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Abstract: With an increase in the overseas maritime transport of hazardous and noxious substances
(HNSs), HNS-related spill accidents are on the rise. Thus, there is a need to completely understand
the physical and chemical properties of HNSs. This can be achieved through establishing a library
of spectral characteristics with respect to wavelengths from visible and near-infrared (VNIR) bands
to shortwave infrared (SWIR) wavelengths. In this study, a ground HNS measurement experiment
was conducted for artificially spilled HNS by using two hyperspectral cameras at VNIR and SWIR
wavelengths. Representative HNSs such as styrene and toluene were spilled into an outdoor pool
and their spectral characteristics were obtained. The relative ratio of HNS to seawater decreased and
increased at 550 nm and showed different constant ratios at the SWIR wavelength. Noise removal and
dimensional compression procedures were conducted by applying principal component analysis on
HNS hyperspectral images. Pure HNS and seawater endmember spectra were extracted using four
spectral mixture techniques—N-FINDR, pixel purity index (PPI), independent component analysis
(ICA), and vertex component analysis (VCA). The accuracy of detection values of styrene and toluene
through the comparison of the abundance fraction were 99.42% and 99.56%, respectively. The results
of this study are useful for spectrum-based HNS detection in marine HNS accidents.

Keywords: hazardous and noxious substance; hyperspectral; endmember; abundance fraction

1. Introduction

With an increase in international maritime traffic over time, ship accidents such as
collisions, sinking, and oil leakages tend to occur more frequently [1]. These accidents
occasionally spill large quantities of crude oil in coastal regions, threatening the safety of
coastal areas and causing significant economic losses. Marine ecosystems are also greatly
impacted by the unexpected release of marine pollutants. The oil film interferes with the
oxygen exchange between the atmosphere and ocean, reducing the amount of dissolved
oxygen and light transmission required for the growth of seaweed and phytoplankton [2–4].
In the Korean coastal region, well-known accidents occurred through the collision of the
oil tanker, “Hebei Split”, in Taean in 2007. The oil tanker, “Uisanho”, in Yeosu in 2014
damaged the pipeline during the docking procedure [5–8].

In addition to oil spill accidents, there has also been a recent steady increase in the
number of hazardous noxious substance (HNS) spills [9–11]. HNS materials are mostly
composed of toxic materials, and their spills have a much more significant impact on marine
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resources and living organisms than general oil spills in the ocean. The HNSs also include
gases such as liquefied natural gas (LNG) and liquefied petroleum gas (LPG), bulk solids
such as sulfur and limestone, packaging dangerous goods such as paint and explosives,
and bulk liquid toxic chemicals such as benzene, xylene, and toluene. Due to the risks
associated with marine transport, the HNS is usually transported by sea through large-scale
ships such as LNG carriers, LPG carriers, chemical vessels, bulk carriers, and container
ships. This means that HNS spills also pose a very high risk for fire and explosions in the
event of a marine HNS spill. HNS species are difficult to detect because of their invisible
optical colors. On 6 January 2018, there was an HNS accident in which the tanker, Sanchi,
and the cargo ship, Crystal Lake, collided with each other. Approximately 153,200 tons
of condensate and 1800 tons of bunker-C oil were released into the ocean [12,13]. There
have been many difficulties in conducting a pollutant removal process because of the
explosion of toxic HNS. This HNS spill accident has highlighted the need to develop a
method for HNS monitoring. Based on HNS characteristics, remote sensing techniques are
expected to enable real-time monitoring over a wide area at high resolution. Thus, airborne
observations and hyperspectral satellite remote sensing methods are important to monitor
the HNS. To this end, information on the spectral characteristics of each HNS is required.
However, few studies on HNS monitoring using hyperspectral measurements exist.

