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Abstract: Soil organic carbon (SOC) is a variable of vital environmental significance in terms of
soil quality and function, global food security, and climate change mitigation. Estimation of its
content and prediction accuracy on a broader scale remain crucial. Although, spectroscopy under
proximal sensing remains one of the best approaches to accurately predict SOC, however, spec-
troscopy limitation to estimate SOC on a larger spatial scale remains a concern. Therefore, for an
efficient quantification of SOC content, faster and less costly techniques are needed, recent studies
have suggested the use of remote sensing approaches. The primary aim of this research was to
evaluate and compare the capabilities of small Unmanned Aircraft Systems (UAS) for monitoring
and estimation of SOC with those obtained from spaceborne (Sentinel-2) and proximal soil sensing
(field spectroscopy measurements) on an agricultural field low in SOC content. Nine calculated
spectral indices were added to the remote sensing approaches (UAS and Sentinel-2) to enhance their
predictive accuracy. Modeling was carried out using various bands/wavelength (UAS (6), Sentinel-2
(9)) and the calculated spectral indices were used as independent variables to generate soil prediction
models using five-fold cross-validation built using random forest (RF) and support vector machine
regression (SVMR). The correlation regarding SOC and the selected indices and bands/wavelengths
was determined prior to the prediction. Our results revealed that the selected spectral indices slightly
influenced the output of UAS compared to Sentinel-2 dataset as the latter had only one index corre-
lated with SOC. For prediction, the models built on UAS data had a better accuracy with RF than the
two other data used. However, using SVMR, the field spectral prediction models achieved a better
overall result for the entire study (log(1/R), RPD = 1.40; R2

CV = 0.48; RPIQ = 1.65; RMSEPCV = 0.24),
followed by UAS and then Sentinel-2, respectively. This study has shown that UAS imagery can be
exploited efficiently using spectral indices.

Keywords: soil organic carbon; proximal soil sensing; remote sensing multispectral sensors; agricul-
tural soil; spectral indices

1. Introduction

Soil organic carbon (SOC) content is one of the leading indicators for soil state as-
sessment. Therefore, a thorough and timely observation of SOC content with effective
techniques is needed to better understand the function of soil within the carbon cycle
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universally [1,2]. However, numerous drawbacks, including complex and unpredictable
environmental conditions, and numerous soil-forming conditions, limit the efficiency and
performance of their estimation. Due to these unfavorable factors, the mapping of SOC
and its attributes requires time and money [2,3]. Therefore, there is a global surge toward
the need for fast and less costly techniques for efficient quantification of SOC content.

In response to these challenges, the emersion of proximal soil sensing (PSS) and remote
sensing (RS) approaches is described as a useful detection tool for evaluating and analyzing
several soil parameters including SOC [4–6]. For proximal sensing, a physical contact is
needed to obtain signal from the target using the spectrometer sensor (within 2m apart) [7].
Whereas, for remote sensing (RS), electromagnetic radiation is used to obtain, without
physical contact data or occurrence [8]. Spectroscopy (visible near-infrared (vis-NIR)) under
PSS is also classified as a useful tool for the accurate quantification, in laboratory [2,9,10],
and in the field [11–13] of SOC content with limited resources. Its approach for soil
assessment started in the years 1960 to 1980 [14] and intensified between 1990–2000s [15].
Research into vis-NIR spectroscopy approaches within soil science has also increased
rapidly in the last couple of decades [16,17]. For example, with infrared spectroscopy, a
sole spectrum can allow the identification of contrasting soil constituents concurrently [5].
Nevertheless, when using spectroscopy, one of the suggestions is that the accumulation
of an established soil component is linear to a mixture of absorption properties within
the spectral range, also the issue where organic and inorganic molecules can absorb at
wavelengths beyond 2000 nm cannot be ignored [18,19]. According to Mulder et al. [20],
qualitative and quantitative information on soil variables and soil classification can be
collected in a cost-effective approach using RS. For example, it is difficult to disregard
the short revisit duration of the Sentinel-2 imagery and the large quantity of the data set
generated that is available and can also be freely downloaded [21]. In addition, the spectral
composition of the soil can be calculated affordably and conveniently, thus providing a
trade-off between cost and precision [22]. Nevertheless, in terms of detailed large-scale
site monitoring, enhanced results classification, and data reduction, remote sensing has
an advantage over PSS [23]. For measurement, RS methods can be categorized into two
main types, namely spaceborne (e.g., use of satellites) and airborne (either aircraft or
drone). However, aerial surveillance, employing imagery collected by satellites, manned
aircraft and unmanned aerial vehicles (UAVs)(actual aircraft (Drone) itself), is one of the
most commonly used RS techniques [24]. Airborne imaging can provide a more precise
mapping of the variability found in agricultural fields. Even from a single flight mission,
the information produced can cover wide areas because the aircraft has adequate flight
duration [25]. Moreover, airborne sensors can also provide site segmentation data based on
soil heterogeneity, while expanding existing soil property datasets to support digital soil
mapping [20]. Spaceborne remotely sensed imagery, on the other hand, has an enormous
potential as an enabling instrument for generating soil profile maps, due to the relation that
can be created between the soil’s complex chemical bonds and electromagnetic radiation.
For example, with the introduction of the first satellites in the 1980s, optical satellite
(multispectral) imagery was widely utilized for a comprehensive SOC assessment [26].
However, the traditional airborne and satellite remote sensing frameworks where most
sensors (e.g., multispectral, hyperspectral, etc.,) are mounted, have not always satisfied the
researchers’ and environmental demands [27]. In case of environmental applications, some
of these platforms are prone to several issues like high cost and especially poor spatial
and temporal resolution. Satellite data can be very appealing because of its broad spatial
coverage including inaccessible areas that were historically too remote or too harmful
to reach while using traditional aerial photography [28,29]. Nevertheless, issues such as
low resolution and excessive noise while using Hyperion satellites [11] and the 16-day
Landsat-8 revisit period suggest that the available options for time series research and
bare soil observation may be minimal [30,31]. According to Crucil et al. [32], some of the
above-mentioned issues with spaceborne still remain unresolved even with the emersion of
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new satellites, especially Sentinel-2. Moreover, Sentinel-2 data may even have to undergo
several pre-processing steps which could affect its prediction capability of soil properties.

