
remote sensing  

Article

High-Resolution SAR Image Classification Using Multi-Scale
Deep Feature Fusion and Covariance Pooling
Manifold Network

Wenkai Liang 1 , Yan Wu 1,*, Ming Li 2, Yice Cao 1 and Xin Hu 1

����������
�������

Citation: Liang, W.; Wu, Y.; Li, M.;

Cao, Y.; Hu, X. High-Resolution SAR

Image Classification Using

Multi-Scale Deep Feature Fusion and

Covariance Pooling Manifold

Network. Remote Sens. 2021, 13, 328.

https://doi.org/10.3390/rs13020328

Received: 15 December 2020

Accepted: 16 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Remote Sensing Image Processing and Fusion Group, School of Electronic Engineering, Xidian University,
Xi’an 710071, China; wkliang@stu.xidian.edu.cn (W.L.); yccao1@stu.xidian.edu.cn (Y.C.);
xinhu@stu.xidian.edu.cn (X.H.)

2 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
liming@xidian.edu.cn

* Correspondence: ywu@mail.xidian.edu.cn; Tel.: +86-136-2926-9166

Abstract: The classification of high-resolution (HR) synthetic aperture radar (SAR) images is of great
importance for SAR scene interpretation and application. However, the presence of intricate spatial
structural patterns and complex statistical nature makes SAR image classification a challenging
task, especially in the case of limited labeled SAR data. This paper proposes a novel HR SAR
image classification method, using a multi-scale deep feature fusion network and covariance pooling
manifold network (MFFN-CPMN). MFFN-CPMN combines the advantages of local spatial features
and global statistical properties and considers the multi-feature information fusion of SAR images
in representation learning. First, we propose a Gabor-filtering-based multi-scale feature fusion
network (MFFN) to capture the spatial pattern and get the discriminative features of SAR images.
The MFFN belongs to a deep convolutional neural network (CNN). To make full use of a large
amount of unlabeled data, the weights of each layer of MFFN are optimized by unsupervised
denoising dual-sparse encoder. Moreover, the feature fusion strategy in MFFN can effectively exploit
the complementary information between different levels and different scales. Second, we utilize a
covariance pooling manifold network to extract further the global second-order statistics of SAR
images over the fusional feature maps. Finally, the obtained covariance descriptor is more distinct for
various land covers. Experimental results on four HR SAR images demonstrate the effectiveness of
the proposed method and achieve promising results over other related algorithms.

Keywords: high-resolution SAR image; multi-scale feature fusion; covariance pooling manifold
network; image classification

1. Introduction

Synthetic aperture radar (SAR) is an all-weather and all-day active microwave imaging
system. Due to the special capabilities, the SAR system has become a very significant and
powerful source of information for various fields, such as land-cover mapping, disaster
monitoring, and urban planning [1]. Classifying and interpreting the information provided
by SAR images is usually recognized as a prerequisite step among these applications.
In recent years, the new generation of space- or airborne SAR sensors can acquire large
amounts of high-resolution (HR) SAR images [2]. These data provide sufficient information
in the spatial context for SAR scene understanding and interpretation. Nevertheless, HR
SAR image classification still faces the following two challenges:

1. Intricate spatial structural patterns: Due to the coherent imaging mechanism and
object shadow occlusion, pixels of the same object will present a high degree of
variability, known as speckle [3]. Moreover, HR SAR images contain more strong
scattering points, and the arrangements of numerous and various objects have become
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more complicated. In this context, HR SAR images will have a great intra-class
variation and little inter-class difference between objects [4]. As shown in Figure 1a,b,
we have given two low-density residential areas from the same category and two
different categories including open land and water areas. Therefore, extracting more
discriminative and precise spatial features for HR SAR image classification is still a
highly challenging task.

2. Complex statistical nature: The unique statistical characteristics of SAR data are also
crucial for SAR image modeling and classification. In HR SAR images, the number
of elementary scatterers present in a single-resolution cell is reduced. Traditional
statistical models for low- and medium-resolution SAR, such as Gamma [5], K [6], Log-
normal [7], etc., find it difficult to provide a good approximation for the distribution of
HR SAR data. Meanwhile, accurate modeling of HR SAR data using statistical models
may require designing and solving more complex parameter estimation equations.
Hence, it is also a challenge to effectively capture the statistical properties contained
in the SAR image to enhance the discrimination of land-cover representations.

Figure 1. (a) High intra-class diversity of low-density residential areas. (b) Little inter-class difference
between open land (left) and water (right).

1.1. Related Work

The mainstream methods for SAR image classification can be roughly categorized as
hand-crafted feature-based methods, statistical analysis-based methods, and deep learning
methods. We briefly review these related works and then discuss the inspiration from these
methods.

In recent years, many handcrafted feature descriptors have been proposed to char-
acterize the content of SAR images, such as multilevel local pattern histogram (MLPH)
feature [8], Ratio-detector-based feature [9], contextual descriptors [10], etc. These fea-
tures exhibit better performance compared to GLCM [11] and Gabor features [12] in HR
SAR image classification. In addition, Tombak et al. [13] investigated the use of the re-
cently developed feature attribute profiles (FPs) for the feature extraction of SAR images.
Song et al. [14] employed the histogram of oriented gradients (HOG)-like features to ef-
fectively capture the main structures of targets in speckled SAR images. Guan et al. [15]
used the covariance descriptor of textural features and made the feature descriptor more
distinguishable for various SAR land covers. Generally, the above features are fed into
a classifier such as the Softmax [16] or the support vector machines (SVM) [17] for clas-
sification. To some extent, hand-crafted feature-based methods have excellent low-level
feature representation capabilities of SAR images and can perform reasonably well for
some specific categories with minimal amounts of training data. However, HR SAR images
contain more complex structural and geometrical information, which requires hand-crafted
feature-based methods needed to further improve robustness and generalization perfor-
mance. Therefore, the more abstract and discriminative features need to be extracted from
the above low-level features for complex HR SAR classification tasks.

Due to the unique characteristic of the coherent speckle, the distribution of pixel
values within SAR images provides much valuable information. Statistically modeling
the terrain distributions is an effective tool for SAR image analysis. There are already
some traditional non-Gaussian models to describe the distribution characteristics of SAR
images, such as Fisher [18], generalized Gamma [19], Nakagami-Gamma [20], heavy-tailed
Rayleigh [21], etc. To fully capture the complex content of HR SAR images, some new



Remote Sens. 2021, 13, 328 3 of 26

statistical models, such as the scale mixture of Gaussian (SMoG) [22], generalized Gamma
hybrid model [23], lognormal mixture model [24], beta generalized normal distribution [25],
and complex generalized Gaussian model [26], have been proposed for statistical analysis.
Frery et al. [27] propose a generalized statistical framework for HR SAR images. Generally,
these models are then used in a Bayesian inference framework such as Markov random
field [28] to realize classification. However, these statistical models generally have strict
assumptions or are effective for specific scenarios. Meanwhile, parameter estimation is
also very important for the accurate modeling of HR SAR data. Besides, these models are
based on pixel values and do not establish effective relationships with high-level features.
We find that the essence of the statistical model is to capture the high-order statistics of
SAR images for data representation. Therefore, the above analysis inspires us to capture
statistics from high-level features of SAR images that may be able to obtain more efficient
and discriminant feature representations.