In May 2015, an HNS remote sensing experiment was conducted in the Mediterranean
Sea with an aerial multifrequency Synthetic Aperture Radar (SAR) radar [14]. Recently, the
faster region-based convolutional neural network (Faster R-CNN), partial least-squares dis-
crimination analysis (PLS-DA) and least-squares support vector machine (LS-SVM) models
have been applied to the analysis of HNS spectral images [15,16]. The background field
was removed and pure xylene segmentation was detected by applying global background
suppression and adaptive target enhancement methods in xylene imagery in the ultraviolet
wavelength band [17].

This study conducted terrestrial hyperspectral experiments on HNS in the preparation
for a marine HNS spill accident. This study addresses three key objectives: (1) designing
an HNS spill experiment in a marine pool; (2) constructing an HNS spectrum library and
obtaining optical imagery simultaneously by observing through a hyperspectral camera
over visible and near-infrared (VNIR) and shortwave infrared (SWIR) wavelength bands;
(3) classifying the pixels of the hyperspectral image into HNS and seawater pixels by
applying a spectral mixing algorithm.

2. Data and Methods
2.1. Ground Experiment of HNS

To obtain the spectral characteristics of the HNS, a ground experiment of HNS mate-
rials was conducted at the Centre of Documentation, Research and Experimentation on
Accidental Water Pollution (CEDRE) in Brest, France. This was carried out in September
2019, whereby the study site was equipped with an outdoor pool and control facilities. The
representative HNS species for the experiment were selected on the basis of the frequency
of spills in the seas and those that were less hazardous to humans during the experiments.
Because a hyperspectral sensor only measures the surface layer, the experiment was con-
ducted on an HNS with floating properties. Hyperspectral experiments were carried out
using six types of HNSs and gas oil (Figure 1a). This study presents the results for two
representative HNS species: styrene and toluene.

During the experimental period in September 2019, the weather was mostly clear with
occasional clouds. The outdoor marine pool was 20 m long, 11 m wide, and 2 m deep. This
experiment was conducted in a frame that was 4.3 m in length and 2.3 m in width. The
inside of the frame was assumed to be flat seawater without wind, and the frame was fixed
by connecting it to the ground using a rope (Figure 1a).

To obtain the spatial distribution of the HNS spectra over a wide wavelength range
(from visible to infrared), two hyperspectral cameras, VNIR-1600 and SWIR-1800 (HySpex),
were attached to carry out concurrent measurements (Figure 1b). The VNIR-1600 hy-
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perspectral camera divided the 400–1000 nm section into 160 channels with a spectral
resolution of 3.7 nm at 10 m height, and spatial resolutions of 2 and 4 mm in the row and
line directions, respectively. The SWIR-1800 hyperspectral camera contained 256 channels
from 1000 to 2500 nm with a spectral resolution of 6 nm, and a spatial resolution of 8 mm
in the row and line directions. Detailed specifications of the hyperspectral sensor are
summarized in Table 1. Each experiment was conducted by spilling 1 L of HNS in the
center of the frame via obtaining a series of hyperspectral images from the hyperspectral
cameras at a height of approximately 12 m (Figure 1c).
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Figure 1. (a) Process of spilling of hazardous noxious substance (HNS) in a marine pool; (b) two
hyperspectral cameras capable of observing visible and near-infrared (VNIR) and shortwave infrared
(SWIR) wavelengths. (c) Location of the cameras at 12 m height using a lift.

Table 1. Specifications of the two hyperspectral cameras used in the experiment: VNIR-1600
and SWIR-1800.

Characteristics HySpex VNIR-1600 HySpex SWIR-1800

Acquisition process Push broom Push broom
Spatial pixels number 1600 320

Spectral pixels number 160 256
Field of view 17◦ 14◦

Spectral domain 400–1000 nm 1000–2500 mm
Spectral width 3.7 nm 6 nm

Ground sample distance (row direction) 2 mm 6 mm
Ground sample distance (line direction) 4 mm 8 mm