Although remote sensing imagery (e.g., hyperspectral images) offers detailed bare soil
spectral data, the effects posed by some RS factors, especially the soil water content and
dissolved organic material within the soil, cannot be ignored [33,34]. Consequently, one
or more appropriate spectral indices could be necessary to help limiting the effect posed
by the above listed factors on RS imagery [33,35,36]. For examples, Jin et al. [37], reported
improved results by using several indices to predict soil organic matter.

Over the past decade, the development of UAS, also known as unmanned aircraft
system, has made it possible to obtain valuable data that have been beneficial to determine
spatial variability within soil properties [27], especially SOC [38] that would have been
difficult to identify utilizing conventional frameworks for RS. UAS can be categorized
depending on the nature of its wings either as non-movable (non-mobile) or movable (mo-
bile), with the non-mobile wings typically having higher speed and greater duration, while
the mobile wings can offer greater maneuverability. UAS appear as versatile platforms
with the potential to augment RS survey collected from spaceborne or manned aircraft [27].
Although UAS cannot compete based on the spatial coverage with satellite imagery, they
offer unparalleled spatial and temporal resolutions unrivalled by satellite alternatives [39].
Because of its spatial-temporal advantage, the UAS-based approach can provide greater
return time by providing high performance rates for many flights throughout the day and
monitoring processes at a very high spatial and temporal resolution [40]. UAS technology
is now mainstream and cost-effective and is being utilized for a broad variety of environ-
mental applications, for example, estimating evapotranspiration, or assessing water stress
for sustainable agriculture and precision agriculture [41–45]. For monitoring/quantifying
of SOC in agricultural or arable lands, UAS borne imagery has received attention from
some researchers [32,38,46], but most of these studies were focused on fields with rather
high SOC concentration. This implies that a field low in SOC has not yet been explored.
Although UAS has numerous advantages, it is also prone to problems such as restricted
payload, short flight endurance, and difficulties in maintaining flight speed and stability
during heavy winds and turbulence [47]. However, in terms of new technological advance-
ment, most of the technical problems of the UAS could be solved by collaboration involving
environmental experts and UAS engineers [48].

Nevertheless, it is worth mentioning that the Association for Unmanned Vehicle
Systems International (AUVSI) has estimated that in the coming years, about 80% of UASs
will be used for agricultural activities [43]. UAS sales in Germany, for example, approached
400,000 units in 2017 and were projected to grow to over a million by the end of 2020.
Moreover, UAS sales doubled in the US in the same year, with an increase of 117 percent
compared to the previous year [49]. Finally, as reported by Kriehn [45], in 2019, there
were 900,000 registered UAS drones in the United States, with about 17 percent being used
for agriculture.

Clearly, the use of UAS is increasing rapidly, which calls for further studies to assess
and enhance its prediction capability for soil properties, especially SOC. Although there
have been some studies on both Sentinel-2 and UAS imagery for exploring SOC content,
the focus has mainly been on fields with high SOC content. This study aims to focus on a
field that is poor in SOC and, importantly, to verify the effect of spectral indices from UAS
data (which is rarely used by researchers), as remote sensing data are vulnerable to many
disturbing external environmental parameters. To the best of our knowledge, no studies
have evaluated the capability of UAS for the agriculture fields with a low amount of SOC
when coupled with spectral indices. Therefore, this study’s primary objective is to evaluate
and compare UAS monitoring capabilities and estimation of SOC with those obtained from
spaceborne (Sentinel-2) and proximal soil sensing (field spectroscopy measurements) on an
agricultural field low in SOC content as well as verifying the effect of soil and vegetation
indices. The spatial SOC distribution map will also be computed for the various sensors
used in reference to the laboratory SOC measured values.
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2. Materials and Methods
2.1. Study Area

The site used for this study is a 22 ha agricultural land situated at Nová Ves nad
Popelkou (50.310◦ N, 15.240◦ E), in the Liberec Region (Figure 1), in the Czech Republic.
The region has consistent mean windspeeds of 6 km/h, a humidity of 74% with an average
altitude of 185 m a.s.l. The region is predominantly agricultural and is dedicated to
winter and spring cereals and is dominated by dissected relief with side valleys and toe-
slopes. Local prevalent soils types are mainly Cambisols and Stagnosols on crystalline and
sedimentary rocks according to the World Reference Base for Soil Resources (IUSS Working
Group WRB, 2014).
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2.2. Soil Sampling and Field Spectral Measurement