Deep neural networks (DNN) [29] are capable of learning high-level features of images
hierarchically. Many studies have verified the powerful ability of DNN to discover signifi-
cant features and semantic relationships in SAR image classification. Geng et al. [30,31]
proposed a deep supervised and contractive neural network (DSCNN) for SAR feature
learning. Zhao et al. [32] proposed a discriminant deep belief network (DisDBN) for HR
SAR image classification. Ding et al. [33] investigated the capability of convolutional neural
networks (CNN) combined with data augmentation operations in SAR target recognition.
Chen et al. [34] proposed an all-convolutional network (A-CovNet) for SAR target recog-
nition, which consists of only sparsely connected layers to prevent over-fitting problems.
Li et al. [35] applied CNN to very-high-resolution SAR image classification. However,
the above-mentioned learning methods require a large number of labeled data to obtain
a satisfactory result. In actual application scenarios, manually annotating SAR data is
labor-intensive and time-consuming. Considering the scarcity of SAR labeled data, many
schemes such as domain adaptation [36], transfer learning [37], GAN [38], and unsuper-
vised feature learning [39], etc., have been proposed to solve the SAR image classification
problem. The sparse unsupervised feature learning has relatively simple structures and is
a feasible solution to relieve the needs of labeled samples. Recently, a new unsupervised
feature learning method [40] based on the dual-sparse encoder has been proposed. This
method optimizes the cost function driven by natural rules and performs hierarchical
unsupervised learning on CNN. However, [40] does not adequately consider the influence
of coherent speckles from SAR images, and the complementarity of features between
different levels is not fully utilized. Therefore, it is necessary to construct a CNN model
for extracting high-level features from HR SAR images. This model can make full use
of a large number of unlabeled data for feature learning and can take into account the
complementarity of features between different levels, to realize the discriminant feature
extraction of SAR objects.

1.2. Motivations and Contributions

Based on an overall consideration, the objective of this paper aims at combining
the advantages of statistical analysis and representation learning to realize pixel-based
classification of HR SAR images with resolution equal to or even less than 1 m. First,
some previous CNN models [34,35] only use the features of the last convolutional layer
for SAR image classification without the full consideration of the information obtained by
the additional layers. Second, to capture statistics from high-level features of SAR images,
Liu et al. [41] proposed a statistical CNN (SCNN) for land-cover classification from SAR
images, which characterize the distributions of CNN features by the first- and second-
order statistics (including mean and variance). However, the variance only considers the
statistical properties of independent feature maps and does not establish the interaction
between the feature maps. As a second-order statistical method, covariance has a more
robust representation than the mean and variance [42]. He et al. [43] proposed a method
that combines multi-layer CNN feature maps and covariance pooling for optical remote
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sensing scene classification. Ni et al. [44] proposed a multimodal bilinear fusion network,
which used the covariance matrix to fuse the optical and SAR features for land cover
classification. Generally, the above methods map the covariance directly to the Euclidean
space through the matrix logarithm operation for classification [45]. However, they do
not further extend the covariance matrix to the deep network to deeply mine the potential
discriminant features of second-order statistics.

To tackle the above problems, we propose a novel HR SAR image classification method,
using a multi-scale deep feature fusion network and covariance pooling manifold network
(MFFN-CPMN). MFFN-CPMN combines the advantages of local spatial features and global
statistical properties and considers the multi-feature information fusion in representation
learning to describe a SAR image. To our knowledge, this is the first approach that
integrates the CPMN with the CNN for classification HR SAR images with a resolution
equal to or even less than 1 m. The main contributions of this paper lie in two folds.

1. We propose a Gabor-filtering-based multi-scale feature fusion network (MFFN) to
obtain the effective spatial feature representation. MFFN combines the strengths of
unsupervised denoising dual-sparse encoder and multi-scale CNN to learn discrimi-
native features of HR SAR images. Meanwhile, MFFN introduces the feature fusion
strategies in both intra-layer and inter-layer to adequately utilize the complementary
information between different layers and different scales.

2. We introduce a covariance pooling manifold network (CPMN) to capture the statistical
properties of the HR SAR image in the MFFN feature space. The CPMN characterizes
the distributions of spatial features by covariance-based second-order statistics and
incorporates the covariance matrix into the deep network architecture to further make
the global covariance statistical descriptor more discriminative of various land covers.

The rest of this paper is organized as follows. The proposed classification method
MFFN-CPMN is described in Section 2. Experimental results and analysis on three real HR
SAR image data are presented in Section 3. Finally, the conclusion is drawn in Section 4.

2. Materials and Methods

Figure 2 shows the schematic of the proposed MFFN-CPMN-based classification
method for the HR SAR image. In general, the proposed method consists of the following
two steps: (1) Gabor filtering-based multi-scale deep fusion feature extraction; (2) global
second-order statistics extraction and classification based on covariance pooling manifold
network. The proposed method is elaborated in detail in the following subsections.

Figure 2. Framework of the proposed method for high-resolution synthetic aperture radar (HR SAR) image classification.

2.1. Gabor Filtering-Based Multi-Scale Deep Fusion Feature Extraction
2.1.1. Extraction of Gabor Features

CNN can learn the high-level representation from the low-level features of the SAR
data in a hierarchical way. Thus, the representation ability of the low-level features will
affect the following high-level representation. The backscattering of the single-polarized
HR SAR image is very sensitive to the shape and orientation of the scatterers. Moreover,
complex geometrical information and coherent speckle exist in the SAR image. If only the
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raw image is used to optimize the first layer parameters of the network, the above factors
may harm the performance of CNN in extracting SAR image features. Taking into account
that the Gabor filter [46] has direction selection characteristics, it is compatible with the
orientation-sensitive of the SAR image. Gabor filtering can extract rich multi-scale and
multi-direction spatial information, which may reduce the feature extraction burden of
CNN.

The Gabor filter is modulated by a Gaussian function and a sinusoidal plane wave [47],
whose general function can be defined as:

Gu,v(x, y) = f 2

πγη exp
(
−
(

α2x′2 + β2y′2
))

exp(j2π f x′)
x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ

(1)

where f is the central frequency of the sinusoid. θ denotes the orientation of the Gabor
function. α and β is the sharpness of the Gaussian along the two axes, respectively. γ = f /α
and η = f /β are defined to keep the ratio between frequency and sharpness.