2.2. Dimension Reduction of HNS Hyperspectral Image

The HNS hyperspectral imagery obtained from the experiment contained unique
spectral information about each HNS and a large amount of noise. To extract only the
spectral characteristics of the HNS required, principal component analysis (PCA) was
applied to each image after comparison with the result of minimum noise fraction (MNF)
method [18]. The PCA method is mainly used for band reduction in hyperspectral images
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and is one of the methods utilized to reduce high-dimensional data to low-dimensional
data [19,20]. The PCA can also be used for hyperspectral imagery denoising [18]. This
technique linearly transforms data into a new coordinate system by projecting the data
into one axis, taking the axis with the largest variance as the first principal component and
placing the second largest axis as the second principal component [21]. This transformation
assumes that the first principal component contains the largest variance and subsequent
principal components have the largest variance assuming that they are orthogonal to
previous principal components (Figure 2).
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2.3. Hyperspectral Mixture Algorithm for HNS Detection

To classify the pixels of the hyperspectral image into HNS and seawater, we used
a pixel-based spectral mixture technique. The hyperspectral image obtained from this
experiment consists of pixels with pure HNS and seawater; the pixels containing mixed
information of these two substances. In the spectral mixture analysis technique, a pixel
representing a pure substance was known as an endmember, and it was assumed that all
pixels were composed of a linear combination of endmembers [22]. In this study, each
endmember was extracted by applying a total of four spectral mixture analyses including
N-FINDR, pixel purity index (PPI), independent component analysis (ICA), and vertex
component analysis (VCA) on HNS hyperspectral images. The N-FINDR method is one
of the representative spectral mixture analysis methods (Figure 3). This method assumed
that the volume of the simplex composed of the endmembers was the largest [23,24]. The
endmember spectrum with the number of p was extracted by training the combination of
arbitrarily set p pixels. As the number of p needs to be assigned in advance, it was assigned
a value of two based on the two constituents of HNS and seawater in the hyperspectral
imagery. According to our pretests on the number of endmembers, if a number greater than
three was applied, similar spectrums between endmembers were extracted. Considering
this, the optimal endmembers were assigned to two in this image.

This method was advantageous in that it requires only the number of endmembers
and does not require additional parameters as input data. The maximum volume of the
initial p endmembers was calculated as shown in Equation (1), and then the volume of each
simplex was calculated by substituting all pixel r using Equation (2):

Vmax =

∣∣∣∣det
[

1 1 . . . 1
e1 e2 . . . ep

]∣∣∣∣
(p− 1)!

(1)
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V1 =
(
r, e2, e3, · · · , ep

)
V2 =

(
e1, r, e3, · · · , ep

)
Vp = (e1, e2, e3, · · · , r)
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hyperspectral mixture algorithm.

In the PPI technique, all pixels were repeatedly projected onto an arbitrary unit vector,
and a score was assigned to pixels corresponding to extreme values [25]. The pixel with
the highest score was regarded as an endmember. In other words, after generating a
random spectrum with the same number of bands as the HNS hyperspectral image, the
spectral distances to all pixels were calculated. Scores were assigned to each pixel with
the maximum and minimum distance differences. The pixel with the highest score was
assumed as a relatively pure endmember.

ICA statistically separates mutually independent signals from linearly mixed sig-
nals [26,27]. Most endmember extraction methods are based on convexity, but ICA focuses
on the fact that the endmembers represent different classes and the correlation of statistical
dependence is low. This is similar to PCA, where each component is a non-Gaussian signal
and consists of components that are statistically independent of each other. The relevance
scores of the ICA components were calculated and the components were ranked similarly
to the PCA eigenvalues [28].

VCA extracts unsupervised endmembers from hyperspectral data, assuming that they
are a linear mixture of pure endmember spectra [29,30]. This method assumes that there
are pure pixels in the data, extracts the pure component of the predefined endmember,
and estimates its spectrum. This is based on two things: (1) the endmember vertices of the
simplex and (2) the affine transformation of a simplex is also simplex [29].