A sampling grid method comprising 130 sampling points spread across the whole field
was used, as shown in Figure 1. Prior to the actual site survey, those sampling points (130)
were generated and identified in the field employing GeoXMM. (Trimble Inc., Sunnyvale,
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CA, USA) receiver with an accuracy of 1 m. The field spectra were measured instantly
in the field on 6 May 2019 using an ASD Field Spec III Pro FR spectroradiometer (ASD
Inc., Denver, CO, USA) across the 350–2500 nm wavelength range. The spectroradiometer
spectral resolution was 2 nm for the region of 350–1050 nm and 10 nm for the region of
1050–2500 nm. Measurements from four different positions around each of the 130 sam-
pling points were taken, and the average value was used as the field spectral dataset. The
spectroradiometer was calibrated before the first scan and after every six measurements,
using a white Spectralon TM (Lab-sphere, North Sutton, NH, USA) [50]. Soil samples were
also collected from each of those positions (depth 0–20 cm) while the field measurement
was underway. Composite samples (approximately 150 to 200 g of soil) were placed into
well-labelled bags and transported to the laboratory for further analysis. These samples
were then air-dried, gently crushed, and sieved (≤2 mm) and SOC was measured as total
oxidized carbon using wet oxidation approach [51]. This process utilized the dichromate
redox titration approach and was accomplished in two different sub-steps [52]. That is, the
samples were first oxidized with K2Cr2O7 and the solution was then potentiometrically
titrated with ferrous ammonium sulphate.

2.3. Remote Sensing Imagery

The remote sensing data used were the Sentinel-2 and UAS imagery at different
resolution. Table 1 provides an overview of their individual missions’ characteristics.

Table 1. Key radiometric features of multi-spectral sensors shown in this analysis.

Features of the Sensor Sentinel-2 Trinity F90 Fixed-Wing Drone
[53]

Mission Spaceborne UAS
Sensor type Push-broom MicaSense Altum dual sensor

Spectral bands 13 9

Used spectral bands 10 6
Spectral range 9 vis-NIR 9VNIR

3 SWIR

FWHM (nm) 20–200

SNR 129 (444) nm 32 (475) nm
(typical) 154 (497) nm 14 (531) nm

168 (560) nm 27 (560) nm
142 (664) nm 16 (650) nm
117(704) nm 14 (668) nm
89 (740) nm 10 (705) nm
10 (783) nm 12 (717) nm

174 (843) nm 57 (842) nm
72 (865) nm thermal infrared 8–14 um

114 (943) nm
50 (1377) nm

100 (1613) nm
100 (2200) nm

GSD 10/20/60 m Variable
(spatial resolution) (8.8 cm)

Positional accuracy 12 m 3 m
Acquisition date 10 June 2019 25 November 2019

UAS: unmanned aircraft system; vis-NIR: visible and near-infrared; FWHM: full width at half maximum; SNR:
signal-to-noise ratio (Wavelength mentioned); SWIR: short-wave infrared; GSD: ground sampling distance.

2.3.1. UAS Multispectral Imagery

Multispectral data were acquired using a Trinity F90 fixed-wing drone with a Mi-
caSense Altum dual sensor mounted onboard with two cameras (RGB + Multispectral).
The MicaSense Altum dual sensor captures images in six independent spectral bands
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(multispectral) with the last band being a thermal infrared sensor (Blue 475 nm (B4), Green
560 nm (B5), Red 668 nm (B6), Red edge 717 nm (B7), Near-infrared 840 nm (B8), and
Thermal 11 µm (B9)). The RGB sensor also captures images in three bands (red-green-
blue) (400–700 nm). This is a high-resolution digital camera that is separated from the
multispectral sensor. This implies that the total bands captured by the Trinity F90 were
nine. The location of the on-board Global Navigation Satellite System (GNSS) and Inertial
Navigation Unit has been saved in the metadata files using the Exchangeable Image File
Format (EXIF). The camera is equipped with a sun sensor that gathers information about
the light conditions and saves the radiant flux data produced in the EXIF format. The image
was acquired on 25 November 2019 at Nová Ves nad Popelkou in a clear sky condition.
The flight plan was prepared using a QBase 3D mobile app (mission planning software),
this served as the primary interface between the user and the UAS device. QBase 3D offers
real-time information, such as altitude, distance, battery life about the UAS, and mission
telemetry data that provide the operator with updated information about the flight at all
times. The flight height was 190 m and the spatial resolution was 8.8 cm, covering an
area of 31 ha. We also ensured that we had sufficient batteries for the total flight duration
over the entire study field. The images were captured automatically, and the calculated
position was consistent with 85% front and 75% side overlap. The images were accurately
oriented, 3D model was extracted, the digital elevation model (DEM) was calculated based
on the generated cloud point (during the flying period), and orthorectified images were
calculated and then exported as one mosaic in GeoTIFF file in EPGS 4326—Geographic co-
ordinates on WGS-84 ellipsoid. Before generating this orthophoto, calibration is performed.
The obtained image (before calibration) is already in the reflectance format, however, the
actual reflectance values are obtained by dividing each band by 32,768 to get the values
normalized in the interval between 0 and 1. The 32,768 is the band center value which
represents 100 percent of reflectance. For geometrical correction, the ground-based points
and the Differential Global Positioning System (DGPS) were used while for both radiation
correction and transformation of reflectance, the Gray Scale Correction method was utilized.
AgiSoft Metashape Professional 1.5.0 (AgiSoftLLC, St. Petersburg, Russia), photogram-
metric processing was used. The software’s consistent performance in photogrammetric
processing has been demonstrated in previous studies [54]. In order to differentiate bare
soil areas, the Normalized Difference Vegetation Index (NDVI) was employed to mask a
threshold of 0.2. The R software (R Development Core Team, Vienna, Austria) was used for
all other data processing. For this study, it was only the multispectral section (Trinity F90)
with six bands that was used for further analysis.