To get Gabor features, a set of Gabor filters with different frequencies and orientations
are required as follows:

f = fmax/
√

2
u
, θv =

v
8

π u = 0, . . . , U − 1, v = 0, . . . , V − 1. (2)

Here, fmax is the highest peak frequency of the Gabor function. U and V represents the
number of scales and orientations of Gabor filters, respectively. Then, Gabor features are
extracted by convoluting the SAR image I(x, y) with every Gabor filter Gu,v(x, y) as follows:

Fu,v(x, y) = |I(x, y)⊗Gu,v(x, y)|, (3)

where Fu,v denotes the Gabor features corresponding to scale v and orientation u, respec-
tively. ⊗ and | · | are convolution and absolute operators, respectively. By stacking the
Gabor feature maps with different scales and different orientations, this step can enrich the
low-level features of objects used for CNN classification.

2.1.2. Multi-Scale Deep Feature Fusion Network

The main three components of the traditional CNN are a convolutional layer, a
nonlinear activation layer, and a pooling layer. Formally, the forward pass operations of
the lth layer in CNN can be defined as follows:

Fl = pool
(

σ
(

Fl−1 ⊗Wl + bl
))

, (4)

where Fl−1 is the input feature map of the lth layer, Wl and bl are weights and bias of the
lth layer, respectively. σ(·) is the nonlinear activation function, and the sigmoid function is
used in our work. pool(·) denotes the pooling operation. The input features F0 of the first
layer of CNN are the Gabor features extracted above.

HR SAR images contain both complex objects and extended areas. On the one hand,
the traditional CNN using a single-scale convolution kernel may not accurately capture
local details of different sizes. On the other hand, our CNN model is trained in a greedy
layer-wise unsupervised learning manner. The complementarity of features between
different layers cannot be captured due to the lack of feedback information. Moreover, the
shallow features of CNN tend to extract the local spatial structural information, while the
deep features contain the global spatial layout information of the objects. Based on the
above analysis, we need to excavate the potential information hidden in different scales
and different layers to improve the feature representation capacity. Thus, we present two
fusion strategies in our multi-scale feature fusion network (MFFN) to integrate local and
global features between different scales and layers.
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The first one is intra-layer fusion, which emphasizes the fusion of various local infor-
mation in each layer. Specifically, inspired by the inception module [48], we aim to capture
the multi-scale information from the input features of each layer. As shown in Figure 3a,
an original inception model is given. It used multiple convolutional layers with different
kernel sizes to extract the multi-scale feature. The output features are further concatenated
as the final output. In our experiment, we find that the 1× 1 convolution kernel does not
bring meaningful improvement to the accuracy. This may be because the 1× 1 convolution
focuses on the location itself and cannot obtain enough neighbor information. Thus, as
shown in Figure 3b, we propose to construct a multi-scale convolution module by using
filters of sizes 3, 5, and 7. In addition, since the unsupervised learning method we adopted
allows the model with large numbers of input feature channels efficiently, the feature
concatenation will significantly increase the model parameter amount and computational
burden. Considering a balance between accuracy and computational cost, we adopt the
sum-based fusing mechanism to reduce feature dimensions and improve efficiency. The
accuracy and computational cost are reported in the experiments. Correspondingly, the
process of intra-layer fusion can be expressed as follow:

Fl
sum = pool

(
σ
(

Fl
s=3

)
+ σ

(
Fl

s=5

)
+ σ

(
Fl

s=7

))
, (5)

where Fl
sum represents the fused features of the lth layer, s denotes the convolution kernel

size at the current scale. Fl
s represents the convolution feature output of the filter of size s.

Figure 2 shows the visualized multi-scale convolution feature maps. It can be seen that by
introducing different kinds of convolution kernels, the diversity of extracted local features
are increased. These features are conducive to further improving the feature representation
ability of our model.

Figure 3. The multiscale convolutional kernel model. (a) The naïve inception module. (b) The proposed multiscale fusion
model.

The second strategy is inter-layer fusion. As we know, the features of different layers
contain different levels of spatial-contextual information. The shallow features mine
low-level structure information, while the deep layers generate the high-level semantical
features. To compensate for the loss of interaction information between layers due to the
unsupervised layer-wise training, we fuse the features from different layers to capture the
complementary information and enhance global feature representation. As shown in the
green dashed line in Figure 2, the features of each layer in MFFN are concatenated to obtain
the final fusional features. We do not use summation fusion here because summation fusion
is difficult to retain the special information of the features of each layer, which may cause
the information loss of the local structure. Besides, since the spatial dimension of different
layers is inconsistent, we adopt the average pooling operation to transform the dimensions
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of all layers to be consistent. Finally, the feature fusion can be easily performed with a way
of concatenation. The whole process can be represented by the following equations:

F f usion = g1

(
F1

sum

)
∪ · · · ∪ gl

(
Fl

sum

)
∪ · · · ∪ gL

(
FL

sum

)
, (6)

where Fl
sum is the output feature maps of the lth layer, the gl denotes the dimension-

matching function based on average pooling. ∪ refers to the concatenation operation.
F f usion denotes the final fusional features of MFFN. To illustrate the effect of our fusion
strategy, the different ways of fusing features are also verified in the experiments.

In the orange part of Figure 2, a two-layer MFFN model is presented. First, the whole
model takes Gabor features as input and obtains multi-scale feature maps through multi-
scale convolution. Then, the nonlinear activation and summation fusion of the features
are carried out. The final multi-scale fusional feature output is obtained by concatenation
of multi-layer features. Note that our pooling step uses a 3× 3 pooling region size with
pad = 2 instead of a 2× 2 pooling size to reduce the grid effect. This is mainly because
the 2× 2 pooling regions are disjointed, and more information is lost in each pooling layer.
The overlapping pooling can reduce the spatial information loss of each layer to a certain
extent, thereby improving the performance of the model [49].