When two spectra representing HNS and seawater in the hyperspectral image are
extracted, it is possible to calculate the abundance fraction of each pixel that satisfies the
abundance sum-to-one constraint (ASC) and abundance non-negative constraint (ANC)
proposed by Heinz (2001) [31]. Equation (3) measures the abundance (α) of the endmember,
and the pixel reconstruction error (e) needs to be minimized by using the spectral signature
of a pixel vector (r) and the spectral signature of the endmember (M). Equations (4) and (5)
show unconstrained least squares (LS) and fully constrained least squares (FLCS) solutions,
respectively, using an I matrix with an arrangement of p rows with a component of one.
HNS hyperspectral images were compared with the abundance fraction of endmembers
that satisfied the FLCS. The relative ratio of two endmembers was used to detect pixels in
which the HNS spectrum was mainly affected.

e = ‖r−Mα̂‖2 (3)
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α̂LS =
(

MT M
)−1

MTr (4)

α̂FCLS = α̂LS −
(

MT M
)−1

I ∗
(

I ∗
(

MT M
)−1

IT
)
∗
(

IT ∗ α̂LS − 1
)

(5)

2.4. Hyperspectral Matching Algorithm

The optimal spectral mixture algorithm was selected by comparing the similarity of
the endmember spectrum extracted from the N-FINDR, PPI, ICA, and VCA techniques
and the HNS spectrum detected from the red, green and blue (RGB) composite image. The
first method was spectral distance similarity (SDS), which determines the similarity of the
spectral distance between the two spectra [32]. The Euclidean distance (Ed) was used to
calculate the distance between two points. Equation (6) represents the normalized SDS.
The second method is the spectral correlation similarity (SCS), which uses the spectral
correlation coefficient between two spectra as a measure of similarity [33]. As it is valid only
for a positive correlation, the correlation coefficient is between 0 and 1. As it approached
the highest correlation coefficient of 1, the two spectra were considered similar to each other.
The SCS was determined using Equation (7). The third method is the spectral similarity
value (SSV), which uses the spectral distance and correlation coefficient between the two
spectra as a measure of similarity [34]. The SSV is calculated by combining SDS and SCS, as
shown in Equation (8). The fourth method is the use of the spectral angle mapper (SAM),
which utilizes the angle between two spectral bands as a measure of similarity [35]. In a
two-dimensional (2-D) spectral scatter plot with the axes of bands i and j, the angle formed
by two linear regression lines is defined as the SAM. The angle between the two spectra
was located between 0◦ and 90◦. The similarity of the spectrum increased as it approached
0◦, while there was reduced similarity between two spectra as it approached 90◦. The
SAM was determined as per Equation (9) by calculating a normalized angle with a value
between 0 and 1 by the multiplication of 2/π. Equations (6) to (9) are as follows:

SDS =

√
∑n

i=1(ti − pi)
2

√
n

(6)

SCS =
1

n− 1

[
∑n

i=1(ti − µt)

σtσr

]
(7)

SSV =

√
SDS2 + (1− SCS)2 (8)

SAM = cos−1

 ∑n
i=1 tiri√

∑n
i=1 ti

2
√

∑n
i=1 ri

2

 (9)

where ti is the target spectrum; pi is the reference spectrum; n is the total number of
channels; µt is the average of the target spectrum; µr is the average of the reference
spectrum; σt is the standard deviation of the target spectrum; σr is the standard deviation
of the reference spectrum.

3. Results
3.1. RGB Composite

Figure 4a is the red, green and blue (RGB) composite image of styrene, 1 L of which
was spilled for 13 h on 2 September 2019. The styrene images were acquired after about 1 m
and 19 s passed after spilling into the pool. The styrene shown in the RGB composite image
was almost invisible and was, thus, impossible to distinguish from seawater because of its
colorless characteristics. As styrene has a specific gravity of 0.907 and is insoluble, it does
not mix with seawater. In Figure 4a, the styrene, spread in a triangular shape, is vaguely
discernible from seawater because of its relatively higher reflectance than that of seawater
(Figure 4b). Among the many hyperspectral images, three wavelengths corresponding to
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RGB channels were selected to investigate differences in radiance. The radiance of styrene
in the red channel (610.73 nm) was ~0.006, which is approximately twice as high as that of
seawater (Figure 4c). The styrene radiance of the green channel (519.85 nm) and the blue
channel (454.42 nm) was ~0.008 (Figure 4d,e). However, seawater had a low radiance of
0.0035 in the blue channel, rising to ~0.005 in the green channel and then decreasing in the
red channel. Styrene showed its spectral characteristics with higher radiance and longer
wavelengths (Figure 4c–e).
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Figure 4. (a) Styrene red, green and blue (RGB) composite image observed with a hyperspectral
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red, green, and blue channels.