2.3.2. Sentinel-2 Imagery

The extracted cloud-free Sentinel-2B imagery used for this study was carried out at the
European Space Agency’s Copernicus Open Access Hub on 10 June 2019. The Sentinel-2
mission consists of two similar satellites: Sentinel-2A, and Sentinel-2B, respectively. Each
satellite has a Multi-Spectral Instrument (MSI) that generates images of the earth. The
Sentinel-2 images are processed to Level-1C, which implies that they have been ortho-
corrected, map-projected images containing top-of-the-air reflectance data. This image
will need further pre-processing by the user, but the level 2A Sentinel-2 imagery can be
used instantly because its dataset has been processed by the suppliers using Sen2Cor
processor. These processes include geometric, radiometric, and atmospheric corrections.
For this study the level 2A Sentinel-2 imagery was used. The Sentinel-2 image consists of
13 spectral bands. These spectral bands range from the visible and near infrared (vis-NIR)
to the short-wave infrared (SWIR). They include four bands at 10 m resolution ((B2, 490 nm),
(B3, 560 nm), (B4, 665 nm), (B8, 842 nm)); six bands at 20 m resolution ((B5, 705 nm), (B6,
740 nm), (B7, 775 nm), and (B8A, 865 nm); 2 SWIR large bands, (B11, 1610 nm) and (B12,
2190 nm). Finally, three bands at 60 m resolution ((B1, 443 nm), (B9, 940 nm), and (B10,
1380 nm)). Before downloading, all the 13 band were resampled to 10 nm using the SNAP
software (by pixel resolution). With the exception of B1, B9, and B10 that were omitted, all
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the remaining bands were used for this study. The Sentinel-2 user handbook [55] describes
the whole protocol.

Soil optical properties can be influenced by certain factors such as soil water content,
mineral composition, and organic matter content [37]. Therefore, nine calculated spectral
indices have been applied to both Sentinel-2 and UAS datasets as independent variables,
anticipated to enhance the prediction capability of the datasets. The added spectral indices
were Colour Index (CI), Normalized Differences Vegetation Index (NDVI), Infrared Per-
centage Vegetation Index (IPVI), Normalized Difference Red Edge (NDRE), Soil Adjusted
Vegetation Index (SAVI), Vegetation (V), Normalized Difference Vegetation Index (GNDVI),
Difference Vegetation Index (DVI), and Brightness Index (BI). The equations used to deter-
mine these indices are shown in Table 2. SNAP was used to obtain bare soil pixel values at
sampling locations.

Table 2. Indices derived from Sentinel-2 and UAS spectra.

Index Definition Based on Sentinel-2 Definition Based on UAS References

CI B4−B3
B4+B3

B6−B5
B6+B5 Pouget et al. [56]

NDVI B8−B4
B8+B4

B8−B6
B8+B6 Rouse et al. [57]

IPVI 1
2 (NDVI + 1) 1

2 (NDVI + 1) Crippen [58]
NDRE B8−B5

B8+B5
B8−B7
B8+B7 Barnes et al. [59]

SAVI
(B8−B4)∗(1+L)

B8−B4+L
L = 0.5

(B8−B6)∗(1+L)
B8−B6+L
L = 0.5

Huete [60]

GNDVI B8−B3
B8+B3

B8−B5
B8+B5 Gitelson et al. [61]

DVI B8-B4 B8-B6 Richardson and
Wiegand [62]

BI
√

(B4∗B4)+(B3∗B3)
2

√
(B6∗B6)+(B5∗B5)

2
Escadafal [63]

V B8
B4

B8
B6 Jordan [64]

Sentinel-2 (B3: Green, B4: Red, B5: Red Edge, B8: NIR); UAS (B5: Green, B6: Red, B7: Red Edge, B8: NIR).

2.4. Data Pre-Processing Approaches

The initial field spectral range was 350–2500 nm; however, the noisy segments of
350–399 nm were removed prior to spectra treatment, retaining only 400–2500 nm range.
The field spectra and the other two dataset (UAS and Sentinel-2) were then subjected to
the following set of pre-processing techniques: discrete wavelet transformation (DWT),
standard normal variate (SNV), logarithmic transformation (log(1/R)), as well as the
combination of DWT with SNV (DWT + SNV) and with log(1/R) (DWT + log(1/R)). The
DWT is a known technique for signal smoothing and/or noise reduction. This function was
determined using the wavelet package in the R software [65]. Also, all other pre-treatment
algorithms have been computed using the R software.