2.1.3. Greedy Layer-Wise Unsupervised Feature Learning

An important aspect is how to train the weights W and bias b of the proposed MFFN
model. Considering the limited SAR labeled samples, we update the parameters of MFFN
by the layer-wise pre-training based on the unsupervised criterion [50]. Benefitting from
the characteristics of meta parameters-free and simple rules, we introduce a new denoising
dual-sparse encoder to realize the unsupervised learning of model parameters. The blue
box of the first part in Figure 2 shows the proposed denoising dual-sparse encoder. Next,
the detailed denoising dual-sparse encoder algorithm is described. To train the parameters
of the lth layer, a set of small unlabeled patches Dl−1

s ∈ RN×P randomly extracted from
the output feature maps of the (l − 1)th layer as the training data. N is the number of
patches. Every row of Dl−1

s is a vectorized patch and P = s2 · Nl−1
h is the dimension of

vectorization. Nl−1
h is the output dimension of (l − 1)th layer. Then, inspired by the de-

noising autoencoder [51], we applied the denoising mechanism to the dual-sparse encoder
model. We found that introducing this operation can further enhance the robustness of the

model to noise. Specifically, we corrupt Dl−1
s into the vector

∼
D

l−1

s with a certain probability
λ through a stochastic mapping:

∼
D

l−1

s ∼ ϕ

(∼
D

l−1

s

∣∣∣∣Dl−1
s , λ

)
, (7)

where ϕ(·) is a type of distribution determined by the original distribution of Dl−1
s and the

type of random noise added to Dl−1
s . In general, ϕ is set to Bernoulli distributions, and the

element components in the input Dl−1
s are randomly forced to 0 with the probability of λ

(λ is set to 0.5 in our work), and the others are left untouched.
For the lth layer, the feature output formula is as follows:

Hl
s = σ

(∼
D

l−1

s Wl
s + bl

s

)
, (8)

where Hl
s ∈ RN×Nl

h is the feature output matrix of the lth layer. Wl
s ∈ RP×Nl

h and bl
s ∈

R1×Nl
h are the weights and bias at the s scale of the lth layer convolution kernel, respectively.

Notably, the Wl
s here corresponds to the convolution kernel of each scale under each layer in

MFFN. Thus, the trained parameter Wl
s can be reshaped into the form Wl

s ∈ Rs×s×Nl−1
h ×Nl

h ,
and are applied to the location of the corresponding convolution kernel. To form a sparse
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optimization function, a dual sparse encoder based on enforcing population and lifetime
sparsity (EPLS) [40] is used to restricts the Hl

s units to have a strong dual sparsity and builds
a one-hot sparse target matrix Tl

s. Finally, the parameters can be upgraded by minimizing
the L2 norm of the difference between Hl

s and Tl
s:

Wl∗
s , bl∗

s = arg min
Wl

s ,bl
s

S

∑
s

∥∥∥Hl
s − Tl

s

∥∥∥2

2
, (9)

The model can be efficiently trained through the mini-batch stochastic gradient descent
with adadelta [52] adaptive learning rate. Figure 4 shows the model structure of the
denoising dual-sparse encoder. After the model completed the training of the current layer,
the weights are applied to the convolution kernel location to obtain the output convolution
feature map as the input of the next layer. Repeat the training process until the parameters
of all layers are pre-trained. The whole procedure of optimizing parameters is purely
unsupervised, and there is no need to carry out the fine-tuning after the layer-wise training.

Figure 4. The model structure of the denoising dual-sparse encoder.

We can summarize our MFFN feature extraction in detail in Algorithm 1. The superi-
ority of the proposed MFFN method is threefold. First, the Gabor filtering can enhance the
richness of low-level features and reduce the training burden of the MFFN. Second, the
multi-scale convolution module based on unsupervised learning can enrich the diversity of
features in intra-layer and make full use of a large number of unlabeled patches as training
data. Last but not least, the two different fusion strategies are adopted in both intra-layer
and inter-layer, which can not only strengthen various local information in different scales
but also capture complementary and interaction information between different layers. The
three advantages mentioned above enable the MFFN that becomes a very effective feature
extraction model for HR SAR data under a relatively shallow network structure.

Algorithm 1 Gabor filtering-based multiscale unsupervised deep fusion feature extraction.

Input: The SAR image I, Layer number L
1: Extract Gabor features of the SAR image based on (1).
2: Initialize input feature maps F0 = {Fu,v, u = 0, . . . , U − 1, v = 0, . . . , V − 1};
3: Initialize weights and bias W, b ∼ N(0, 0.01);
4: for l = 1 to L do
5: Generate Dl−1

s , s = 3, 5, 7 by randomly extracting N patches from Fl−1
sum; Corrupt Dl−1

s

into
∼
D

l−1

s , and map
∼
D

l−1

s to Hl
s by (7) and (8);

6: Obtain Wl−1
s , bl−1

s by solving (9) and update the parameters of MFFN;
7: Extract lth layer multiscale feature Fl

s of MFFN by (2), and get the final feature output

by sum fusion: Fl
sum = pool

(
σ
(

Fl
s=3

)
+ σ

(
Fl

s=5

)
+ σ

(
Fl

s=7

))
;

8: end for

Output: The pretrained MFFN model.
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2.2. Global Second-Order Statistics Extraction and Classification Based on CPMN

During the feature classification stage, mainstream CNNs typically use global average
pooling [53] to aggregate the output features at the end of the network. However, this
method can only capture the first-order information of features, thereby ignoring the statis-
tical properties of a SAR image between feature channels. It makes the model less adaptable
to complex tasks such as SAR image classification. To make the feature representation
more powerful, we adopt a second-order statistical method based on covariance analysis
to extract more discriminatory and valuable features.

2.2.1. Multilayer Feature Fusion Based on Covariance Pooling

To construct the input of CPMN, covariance pooling is used to form a covariance
matrix for the output features of MFFN. Following the process in Figure 1, we take an
64× 64 input sample as an example, and the number of features is set to Nh. We have
the feature output F1

sum ∈ R64×64×Nh of the first layer and the feature output F2
sum ∈

R32×32×Nh of the second layer. Then, we average pooling the feature F1
sum to obtain the

downsampling feature F̂1
sum ∈ R32×32×Nh , making it consistent with the spatial dimension

of the second layer of features F2
sum. After that, we stack the features of each layer to get

the fusional features F f usion =
[
F̂1

sum; F2
sum

]
∈ R32×32×2Nh . Finally, the covariance matrix

can be computed as:

C =
1

n− 1

n

∑
j=1

(
f j − µ

)(
f j − µ

)T , (10)

where f j, j = 1, . . . , n detnotes vectorization of F f usion along the third dimension and
µ = (1/n)∑n

j=1 f j. To make the covariance matrix strictly positive definite (SPD), regular-
ization [44] is applied to C. The covariance matrix by adding a multiple of the trace to
diagonal entries of the covariance matrix:

C+ = C + ε · trace(C)̃I, (11)

where ε is a regularization value and Ĩ is the identity matrix. Compared with first-order
statistical features, the covariance matrix brings second-order statistics, which can obtain
better regional feature description ability.