Figure 5a presents another example of an HNS spill. The toluene image was acquired
the moment it spilled into the pool. The RGB composite image of toluene that leaked 1 L
in seawater exhibited a similar spatial distribution that could not clearly be recognized
from seawater. However, hyperspectral images at red, blue, and green wavelengths clearly
show high spectral differences. Unlike styrene, it expanded to a wider area, although the
radiance had been relatively reduced from ~0.004 to 0.006 (Figure 5c–e). There were some
seawater pixels inside the toluene patch, suggesting the possibility of rapid evaporation of
toluene (Figure 5c–e).

3.2. Characteristics of HNS Spectra at VNIR Wavelengths

To understand the spectral characteristics of the representative HNS species, we
calculated the ratios of the radiance of HNS to that of seawater. Figure 6 shows the ratios of
the radiances of styrene and toluene with respect to wavelength. The spectral distribution
of the styrene radiance ratio varied from 1.2 to 2.2. It decreased from 400 to 570 nm with an
increase in the wavelength, and increased again until it reached a peak ratio at ~750 nm.
These high ratios of approximately 2.1–2.2 were maintained at spectral bands from 750
to 890 nm with small undulating amplitudes. In higher spectral bands of >900 nm, the
ratio rapidly decreased from 2.0 to approximately 1.2–1.3. According to the radiation
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transport model, the relative ratio of HNS to seawater reflects the refractive index and HNS
transmission of the three boundary layers: the atmosphere, HNS, and seawater [36].

The spectral distribution of the toluene radiance ratios exhibited a structure similar to
that of styrene radiance ratio, with the spectral ratio differences of ~0.2 (Figure 6), and a
maximum difference of 0.3. The spectral ratios of the two HNSs had a correlation coefficient
of ~0.97 across all VNIR wavelengths. One of the similarities may originate from a similar
chemical structure composed of C-H bonds in the form of aromatic hydrocarbons with
CH2 and CH3 attached to the benzene ring.
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3.3. Characteristics of HNS Spectra at SWIR Wavelengths

Figure 7 shows the ratios of the HNS to seawater radiances at SWIR wavelengths from
1000 to 2000 nm. The radiance ratio of styrene was maintained at relatively uniform values
of ~2 at wavelengths of <1300 nm and ranged from 1.6 to 1.8 at 1500–1800 nm. However,
it rapidly decreased at wavelengths of >1800 nm. This implies that styrene had almost
the same radiance as seawater at higher spectral bands. For toluene, the radiance ratio at
the SWIR wavelength was also constant ~1.8 over a wide wavelength region from 1000
to 1800 nm (Figure 7). Toluene also had spectral characteristics similar to styrene, with
relatively weaker responses than styrene. Such spectral behavior may be useful detecting
and identifying HNSs because HNS spectra may be uniquely defined. Based on these
fundamental characteristics, we applied several methods to detect HNS from a mixture of
seawater at the sea surface during ground experiments.
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3.4. Comparison of Hyperspectral Mixture Algorithms

To compare two endmember spectra corresponding to pure styrene and seawater, the
central part of hyperspectral imagery in Figure 4 was extracted, excluding the frame. The
number of endmembers was two, and noise removal and dimensional compression were
conducted by applying PCA. Figure 8a shows the spatial distribution of the first mode of
hyperspectral variability of styrene using the PCA method. This mode explains 88.14% of
the styrene variance and has values from −0.015 to 0.045, with a clear contrast between
styrene and the seawater (Figure 8a). The first mode of the toluene hyperspectral image
compressed by PCA also accounted for ~58.62% (Figure 8b).