2.5. Modelling and Prediction Assessment

The spectra obtained from Sentinel-2 and UAS sensors, including the determined
spectral indices, were each linked to the SOC determined in the laboratory using collected
soil samples from the field. For the field data, the spectral measurement in the field was
used. The above-mentioned datasets were used to build SOC predictive models. The
spatial resolution for the UAS remains the same (8.8 cm). Two separate multivariate models
were evaluated for all spectral data, namely random forest (RF) and support vector machine
regression (SVMR). SVMR is a nonlinear algorithm used for regression and classification
processes with a set of related supervised learning algorithms, which has an excellent ability
to be a universal predictor of any multivariate function to any defined degree of accuracy.
Even if the discriminant feature gathered is based on minimal data, the independent
test set’s prediction error can still be small. RF is also a technique for classification and
regression. RF belongs to the ensemble machine learning algorithm family that predicts a
soil parameter response from a set of predictors that could be a training data matrix. This
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is done by creating and aggregating multiple decision trees. RF also adjusts splitting by
picking the best split from a randomly chosen subset of predictors [66]. In multivariate
regression models, spectral reflectance data were used as predictor variables and selected
soil parameters data as output responses. The model output was evaluated for each
regression procedure by five-fold cross-validation of the training set (75%) and the testing
set of 25% of the samples using SVMR and RF modelling techniques. The prediction
accuracy was evaluated by index of determination (R2

CV), the ratio of performance to
interquartile range (RPIQ), the root mean square error of prediction (RMSEPcv) of the
5-folds cross-validation, and the ratio of performance to deviation (RPD). The RPD was
determined as an auxiliary indicator of model reliability as the ratio of the RMSEPcv to
the standard data deviation. The larger the RPD, the better the model for prediction. Prior
to evaluating the predictive models, the normality of the distribution of the SOC contents
was examined (skewness <1).

A correlation matrix was also calculated to visualize the relationships between the
three datasets and their parameters (indices) with SOC (examine which dataset is more
correlated or significantly correlated). For the remote sensing data set (UAS and Sentinel-
2), this was done between SOC and their bands and indices. However, for the field
spectra, the correlation was made with SOC using only selected wavelengths (based on
UAS and Sentinel-2 wavelengths) due to the enormous amount of spectral data available
(350–2500 nm).

For a visual comparison of SOC spatial distribution predicted by models based on
different data and laboratory measurement, SOC maps were created using the inverse
distance weighting (IDW) interpolation method.

3. Results
3.1. Soil Organic Carbon (SOC) Frequency Histogram and Descriptive Statistics

Figure 2 is a frequency histogram and a statistics summary of SOC characteristics
in soil samples within the study area comprising standard deviation (SD), coefficient of
variation (CV), minimum, maximum, mean value, skewness, and standard error (SE). The
statistical distribution of the SOC within the sample site was positively skewed. A visual
inspection of the SOC histogram showed that the value distribution (tail region) has shifted
to the left side. Generally, the overall result signifies a low to medium SOC content of
the area.
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3.2. Correlation of SOC with Reflectance Bands and Spectral Indices for Sentinel-2 and
UAS Datasets

To visualize the differences between UAS, Sentinel-2 imagery datasets and the calcu-
lated indices (for each dataset) within the study area, correlation matrices between their
parameters (bands and indices) and SOC were built (Figure 3). The correlation matrices
helped to determine among the datasets strong or significant correlations (in both positive
and negative directions) so as to identify which spectral bands or indices are the key deter-
minants in the prediction of SOC. For the UAS dataset, the most significant correlations
were found between SOC and CI, band 7 and band 6, followed by NDVI, NDRE, IPVI, and
BI. For the Sentinel-2 spectral bands, it was only CI that provided significant correlation
with SOC. Although, neither dataset was strongly correlated with SOC, there were strong
correlations between some of the bands and indices.

3.3. Correlation between SOC and Selected Wavelength of Field Spectra

Figure 4 displays the correlation matrix of SOC with selected wavelengths of field
spectra. These wavelengths were selected using the wavelength values that were similar
or closer to that of UAS and Sentinel-2 bands. Considering all selected wavelengths, the
strongest significant correlations between SOC and field spectra were obtained from 443,
665, 668, 705, and 717 nm while the remaining wavelengths showed good correlations.
Although strong correlation was seen between all selected wavelengths (among each other),
there were no strong correlation witnessed between SOC and the selected wavelengths.
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3.4. Prediction of SOC Using UAS, Sentinel-2 and Field Spectra Data Sets

The prediction results (Table 3) showed that the highest prediction accuracy of SOC
(RPD = 1.4; R2

CV = 0.48; RPIQ = 1.65; RMSEPCV = 0.24, for log(1/R)) were obtained with
field spectral data using SVMR algorithm. This was followed by UAS (DWT, RF) with
RPD = 1.13, R2

CV = 0.27, RPIQ = 1.36, and RMSEPCV = 0.30, and finally Sentinel-2 (SNV),
SVMR) with RPD = 1.08, R2

CV = 0.24, RPIQ = 1.31, and RMSEPCV = 0.31, respectively.
Moreover, other improved result was also obtained using SNV + DWT, log + DWT, and
SNV (SVMR) methods with the field spectra and log(1/R) (RF) with UAS.