2.2.2. Covariance Features Classification Based on Manifold Network

The covariance matrix obtained above usually resides on the Riemannian manifold of
the SPD matrix [45]. The standard method is often to apply a logarithmic transformation
to map the Riemannian manifold structure to the Euclidean space [43,54]. Then, the upper
triangular matrix is vectorized and input into a linear classifier to achieve classification.
However, the covariance matrix obtained by the multi-layer feature fusion of CNN has
large dimensions. In [43], a channel-average fusion strategy is proposed to reduce the
dimensionality of CNN feature maps. Nevertheless, we find that when applied to SAR
image classification, the channel-average fusion may cause a significant informative loss
of some channel features, thereby degrading the performance of covariance features. To
obtain more discriminative covariance features, a Riemannian manifold network is adopted
to achieve the covariance-based feature classification. This network not only integrates
the covariance matrix into the deep network but also reduces the dimensionality of the
covariance matrix without losing geometric structure. The main three building blocks
of a manifold network [55] are bilinear mapping (BiMap) layers, eigenvalue rectification
(ReEig) layers, and an eigenvalue logarithm (LogEig) layer, respectively. The light blue
part in Figure 1 shows our manifold network classification framework.

Specifically, given a covariance matrix C as input, the BiMap layer transforms the
input SPD matrices to new SPD matrices by a bilinear mapping fb as:

Ck = fb(Ck−1; Wl) = WkCk−1Wk
T , (12)
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where Ck−1 is the input SPD matrix of the kth layer. Wk ∈ Rdk×dk−1 be weight matrix in the
space of full rank matrices, Ck ∈ Rdk×dk is the resulting matrix. According to the manifold
learning theory, retaining the original data structure is beneficial for classification. Thus,
the BiMap layer reduces the dimensionality of the covariance matrix while preserving the
geometric structure.

Then, a non-linearity is introduced by the ReEig layer to improve discriminative
performance. The ReEig Layer is used to rectify the SPD matrix by tuning up their small
positive eigenvalues:

Ck = fr(Ck−1) = Uk−1max
(

τĨ, ∑k−1

)
Uk−1

T , (13)

where Uk−1 and ∑k−1 are achieved by eigenvalue decomposition (EIG) Ck−1 = Uk−1 ∑k−1
Uk−1

T, τ is a rectification threshold. The max operation is element-wise matrix operation.
Further, to enable the covariance features to be classified on a standard Euclidean

space classifier, we use the LogEig layer to map the output SPD matrices lie on the Rieman-
nian manifold to the Euclidean space. Formally, the LogEig layer applied in lth layer is
defined as:

Ck = log(Ck−1) = Uk−1 log
(
∑k−1

)
Uk−1

T , (14)

where Ck−1 = Uk−1 ∑k−1 Uk−1
T is an eigenvalue decomposition and log is an element-wise

matrix operation.
In the end, the vector forms of the outputs can be fed into classical softmax layers

for classification. The class conditional probability distribution of each sample the cross-
entropy [56] is used to measure the prediction loss L of the network based on

pc
i =

ezi

∑T
t=1 ezi

, c = 1, . . . , T, L = −∑
c

ci log(pi), (15)

where zi is the vectorized feature vector of the LogEig layer, T is the total number of classes.
The matrix back-propagation methodology formulated in [55] is adopted to compute the
partial derivative to the covariance matrix. The stochastic gradient descent is utilized
to learn the network parameters. The implementation detail of optimizing the manifold
network is summarized in Algorithm 2.

Algorithm 2 Manifold Network Training.

Input: Training samples X = {X1, X2, . . . , XM}, and corresponding labels Y = {Y1, Y2, . . . , YM},
number of BP epochs R.
1: compute covariance matrix C of each Xm using (10) and (11);
2: Initialize weights Wl of each BiMap layers, rectification τ = 0.0001;
3: while epoch r = 1 to R do
4: while training sample i = 1 to M do

Compute the matrix mapping Cl by (12), (13) and (14);
Compute the softmax activation and the loss function by (15);

5: Back-propagate error to compute cross-entropy loss gradient ∂L
∂zi

;
6: The loss of the k-th layer could be denoted by a function as L(k) = L ◦ f (k−1) . . . ◦ f (1)

7: Update network parameter of each layer based on partial derivatives
∂L

(k)

∂Wk
= ∂L

(k+1)

∂Xk

∂ f
(k)

∂Wk
, ∂L

(k)

∂Xk−1
= ∂L

(k+1)

∂Xk

∂ f
(k)

∂Xk

8: The update formula for the BiMap layer parameter Wl is

Wr+1
k = Γ

(
Wr

k − α
∼
∇L(k)

Wr
k

)
where

∼
∇L(k)

Wr
k
= ∇L(k)

Wr
k
−
∼
∇L(k)

Wr
k

(
Wt

k
)TWt

k , ∇L(k)
Wr

k
= 2 ∂L

(k+1)

∂Xk
Wr

k Xk−1;
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9: The gradients of the involved data in the layers below can be compute

∂L
(k)

∂Xk−1
= 2U

(
PT ◦

(
UT ∂L

(k′ )

∂U

)
sym

)
UT + U

(
∂L

(k′ )

∂ ∑

)
diag

UT

For the ReEig layers
∂L

(k′ )

∂U = 2
(

∂L
(k+1)

∂Xk

)
sym

Umax(τ I, ∑)

∂L
(k′ )

∂ ∑ = QUT
(

∂L
(k+1)

∂Xk

)
sym

U, Q(i, i) =
{

1,
0

∑(i, i) > τ

∑(i, i) ≤ τ

For the LogEig layer
∂L

(k′ )

∂U = 2
(

∂L
(k+1)

∂Xk

)
sym

U log(∑), ∂L
(k′ )

∂Σ = ∑−1 UT
(

∂L
(k+1)

∂Xk

)
sym

U

10: end while
11: end while

Output: The trained Manifold network classification model.

3. Results
3.1. Experimental Data and Settings

To validate the performance of the proposed method, four real HR SAR images
obtained from different sensors, including the TerraSAR-X satellite, Gaofen-3 SAR satellite,
China airborne SAR satellite, and F-SAR satellite were adopted. The detailed information
of four real HR SAR images is shown in Table 1. For each dataset, the ground truth images
are generated by manual annotation according to the associated optical image, which can
be found in Google Earth.

Table 1. Detailed information on real HR SAR images.

Satellite Band Size Resolution Polarization Date Location

TerraSAR-X X 1450*2760 0.5 m HH 10/2013 Lillestroem, Norway

Chinese Gaofen-3 C 2600*4500 1 m HH 03/2017 Guangdong, China

Chinese Airborne Ku 1800*3000 0.3 m HH 10/2016 Shaanxi, China

F-SAR X 6187*4278 0.67 m VV 10/2007 Traunstein, Germany

TerraSAR-X data: The data of TerraSAR-X (http://www.intelligenceairbusds.com)
are the region of Lillestroem, Norway. It was acquired in October 2013 with X-band and
HH polarization. The image has 1450× 2760 pixels in size, and the resolution of this data
is 0.5 m. The acquisition mode of the data is staring spotlight. The original image and
the ground-truth are shown in Figure 5a,b. Five classes of interest are considered: Water,
residential, roads, woodland, and open land.