To identify the pure pixels corresponding to styrene and seawater, N-FINDR, PPI,
ICA, and VCA methods were applied. After the PCA process on the original HNS hy-
perspectral image, N-FINDR and VCA calculated the maximum volume and vertices of
the simplex [24,29]. PPI generated 1000 random vectors and calculated the difference
between all the pixels. The ICA selects the purest pixel by calculating the relevance score
of the components [28]. Figure 9a shows the results of the N-FINDR with two spectral
distributions of the two purities, denoted by the black line for styrene and the red line
for seawater. At the visible wavelengths, seawater had a maximum radiance of 0.0043
at 550 nm, and continuously decreased at longer wavelengths. In contrast, the styrene
spectral curve exhibited a double peak with radiance values of 0.0089 and 0.0092 at the 480
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and 550 nm wavelengths, respectively. It tended to decrease as the wavelength increased
at >550 nm.
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The PPI method showed considerably similar spectral characteristics regardless of
the presence of styrene and seawater. This implies that the distinction between HNS and
seawater in the image is remarkably poor because both endmember spectra have similar
tendencies and radiance values (Figure 9b). In contrast, the two spectra extracted by the ICA
technique were similar to those extracted from N-FINDR, although differences between
the two spectra were reduced by showing small differences with a maximum of ~0.003.
In spite of the distinct spectra between the two HNS, the magnitudes of differences could
not be reached by the N-FINDR method (Figure 9c). This difference sharply decreased at
>700 nm. The VCA technique also showed a spectral trend similar to the N-FINDR results
(Figure 9d).

Figure 10 shows the spectral distribution of radiances for the two endmembers, corre-
sponding to toluene and seawater, extracted from the four methods (i.e., N-FINDR, PPI,
ICA, and VCA). For the N-FINDR technique, the radiance of toluene, indicated by the
black line in Figure 10a, had high values of ~0.007 at wavelengths from 450 to 550 nm. A
maximum radiance of ~0.007 appeared at 480 nm, shifting toward shorter wavelengths
than that for styrene, which had a maximum radiance at 545 nm. At wavelength >550 nm,
the radiance tended to continuously decrease with high variability. Seawater as another
endmember showed radiance variations similar to those of toluene, which was in good
agreement with those of styrene, as shown in Figure 9a. In the PPI and ICA techniques,
the spectral radiances of toluene and seawater were almost similar by overlap, as shown
in Figure 9b. As the maximum value of the spectrum extracted from the PPI was close to
0.008, it was anticipated that the endmember of the seawater pixel was to be extracted from
the toluene pixels. This implies that these methods cannot be used for the proper detec-
tion of toluene or seawater (Figure 10b). The spectral radiances of the two endmembers
extracted from the ICA in Figure 10c ranged between seawater radiance and the toluene
radiance classified by N-FINDR in Figure 10a. These were inferred to be likely extracted
from interfaces between the two substances or from diluted toluene pixels with seawater
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(Figure 10c). The VCA technique yielded the same endmember spectrum as N-FINDR was
extracted (Figure 10d).
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To estimate the similarity of extracted endmembers to spectral radiances, as shown in
Figure 6, the ratios of HNS to seawater were compared with the average HNS ratio using
the SDS, SCS, SSV, and SAM techniques for spectrum matching (Table 2). The results of
the SDS spectral matching of styrene was very similar by exhibiting the smallest spectral
distance in the case of ICA. As this only evaluates the quantitative distance of the spectrum,
the PPIs extracted from the endmembers, similar to styrene and seawater, shared a higher
similarity than that by N-FINDR.

Table 2. Similarity values between the endmember spectra of styrene and toluene, extracted from
the methods of N-FINDR, pixel purity index (PPI), independent component analysis (ICA), vertex
component analysis (VCA), and spectra of the corresponding to the HNS based on similarity methods
such as spectral matching comparison including spectral distance similarity (SDS), spectral correlation
similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM).