Table 3. Statistics of the fivefold leave-group-out cross-validation for field spectra, UAS and Sentinel-2 using random forest
(RF) and support vector machine regression (SVMR) with different pre-processing methods.

UAS Sentinel-2 Field Spectra
RF

Treatment RPD R2
cv RPIQ RMSEPcv RPD R2

cv RPIQ RMSEPcv RPD R2
cv RPIQ RMSEPcv

Raw 1.05 0.11 1.24 0.32 1.04 0.04 1.22 0.32 0.99 0.05 1.14 0.34
DWT 1.13 0.27 1.36 0.29 1.02 0.02 1.2 0.33 1.02 0.08 1.18 0.33
SNV 1.00 0.14 1.19 0.34 0.96 0.15 1.27 0.35 1.12 0.22 1.31 0.3

SNV + DWT 1.01 0.03 1.22 0.33 1.02 0.01 1.23 0.33 1.08 0.18 1.28 0.31
Log(1/R) 1.04 0.22 1.31 0.32 1.02 0.05 1.29 0.33 1.01 0.06 1.14 0.33

Log + DWT 1.10 0.17 1.27 0.3 1.01 0.01 1.18 0.33 1.02 0.05 1.14 0.33

SVMR

Raw 1.01 0.11 1.18 0.33 1.07 0.15 1.27 0.31 1.21 0.36 1.44 0.28
DWT 1.05 0.14 1.16 0.32 1.03 0.11 1.13 0.33 1.23 0.35 1.44 0.27
SNV 1.06 0.22 1.25 0.31 1.08 0.24 1.31 0.33 1.31 0.44 1.53 0.26

SNV + DWT 1.04 0.12 1.12 0.32 1.05 0.11 1.14 0.32 1.35 0.45 1.59 0.25
Log(1/R) 1.09 0.19 1.29 0.31 1.08 0.16 1.28 0.31 1.4 0.48 1.65 0.24

Log + DWT 1.07 0.11 1.15 0.31 1.06 0.12 1.12 0.32 1.33 0.45 1.56 0.25

4. Discussion

Spectroscopy under proximal soil sensing has now become a common way of estimat-
ing SOC and other soil parameters because of its high accuracy level compared to the other
forms of measurement stated above [7]. In comparison with the other two data sets, namely
UAS and Sentinel-2, the field spectra under proximal soil sensing show the best prediction
output as expected (RPD = 1.4; R2

CV = 0.48; RPIQ = 1.65 and RSMEPCV = 0.24, for log(1/R),
SVMR). Although the RPD and R2

CV value for this field is not so high, it is comparable
to other research findings [67]. Nonetheless, Stevens et al. [25] demonstrated in one of
their studies the efficiency of field measurements in comparison to airborne spectroscopy
to predict SOC. However, under field measurement, spectroscopy is prone to external
environmental conditions, primarily soil moisture, while under laboratory conditions its
final output can be influenced by issues such as spectrometer instability, illumination
source, detector output, and sample preparation.

Considering the field spectra correlation with SOC using the selected wavelengths
based on both UAS and Sentinel-2 bands, it reveals that most of the wavelengths were
significantly correlated with SOC compared to the other two datasets. Likewise, almost all
selected wavelengths of the field spectra were strongly correlated with each other. This
might have accounted for the improved performance of field measurements using vis-
NIR spectroscopy approach. However, field spectroscopy inability to cover large spatial
areas is one of its major disadvantages. This is because the costs and work and time
demands associated with field and laboratory evaluation makes it difficult to undertake
soil properties assessment on a vast scale area [68].

The vast frequent data streams generated by satellite sensors can also ensure that
soil monitoring and mapping techniques for larger areas can be accurately, rapidly, and
effectively established [29,69]. In this study, the accuracy of SOC predictions using Sentinel-
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2 imagery was the lowest compared with the other two datasets, although the differences
were rather small compared to that of the UAS (Table 2). One of the probable reasons for
its worst performance could be the low correlation of all Sentinel-2 bands and almost all
the calculated indices used with SOC. It could also be presumed that our quest to acquire
a cloud-free image which shifted the Sentinel-2 image collection date from early May to
June, a likely period for some vegetation to emerge on the field, could have affected the
accuracy of Sentinel-2 imagery prediction. For instance, Castaldi et al. [21] attributed the
weak output of Sentinel-2 imagery data in their study to the probable influence of maize
seedlings on some of the Sentinel-2 bands (wavelengths), highly sensitive to vegetation.
This is so because their Sentinel-2 image was collected in May when maize seedlings may
have been emerging. According to Bartholomew et al. [70], spectral reflectance form can
sometimes be affected because of the apparent existence of fresh or dry vegetation (less than
20%) and therefore the predictive accuracy of soil properties could be affected. Satellite data
can be desirable due to its wide spatial coverage, fast revisit time, and the ability to acquire
data unaffected by local air traffic restrictions, however, as a result of cloudiness or when
parched and bald soil conditions are needed, these predetermined revisit times may not be
suitable for adequate temporal coverage [32]. Other challenges for satellite applications
are the relatively low image resolution, restricted availability of high-quality temporal
and spatial images, primarily as a result of adverse atmospheric conditions and sensor
requirements [71]. For example, in Brazil, Friedel et al. [72] utilized spectroscopy techniques
and spaceborne (Hyperion satellite) imagery to quantify soil obtained from the tropics.
They indicated that because of the presence of shadow within the study area, satellite
image efficiency was hampered. In addition, Steinberg et al. [73] evaluated the potential
of both airborne and spaceborne (simulated EnMap) imaging spectroscopy for SOC and
clay prediction. Their finding was that the airborne imagery revealed a small improvement
with regard to the accuracy of prediction compared to the spaceborne domain.