Figure 5. TerraSAR-X SAR image. (a) Original SAR image. (b) Ground-truth.

http://www.intelligenceairbusds.com
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Gaofen-3 data: The images of Gaofen-3 SAR records the area of Guangdong province,
China, with C-band and HH polarization, which were acquired in March 2017. The size of
this single-look data is 2600× 4500 with a spatial resolution of 1 m. The imaging mode is
the sliding spotlight. The original image and the ground-truth are presented in Figure 6a,b.
Six classes are included: Mountains, water, building, roads, woodland, and open land.

Figure 6. Gaofen-3 SAR image. (a) Original SAR image. (b) Ground-truth.

Airborne data: The third group of data is obtained from Chinese airborne covering
the area of Shaanxi province, China, with Ku-band. The image is HH-polarization data
with spotlight mode. The data were provided by the China Electronics Technology Group
Corporation (CETC) Institute. The pixel size of this image size is 1800× 3000 pixels, and the
spatial resolution is 0.3 m. Seven categories are included, which are open land, roads, rivers,
runway, woodland, residential, and commercial. The original image and the ground-truth
image are shown in Figure 7a,b.

Figure 7. Chinese Airborne SAR image. (a) Original SAR image. (b) Ground-truth.

F-SAR data: The fourth HR SAR image was acquired in Bavaria, Germany (https:
//www.dlr.de) with a VV-polar imaging mode. The data source is provided by an X-band
F-SAR sensor of the German Aerospace Center. The image size is 6187× 4278, with a spatial
resolution of 0.67 m. The original image and the ground-truth are shown in Figure 8a,b.
Four typical categories are included: Water, residential, vegetation, and open land.

To achieve pixel-based classification, training, validation, and test samples are needed
to be constructed. In our experiment, all the labeled pixels together with their neighbor-
hood image patches are extracted to form the samples. 64× 64-pixel image patches were
randomly selected according to the ground truth, which shows a balance between the
classification accuracy and computational cost. Five hundred samples of each class were
randomly selected and divided into training and validation, accounting for 90% and 10%.
The other labeled pixels were used for the testing. In the testing phase, we used a stride
greater than 1 to inference the test samples to avoid excessive computational costs. (we
set the stride to 5 in our paper). The obtained class probability map then upsampled the
original resolution with a negligible loss in the accuracy.

https://www.dlr.de
https://www.dlr.de
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Figure 8. F-SAR image. (a) Original SAR image. (b) Ground-truth.

The overall accuracy (OA), average accuracy (AA), the kappa coefficient, and class-
specific accuracy were used to measure the classification performance of the proposed
method quantitatively. The optimal parameters of all methods were selected based on
the best performance on the validation data. All results below were the mean values and
standard deviations by running five times of the experiments. Furthermore, all experiments
were implemented in MATLAB2014, with Intel I7 3.2-GHz CPU and 32-GB memory.

3.2. Parameter Settings and Performance Analysis of the Proposed MFFN-CPMN model

In this section, we first measured the sensitivity of different parameter settings on the
classification results and determined the optimal parameters for the proposed method. As
a public parameter choice, the Gabor filters were set with five scales and eight orientations,
which include [0, (π/8), (π/4), (3π/8), (π/2), (5π/8), (3π/4), (7π/8)]. This can maintain
robust low-level feature representation capabilities of the SAR image. For the training of
each layer of MFFN, the 30,000 unlabeled local small patches from the feature maps were
extracted to train the weight parameters. The corrupted probability of λ is set to 0.5 for
the denoising dual-sparse encoder, which can obtain the best performance. If the absolute
value of the loss function for two consecutive times was less than 10−4, the iterative training
update was terminated immediately. For the training of manifold networks, the mini-batch
size was set to 100, and the learning rate is set to 0.01. The maximum epoch was set to
150 experimentally. Then, the different parameter settings, including the effect of feature
number, the multi-scale convolution module, the number of layers, the effect of feature
fusion strategies, and the effect of the manifold network were evaluated in detail as follows.
Notably, the specific analysis and decision of the TerraSAR-X image will be elaborated
in this section. The parameter determination and the trend analysis of the Gaofen-3 and
Airborne SAR images are the same as the TerraSAR-X image. Despite some differences in
the resolution of each dataset, we hope to avoid parameter tuning for each dataset and
generalize the same optimization model to other datasets. This way is more suitable for
some application scenarios with tight time constraints, and it is more able to verify the
generalization performance of the model.

3.2.1. Effect of the Feature Number

First, we tested the impact of different feature numbers (includes 20, 50, 70, 100,
150, 200, 250, 300) on the classification accuracy. The number of features is related to the
performance of MFFN. To compare the results conveniently, the number of features is set
to be equal for each layer. The global average-pooling is adopted at the end of MFFN, and
the final features are fed to the Softmax classifier for evaluation. The experimental results
are shown in Figure 9. It can be observed that stable accuracy appears when the feature
number is set to 200. When the number of units exceeds 200, there is only a slight increase
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in the accuracy. Intuitively, the feature number in CNN can express the diversity of features.
Too few features may not have sufficient discriminability, and too many features will lead
to feature redundancy and increase computational complexity. Therefore, balancing the
running time and the classification accuracy, we set 200 as the feature number in each layer
in our experiment.

Figure 9. Classification accuracy of with different size of feature number.

3.2.2. Effect of Multi-Scale Convolution Kernel

Then, we tested the influence of multi-scale convolution kernel (MCK) on the classifi-
cation results. We fix the number of layers of MFFN as 4, and the number of features is
200. Furthermore, the global average-pooling is used at the end of MFFN to aggregate the
features. Meanwhile, we also compared the impact of the Gabor features on the classifi-
cation result of the MFFN model. Figure 10 shows the results with different convolution
kernel size. We used the symbols “MCK135” to represent the multi-scale convolution
module with filter sizes of 1, 3, and 5. Similarly, the symbol “MCK357” represents the
multi-scale convolution module with filter sizes of 3, 5, and 7. First, we can conclude that
the MFFN model with Gabor features as input can obtain better classification performance.
The reason is that the Gabor filter enhances the richness of low-level features and improves
the recognition accuracy of MFFN. Secondly, it can be seen that the proposed MFFN model
has a higher classification accuracy than the single-scale model. This indicates that the
multi-scale convolution kernel can mine the different scales information in the SAR image,
thereby improving the expressing ability of features. Besides, the “MCK357” module
obtained the best accuracy. Therefore, we use a multi-scale convolution module with filter
sizes of 3, 5, and 7 as the default setting for MFFN in our experiments.