HNS Method SDS SCS SSV SAM

Styrene

N-FINDR 0.9833 0.9853 0.9834 0.0395
PPI 0.7635 0.5860 0.8685 0.0491
ICA 0.1522 0.8520 0.2123 0.0317
VCA 0.9833 0.9853 0.9834 0.0395

Toluene

N-FINDR 1.0173 0.6460 1.0771 0.1330
PPI 0.6087 0.0249 1.1495 0.0637
ICA 0.5075 0.1936 0.9528 0.0715
VCA 1.0173 0.6460 1.0771 0.1330

The SCS method, which evaluates the trend for all wavelengths rather than magnitude,
showed that the N-FINDR and VCA methods were highly correlated, amounting to 0.98.
The SSV represented a combination of the SDS and SSC methods. The first endmember
retrieved from the ICA method had a higher correlation of 0.0317, wherein the low values
expressed high similarities. The primary endmembers extracted from the N-FINDR and
VCA shared the same similarity of 0.0395 in relation to the SAM method. For toluene, the
two endmember spectra extracted from PPI and ICA were similar (Figure 10b,c). However,
these methods were poorer in terms of similarity than N-FINDR and VCA. All statistical
similarity tests in Table 2 suggest the highest capability of the N-FINDR and VCA methods
than the other methods. Based on these results, we used the N-FINDR method to calculate
the abundance fraction at each pixel in the following sections.

3.5. Abundance Fraction of HNS

The abundance fractions of styrene and seawater at each pixel are illustrated in
Figure 11, following the application of the N-FINDR method to extract the endmembers.
Every pixel in the HNS hyperspectral image consisted of a linear combination of two
endmember fractions. As the number of endmembers was initially assigned as two,
the sum of styrene (Figure 11a) and seawater (Figure 11b) was 100% at each pixel. The
abundance fraction corresponding to the styrene endmember, located in the central region,
occupied around 50% to 100%, with contrast distinction, of the spatial distribution inside
the styrene region. The upper portion of the styrene had relatively high values greater than
80%, while the abundance fraction of the lower region was between ~50% and 60%. It was
inferred that the spatial distinction of such fractional changes was affected by the cloud
shadow, waves, and the actual difference in HNS concentrations.

Figure 11d shows an abundance fraction map corresponding to the toluene endmem-
ber spectrum based on the N-FINDR technique. The pixels distributed on the left side of
the image may be considered to be highly similar to toluene with a fraction of ~60% or
more. Some pixels with low fractions of <40% in the central potions were considered to
have been induced by water splashing during toluene pouring or by other mixing proce-
dures. The interfaces between the toluene and seawater had a relatively low fractions of
<50%, potentially from mixing with seawater. Figure 11e shows the abundance fraction of
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seawater surrounding toluene; this had a fraction greater than ~80%. The seawater fraction
of the seawater was between 80% and 100% outside the main toluene region.
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3.6. Determination of Optimal Threshold for HNS Detection

The abundance fraction map in Figure 11 suggests a threshold of 35% based on
the probability of the fraction. However, there were transition interfaces present in the
frontal zone between the HNS and seawater. Therefore, as a last step, it was important
to investigate the optimal threshold to detect the HNS. To this end, the optimal HNS
abundance fraction was selected by comparison with HNS pixels in the RGB composite
image. Figure 12a shows the probability fraction of the number density of styrene with
respect to digital numbers. It illustrates the bimodal curve at the center of the minimum
probability density at ~15. Therefore, styrene was classified from seawater by a threshold
of 15 (Figure 12a). Similarly, toluene was classified with a value of 18, corresponding to a
minimum probability in the bimodal curve (Figure 12b).
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By analyzing the receiver operating characteristic of the HNS, the true minus false
positive rate as a function of abundance fraction was calculated [37]. The abundance
fraction corresponding to the maximum true rate and the minimum false rate was selected
as the detection criterion based on the distributions, as shown in Figure 12. The accuracies of
styrene and toluene were 99.42% and 99.56% in the ~35% fraction, respectively (Figure 13).
Styrene and toluene were detected on the basis of this threshold of the abundance fraction,
as shown in Figure 11c,f.
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4. Discussion

