
noteworthy is the precise separation of forests, arable lands, and build-up areas. There is
also room for improvement. Currently, the network is not capable of segmenting out tree
felling areas located in the northwest and the river channel, which would be very beneficial
from the point of view of landscape analysis. Furthermore, it also incorrectly combined
pastures and arable lands. The main drawback of this method is the need to predefine
the number of clusters. What is more, when increasing the number of clusters, artifacts
started to occur, and the algorithm predicted small areas that were not identified as distinct
regions in the ground truth image (Figure 8, n clusters = 7–10). Further analysis of latent
codes and features that they represent is needed to understand the origin of this issue.

BigBiGAN clustering procedure results resemble, to some extent, the segmentation
of the area performed during the Corine Land Cover project in 2018 (Figure 10). It is
interesting that the proposed GAN procedure shows a better fit with the boundaries
of individual areas than CLC. Nevertheless, CLC has a great advantage over the result
generated using GAN, i.e., each tile possesses information about the land cover types that it
represents. CLC land cover codes are consistent across all areas involved in the study, which
makes this dataset very useful in terms of even sophisticated analysis. This does not mean,
however, that the GAN cannot be rearmed to carry information about the land cover types.
In the initial BigGAN paper, the authors proposed a solution to enrich each part of the
neural network with a mechanism that would enable working with class embeddings [44].
The authors did not use the aforementioned solution to maintain the unsupervised nature
of the procedure. An interesting solution would be to compare the latent codes of patches
located within different regions to check how similar they are and use this information to
join similar, distant regions. To achieve this, a more advanced dataset is needed to cover a
larger area and prevent undersampling of occurring less frequently but spatially significant
features. Comparison with CLC is also interesting due to the differences in the creation
of both sets. CLC is prepared using a semi-supervised procedure that involves multiple
different information sources. In contrast, the GAN approach utilizes only orthophotos and
is fully unsupervised. Another interesting approach would be to utilize Corine Land Cover
(CLC) as the source of model labels and retrain the network to also possess the notion
of land cover types. This way, we would gain an interesting solution that would offer a
way of producing CLC-like annotations in different precision levels and using different
data sources.
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5. Conclusions

Generative adversarial networks are a powerful tool that definitely found their place
in both geographical information systems (GIS) and machine learning toolboxes. In the
case of remote sensing imagery processing, they provide a data augmentation mechanism
of creating decent quality artificial data samples, enhancing, or even fixing existing images,
and also can actively participate in feature extraction. The latter gives the researchers access
to new information encoded in the latent space. During the research, authors confirmed
that the bidirectional generative adversarial network (BigBiGAN) encoder module can be
successfully used to compress RGB orthophoto patches to lower-dimensional latent vectors.

The encoder performance was assessed indirectly by evaluating the network recon-
struction capabilities. Pixel-wise comparison between ground truth and reconstruction
output yielded the following results: mean absolute error (MAE) 27.213, structural simi-
larity index (SSIM) 0.942, peak signal-to-noise ratio (PSNR) 42.731, and Fréchet inception
distance (FID) 86.36 ± 7.28. Furthermore, the encoder was tested by utilizing output
latent vectors to perform geospatial clustering of a chosen area from the Pilica River region
(94% patch-wise accuracy against manually prepared segmentation mask). The case study
proved that orthophoto latent vectors, combined with georeferences, can be used during
spatial analysis, e.g., in region delimitation or by producing reliable segmentation masks.
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The main advantage of the proposed procedure is that the whole training process is
unsupervised. The utilized neural network is capable of discovering even complex spatial
features and code them in the network underlying latent space. In addition, handling
relatively lightweight latent vectors during analysis rather than raw orthophoto proved
to significantly facilitate the study. During processing and analysis, there was no need to
possess a real image (37MB) but only a recipe to compute in on the fly (3MB). The authors
think this feature has great potential in the commercial application of the procedure
to lower disk space and network transfer requirements when processing large remote
sensing datasets.

On the other hand, the presented method is substantially difficult to implement,
configure, and train; it is prone to errors and is demanding in terms of computation costs. To
achieve a decent result, one must be ready for a long run of trials and errors mainly related
to tuning the model and estimating the required dataset size. Regarding latent vectors,
authors have identified a major flaw related to the lack of possibility to precisely describe
the meaning of each dimension. The main disadvantage of the proposed procedure is that
the majority of steps during the evaluation of the model involves human engagement.

The authors are certain that utilizing BigBiGAN on a more robust and rich dataset, like
multispectral imagery, backed by digital terrain model (DTM) and at the same time working
on reducing the internal complexity of the network to enable processing larger patches
will result in a handful of valuable discoveries. The main focus of the research team in the
future will be the verification of the proposed method on a greater scale. Future work will
involve performing geospatial clustering of latent codes acquired for all Polish geographic
regions and presenting the comparison between classically distinguished regions and their
automatically generated counterparts.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/2/306/s1. Encoder model in h5 format with sample data is available on github.com
(maciej-adamiak/bigbigan-feature-engineering).
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