Figure 10. Effect of the convolution kernels with different sizes on the overall accuracy (OA).
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3.2.3. Effect of the Denoising Dual-Sparse Encoder and Depth

Next, we evaluated the impact of the denoising dual-sparse encoder algorithm and
different network depths. To illustrate the effects of the denoising mechanism, we compare
the results of models with and without denoising to train the parameters in MFFN. The
comparison results are shown in Table 2. It can be seen that by introducing a denoising
mechanism, the proposed model can obtain better performance, which indicates that our
denoising dual-sparse encoder model is more robust to noise. Further, the deeper MFFN
can learn a more high-level of abstraction for the SAR image, and the abstraction level of
features can significantly impact the classification results. From this table, we can see that
the best performance can be achieved by setting the network depth to 4. Note that we
have not explored the deeper layers because the 64× 64 pixels are reduced to 4× 4 pixels
through 4 layers of downsampling. The deeper layers would overly contract the feature
space and blur the boundary of each category. Thus, the depth was set to 4 as the default
setting in our experiments.

Table 2. Effect of the denoising dual-sparse encoder and network depth.

Accuracy One Layer Two Layers Three Layers Four Layers

With
Denosing

OA 0.8064 0.8351 0.8578 0.8673
AA 0.8004 0.8305 0.8559 0.8711

Kappa 0.7352 0.7730 0.8031 0.8162

Without
Denosing

OA 0.7960 0.8254 0.8403 0.8490
AA 0.7839 0.8215 0.8414 0.8514

Kappa 0.7211 0.7603 0.7801 0.7916

3.2.4. Effect of Multi-Layer Feature Fusion

To evaluate the effectiveness of our fusion strategy of MFFN, we compared it with
different combination schemes of features. For convenience, we take the form “Intra-
sum&inter-concat” as an example to show the intra-layer summation and inter-layer
concatenation scheme. We use “none” to indicate that no feature fusion is performed, and
only the features of the last convolutional layer are used for classification. “Sum” and
“concat” represent the fusion of intra-layer or inter-layer features to obtain the final output
features, respectively. Additionally, global average-pooling is used to aggregate the final
features for classification. Table 3 lists the different feature fusion schemes. Meanwhile, it
also gives the corresponding model complexity, model running time, OA, and AA. It can
be seen that the “Intra-concat&inter-concat” scheme achieves the highest accuracy, but its
running time is about 2.5 times that of the intra-layer summation scheme. Further, we can
observe that the inter-layer summation scheme makes the classification accuracy have a
certain decrease. This may be due to the sum-based inter-layer fusion causing the loss of
the specific information of the local structure of each layer. The “Intra-sum&inter-concat”
scheme provides a tradeoff between performance and the running time. Thus, we choose
this scheme as the default setting for MFFN in our experiments.

Table 3. Effect of multi-layer feature fusion.

Fusing Methods Model Size Training Time OA AA

Intra-sum&inter-none 41M 3072 s 0.8383 0.8449
Intra-sum&inter-sum 41M 3149 s 0.8170 0.8101

Intra-sum&inter-concat 41M 3153 s 0.8673 0.8711
Intra-concat &inter-none 117M 7886 s 0.8592 0.8635
Intra-concat &inter-sum 117M 7934 s 0.8486 0.8475

Intra-concat &inter-concat 117M 8087 s 0.8763 0.8800



Remote Sens. 2021, 13, 328 16 of 26

3.2.5. Effect of Covariance Pooling Manifold Network

To verify the effectiveness of the covariance pooling manifold network, we defined
nine models with different architectures to evaluate their impact on accuracy. We used
M-1 to indicate that only the last layer features of MFFN (LLFN) were aggregated through
global average pooling (GAP), and it was referred to as “LLFN + GAP.” Correspondingly,
we define three manifold network structures based on LLFN. The M-2 was referred to as
“LFFN + CPMN (200)”, which means that there is no BiRe layer, but a 200× 200 covariance
matrix directly for LogEig transformation and classification. We use M-3 to represent
that there is one BiRe layer, which was referred to as “LFFN + CPMN (200–100)”. The
dimensionalities of the transformation matrices were set to 200× 100. For the M-4, it is was
referred to as “LFFN + CPMN (200–100–50)”. The M-4 includes two BiRe layers, and the
transformation matrix is 200× 100, 100× 50, respectively. Besides, we define the model
of M-5 for MFFN and GAP, which is denoted as “MFFN + GAP.” Similarly, we define
models M6~M9 as manifold network models containing different BIRE layers, respectively.
As shown in Table 4, the specific matrix transformation settings are similar to the model
settings of the above LLFN model.

Table 4. Classification accuracy comparison with different models.

Model Method OA AA Kappa

M-1 LFFN + GAP 0.8488 0.8499 0.7910
M-2 LFFN + CPMN (200) 0.8648 0.8767 0.8182
M-3 LFFN + CPMN (200–100) 0.8653 0.8764 0.8134
M-4 LFFN + CPMN (200–100–50) 0.8499 0.8594 0.7925
M-5 MFFN + GAP 0.8673 0.8711 0.8162
M-6 MFFN + CPMN (800) 0.8923 0.8975 0.8499
M-7 MFFN + CPMN (800–400) 0.8933 0.8978 0.8511
M-8 MFFN + CPMN (800–400–200) 0.8903 0.8952 0.8471
M-9 MFFN + CPMN (800–400–200–100) 0.8835 0.8893 0.8378

From Table 4, we can see that the LLFN-based manifold networks can obtain better OA
than GAP. Moreover, the OA and kappa of the MFFN+GAP model have higher accuracy
than the LFFN+GAP model, but AA is also close to LFFN+GAP. The reason is that the GAP
may ignore the spatial structure information of some targets, which makes the accuracy of
some categories decline. Further, we can see that the manifold network based on multi-layer
feature fusion can obtain better accuracy. By comparing the manifold network of different
layers, the best classification performance can be obtained when the transformation matrix
was set to 800× 400. As the number of layers increases, some structural information may be
lost due to the downsampling of the covariance matrix. Meanwhile, the risk of overfitting
may increase, which eventually leads to a decrease in classification accuracy. Based on the
above results, we chose M-7 as the classification model for subsequent experiments.

To further illustrate the effectiveness of model training, Figure 11 shows the training
and verification accuracy and loss corresponding to the above 9 models in the case of
minimum loss on the validation data. As we know, depth can improve the accuracy but
adding too many layers may cause overfitting and also downgrade the accuracy as well. It
can be seen that the M-7 model obtains the lowest loss on the validation set, and meanwhile,
it can be seen in Table 4 that M7 obtains the best result on the test set, which is consistent
with our analysis of Table 4.

3.3. Experiments Results and Comparisons

To evaluate the performance of the proposed method, the related methods are con-
sidered for comparison, including two groups of feature extraction algorithms based on
traditional features and deep learning models. The approaches and settings included in
the comparison are summarized as follows.
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Figure 11. Training and validation accuracy and losses with different training models.

Gabor [16]: The mean of the magnitude of Gabor filter responses with 5 scales and
8 orientations are adopted.