The number of HNS species that had spilled into the sea was approximately in excess
of 6000. This ground experiment was conducted only on a few representative HNS species
floating in seawater. Toxic substances, including benzene, were not used because of safety
issues and limited facilities in the experimental site. The purpose of this experiment was to
obtain the spectrum library of each single HNS substance. When compared with various
HNS spill accidents under actual sea conditions, this experiment may be considered as the
initial step in the detection of numerous HNS species. In this experiment, the number of
endmembers was specified in advance as two classes of HNS and seawater were selected.
In reality, there is a high possibility that multiple HNS species will be spilled into seawater
during an accident. In such cases, the methods proposed in this study may have difficulty
simultaneously detecting several HNS species. An approach to accurately detect HNS is
thorough the construction of the spectral library of all HNS species.

Oil spilled in the sea evaporates volatile components over time, and the remaining
viscous oil absorbs moisture and increases 3–4 times in volume, which is referred to as
an emulsion. Depending on the viscosity of the oil, water absorption takes 2–3 h to a
maximum of several days. Therefore, it is necessary to quickly remove oil spills from the
sea. To extract the spectrum of pure HNS, styrene and toluene with floating properties
were released in this experiment. Styrene was acquired after 1 m and 19 s, and toluene was
acquired immediately after leakage. This minimized volatilization or dissolution.

Marine accidents such as oil and HNS spills mainly occur in severe weather conditions
such as typhoons, rainfall, and tsunamis, which cause changes in sea surface roughness
because of wind [38]. To avoid these interferences, the present experiment was conducted
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under calm conditions, with flat surfaces, and clear weather. However, there are significant
environmental differences between the marine pool used in this study and the marine
ecosystem. Based on ocean color remote sensing literature, the colors of seawater are
diverse depending on chlorophyll-a concentration, suspended sediment, or dissolved
organic matter. All of these constituents may cause changes in the spectral distributions
of HNS species during HNS spill events. Oceans with strong winds and currents cause
the rapid diffusion of spilled HNS. The HNS spilled on the sea surface or subsurface
may disperse and/or become modified by mixing with the surrounding seawater or other
chemical processes. Thus, further experiments are required to prepare for the diverse
species of HNS and the diverse conditions in the marine ecosystems for HNS detection
and monitoring during marine accidents.

5. Conclusions

As most HNS species amounting to 6000 types are harmful, there are many restrictions
on marine experiments. Based on the detrimental impacts of HNS spills, there is an urgent
need to monitor HNS accurately and promptly under severe oceanic conditions. Compared
with countless studies on marine oil accidents, remote HNS sensing research is only at
its preliminary stages. HNS monitoring is much more difficult than oil detection because
of its colorless properties and safety risk. Although this study focused on detection of
representative HNS of styrene and toluene by conducting ground experiments outdoors
and under sunlight, the developed methodology may be applied to other HNS detection
methods. Hyperspectral observations conducted to construct HNS spectrum libraries at
VNIR and SWIR wavelengths can be uniquely utilized for HNS detection. To separate
the HNS from seawater in the hyperspectral image, several spectral mixture analyses
including N-FINDR, PPI, ICA, and VCA were applied to the hyperspectral image data to
extract pure HNS and endmember spectra of seawater. Spectral matching procedures were
applied to investigate spectral similarity. This study also presented a method to determine
the optimal threshold of abundance fractions. This also included the distribution of true
minus false positive rates as a function of abundance fraction of the endmember by the
N-FINDR method. The results of this study are considered useful for HNS detection and
the estimation of its extension area during in marine accidents by using hyperspectral
remote sensing techniques.
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