UAS may be a cheaper and more realistic replacement to satellites, general aviation
aircraft and even ground spectroscopy (thanks to large spatial coverage). UAS light-bearing
sensors are now being used effectively to track vegetation in precision agriculture [74,75].
An advantage of UAS consists in the small distance between the UAS sensor and the
outermost layer of soil, compared to airborne or satellite sensors, which can lead to a
comprehensive retrieval of soil spectra. A further advantage of UAS over both airborne
and satellite is its ability to yield accurate surface reflectance, especially in case of the need
for high-resolution remote sensing-based data, because of the possibility of UAS to be fitted
with an incoming sunlight sensor, whereas both satellite and airborne data may require an
atmospheric correction model for reflectance measurement [32,76]. Although the spatial
resolution of airborne sensors (using aircraft) is higher and could be an alternative to that
of satellite data rather than UAS, the acquisition of multitemporal data in an optimum
state is hampered by high operating costs especially in case of a change in environmental
conditions during measurement [77]. For instance, Stevens et al. [25] used an aircraft-
mounted CASI + SASI sensor (444–2500 nm) to detect the shift in carbon stock on a larger
scale survey, one of the main problem encounters being the spectral model calibration
which they attributed to the several troubling factors including soil water content and
enormous aircraft noise that influenced the final carbon stock estimate. For this study,
the prediction accuracy for UAS (Table 3) was slightly better than Sentinel-2 satellite
(with RPD = 1.13; R2

CV = 0.27; RPIQ = 1.36 and RMSEPCV = 0.30, against Sentinel-2 with
RPD = 1.08; R2

CV = 0.24; RPIQ = 1.31 and RMSEPCV = 0.31). One possible reason could be
that some of the UAS bands and indices (CI, Band 7, and Band 6 followed by NDVI, IPVI,
NDRE, and BI) showed some level of significant correlation with SOC unlike the Sentinel-2
data (only CI). Furthermore, the UAS image was acquired during a favorable weather
condition, which is one of UAS strongest advantages over spaceborne and airborne (using
aircraft). According to Gomez et al. [33], some of the reasons that could affect the difference
in prediction accuracy of SOC between airborne and spaceborne are the sensor spectral
and spatial information quality, the distance between sensors and target, and atmospheric
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conditions [33]. The use of UAS has become almost ubiquitous in the last five years owing
to a reasonable price of its aircraft and the payload camera (from vis-NIR to thermal and
3D) [78]. Although in this study, UAS acquired imagery have shown some positives over
satellite images, to uncover its maximum potential for soil properties estimation especially
SOC, some outstanding issues would need to be tackled and probably resolved. However,
some researchers have suggested solutions to some of the UAS limitations. The UAS
lightweight system, for example, could signify an unstable camera positioning resulting
from a discrete spatial resolution on the same flight route between two or more captured
images [79]. Nevertheless, according to Hardin et al. [80] and Vericat et al. [81], cases
of manual geometric correction can be successfully used to solve the above-mentioned
problem. According to Aldana-Jague et al. [38], the amount of data produced by the UAS
is huge and this demands a significant portion of processing time. Nevertheless, recent
developments in UAS GPS systems, coupled with lofty performance inertial measurement
units (IMUs), have helped to minimize these large amounts of processing time by using
direct-georeferencing approaches [82]. Before UAS images are merged, geometric correction
and ortho-rectification are necessary, which is due to the small swath area and platform
instability. However, according to Xiang and Tian [71], this issue could be addressed by
already developed methods such as the manual use of georeferencing tools (ground-based
GCPs), image matching, as well as the use of automated georeferencing (data navigation
along with camera lens distortion model). Moreover, it is proposed that the accuracy of the
images gathered from a UAS platform should first be assessed for practical purposes to
select the most suitable pre-processing technique [83].

Another common limitation of the UAS is the issue of the vignetting effect, that
normally induces a shade along the extreme parts of the acquired image, resulting in a
blackening of the boundaries compared to the center of the image taken. Nonetheless,
Aldana-Jague et al. [38], minimize this issue by taking several images of a “canvas white”
beneath consistent daylight conditions and averaging these images for the number of
bands used. Lelong et al. [79] also suggested additional method to help resolve the
above-mentioned concern, as well as the issue of the bi-directional reflectance distribution
function (BRDF) effects faced by UAS, however, according to Hardin and Jensen [48], to
better solve these concerns further experiments are still needed. For Lebourgeois et al. [84],
though the problem of vignetting is less likely to have an impact on multispectral and
hyperspectral imaging sensors that are custom designed, there will still be some degree
of vignetting present irrespective of the action taken to rectify its effect. Though, BRDF
could influence UAS images as stated above, according to Aber et al. [85,86], the use of
the UAS platform is one of the easiest ways to evaluate BRDF models on other remote
sensing systems. The use of UAS in agriculture for aerial imaging is still fairly new and may
need some bit of patience as well as modest expertise. However, this system continues to
gain considerable popularity among environmental scientists, despite all UAS drawbacks
as outlined by Hardin and Hardin [47], such as instability, short flight times, distortion
within captured imagery, and payload limitation [87]. In a study by Moran et al. [88],
they stated that issues related to UAS imaging are also similar to conventional aerial and
satellite image applications, e.g., instrument calibration, atmospheric correction, vignetting
correction, band-to-band registration, and frame mosaicing. However, with UAS (as stated
above) most of these issues can be corrected or adjusted compared to the other ways
of measurement. Notwithstanding, as noted already, using UAS comes with numerous
benefits including simple to utilize, rapid and accurate set-up at low costs, versatile while
flying, and the ability to capture images with very fine resolution. The future for UAS looks
promising and it could be used to replace the spaceborne or supplement that of proximal
soil sensing if the suggestions by Hardin and Jensen [48] are fully carried out, that is, most
of the technical challenges faced by UAS could be overcome by a broad cooperation among
environmental experts and UAS engineers during the development of new UAS devices.

One area that is worth mentioning is the issue related to data transfer between spec-
troscopy and RS especially for large scale site estimation/monitoring of soil properties,
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especially SOC. As a result of limited studies [89,90] to date in such a significant area, more
work is still needed in order to help limit the uncertainty of atmospheric correction, which
according to Castaldi et al. [90] does affect spectral responses from remote sensing data.
UAS could have been the best option in terms of all remote sensing approaches due to its
small distance between its sensor and the soil. However, it was difficult to locate studies
that have tested the feasibility of that approach. A study into such areas in the foreseeable
future is highly needed, especially data transfer between spectroscopy and UAS for large
scale estimation of soil properties.

SOC predictive performance can be highly variable when data are collected using
different procedures, sampling techniques, sample preparation prior to its analyses, instru-
ment requirements, and analytical approaches and algorithms. This is because spectro-
scopic models can be seriously affected by the properties described above [91,92]. Moreover,
this is not exceptional to SOC measurement with spaceborne, UAS and field spectroscopy
where the method of data collection does differ as was the case in this study. Choosing
the most comprehensive pre-processing strategy may assist in achieving a more accurate
prediction models [31], however, linking this with the most appropriate modelling method
can positively or negatively affect prediction accuracy. For the modelling and pre-treatment
algorithms used in this study, it can be noted that though the field spectra performance
increases using SVMR with log transformation (Table 3), for RF, its prediction accuracy
experiences a decrease even compared to the UAS dataset. This confirms the need for the
use of more techniques for better comparison and to achieve a fair estimation of different
form of datasets as noted by Moron and Cozzolino [93] and Mouazen [94] and have been
also confirmed by some other studies [10,13]. Finally, the SOC maps derived from the
predictive modeling based on the data from the different sensors used are shown in the
Figure 5. This was done to view the distribution of SOC within the study field in reference
to the laboratory measured values. This demonstrates that all the sensors imagery could
predict both low and high SOC values. The field spectra yield a map more similar to the
reference map compared to the models using the other two datasets. Sentinel-2 imagery
showed a better similarity than UAS imagery to the reference map possibly due to SWIR
bands in Sentinel-2, however, map based on UAV imagery on the other hand was similar
to the reference map where SOC is lower.
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as compared to the map based on laboratory SOC measurement: (a) reference laboratory conditions, (b) field spectral,
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5. Conclusions

This study compared and explored the ability to predict SOC in a field with low
SOC content using UAS imagery with spectral indices to that of field spectroscopy and
Sentinel-2 datasets. Although for prediction accuracy of SOC, the field spectroscopy
was better, the low SOC content within the field makes it difficult to compare the actual
performance between UAS and Sentinel-2. However, although the difference was small,
the UAS imagery was slightly better than the Sentinel-2 output. This was attributed to the
correlation of the spectral indices and bands with SOC. Unlike UAS that had CI, Band 7,
and Band 6, followed by NDVI, IPVI, NDRE, and BI that were significantly correlated with
SOC, it was only CI for Sentinel-2. It is worth mentioning that all the three datasets show
no strong correlation with SOC. However, the spatial distribution map shows that these
sensors can detect both high and low SOC values. For comparison especially between UAS
and Sentinel-2, the study shows both forms of measurement have their positive features,
that is for Sentinel-2 larger spatial coverage and for UAS the reduce distance between
the sensor and the soil surface can contribute to a more comprehensive retrieval of soil
spectra. Also, they are prone to several limitations especially for Sentinel-2, such as cloud
cover and a lot of pre-processing steps, and for UAS they include instability, short flight
times, and payload limitation. However, for UAS, most of these issues can be corrected
or adjusted compared to other ways of measurement. In conclusion, UAS and Sentinel-2
sensors exploitation for SOC estimation in fields with low SOC need further study, such
as using different spectral indices, different machine learning algorithms, and the use of
both high and low SOC content fields to determine their actual differences. UAS-based
imagery will not substitute the use of manned aircraft or satellite imagery for larger scale
assessments but will greatly contribute to local management at small to medium scales.
The application of UAS for aerial imagery in agriculture is still relatively new and requires
patience and moderate experience. This research has shown that UAS imagery can be
exploited more efficiently using spectral indices.
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