Covariance of Textural Features (CoTF) [34]: The covariance descriptor based on
Gabor features are calculated. Then, the covariance matrices are mapped into a reproducing
kernel Hilbert space.

BOVW [13]: The same number of codebooks as MFFN is generated from the small
unlabeled patches. Then, the histogram features are computed by using these codebooks
to characterize each SAR sample.

DCAE [18]: A deep convolutional autoencoder (DCAE) is designed as in [18]. First,
a series of filters are utilized as convolutional units to comprise the GLCM, and Gabor
features together. Furthermore, the two-layer SAE is used to learn high-level features.

EPLS [27]: We adopt the same number of network layers and feature units as MFFN.
The differences are that the original EPLS algorithm [27] is utilized for training the param-
eters of each layer of CNN. The CNN model only uses the 3× 3 convolution kernel to
extract the features.

Standard CNN [22]: The standard CNN (SCNN) model contains five layers, and the
first three layers are the convolutional layers. The size of all the convolutional kernels is
5× 5. The numbers of the convolutional filters are 64, 128, and 256, respectively. An FC
layer with 500 units and a Softmax layer is connected to the end of CNN.

A-ConvNets [47]: To avoid the overfitting problem due to limited training data in
SAR target classification, an all-convolutional network (A-ConvNets) is constructed. This
CNN model only consists of five convolutional layers, without FC layers being used. All
parameters are set to the default values as in [47].

MFFN-GAP: To further illustrate the difference between the first-order statistics and
second-order statistics, we also compared the MFFN model based on global average
pooling. This method is consistent with the M-5 model we mentioned in Section 3.2.5 above.

MSCP [32]: To evaluate the effect of the manifold network, we use the multi-layer
stacked covariance pooling (MSCP) for SAR image classification. Due to the difference in
SAR and optical imaging mechanisms, we use our MFFN instead of the VGG16 model
as feature extractor, focusing on contrasting the covariance pooling by MSCP. Although
MSCP is not designed for SAR images, it can still be used as a benchmark to verify our
covariance pooling manifold network algorithm.

Note that the features extracted by all the above algorithms are classified using Softmax
for fair comparison. The same model structure obtained above is applied to three datasets
to verify whether the model is stable enough for SAR images from different sensors.

3.3.1. TerraSAR-X SAR Image

In this section, experiments are conducted on the TerraSAR-X data to evaluate the
performance of the different classification methods. Table 5 reports the class-specific
accuracy, AA, OA, and kappa coefficient. We can see that the proposed MFFN-CPMN
produces much better classification accuracies than other classification methods. The
overall accuracy of our approach can reach 89.33%, the average accuracy can reach 89.78%,
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and the kappa coefficient can reach 0.8511. Compared with Gabor and CoTF, the proposed
MFFN-GAP yields superior classification accuracy than the traditional feature descriptor.
This indicates that our MFFN-GAP learns the more discriminant feature representation
from Gabor features. Compared with BoVW and DCAE, our proposed model yields
higher classification results, which shows that our deep MFFN model can extract more
effective features than these shallow feature learning methods. Compared with CNN
models including EPLS, SCNN, and A-ConvNet, MFFN achieves better performance in
terms of OA and AA. This is because our MFFN considers the complementarity of multi-
scale and inter-layer information. It can also be seen that the recognition performance
of our method is relatively stable in each category. The SCNN method has a very high
recognition rate for water, while the classification accuracy for the road is low. It illustrates
that our unsupervised feature learning has better generalization performance in feature
extraction compared with the supervised training network which is directly oriented to the
classification task. Moreover, Compared with MFFN-GAP and MSCP, the CPMN in our
MFFN-CPMN is able to improve the OA and AA, which indicates that our CPMN can not
only capture the correlation of MFFN features but also further improve the discriminative
ability of covariance descriptor through the manifold network. In summary, the proposed
MFFN-CPMN shows that the joint consideration of the deep data and statistical features of
SAR images can effectively improve the performance of the algorithm for complex SAR
image classification tasks.

Table 5. Classification performance of TerraSAR-X SAR image with different methods.

Gabor CoTF BOVW DCAE EPLS SCNN A-ConvNet MFFN-
GAP MSCP MFFN-

CPMN

Water 93.68 ± 1.04 91.89 ± 0.16 84.27 ± 0.16 92.16 ± 0.73 90.02 ± 0.77 96.39 ± 0.87 93.83 ± 0.50 95.81 ± 1.08 97.85 ± 0.80 97.73 ± 0.31
Residential 86.03 ± 0.66 87.12 ± 1.67 81.50 ± 1.51 80.09 ± 0.88 77.50 ± 1.55 88.82 ± 0.13 85.57 ± 1.59 87.02 ± 1.02 91.19 ± 1.02 91.43 ± 0.92
Wood land 71.94 ± 0.57 82.77 ± 1.78 77.84 ± 1.22 77.44 ± 0.79 71.13 ± 0.03 85.44 ± 0.38 94.38 ± 1.43 88.06 ± 0.67 91.17 ± 0.67 92.13 ± 0.25
Open land 54.88 ± 1.03 70.89 ± 1.56 69.97 ± 1.10 74.48 ± 1.38 70.02 ± 0.85 80.40 ± 0.74 76.65 ± 0.63 86.09 ± 0.85 84.46 ± 0.85 85.89 ± 0.32

Road 28.54 ± 1.67 48.19 ± 0.62 69.79 ± 0.12 67.91 ± 0.42 59.81 ± 0.32 67.98 ± 0.83 81.24 ± 0.11 78.55 ± 0.29 81.48 ± 0.29 81.72 ± 1.08
OA 69.96 ± 0.64 78.60 ± 0.03 76.44 ± 0.06 77.60 ± 0.88 73.49 ± 0.05 84.46 ± 0.39 84.00 ± 0.34 86.73 ± 0.08 88.69 ± 0.08 89.33 ± 0.18
AA 67.01 ± 0.32 76.17 ± 0.13 76.68 ± 0.11 78.41 ± 0.67 73.70 ± 0.15 83.81 ± 0.29 86.34 ± 0.23 87.11 ± 0.35 89.35 ± 0.35 89.78 ± 0.38

κ × 100 59.49 ± 0.63 70.65 ± 0.03 67.94 ± 0.04 69.56 ± 1.11 64.30 ± 0.07 78.42 ± 0.49 78.14 ± 0.37 81.62 ± 0.15 84.26 ± 0.15 85.11 ± 0.27

The classification result maps of all methods are shown in Figure 12. It can be seen
that traditional feature descriptors such as Gabor and CoTF can hardly identify road
categories with structural features. Due to the influence of shadows, woodland and open
lands have similar scattering intensities in some areas. It can be seen that methods such as
BoVW, DCAE, and EPLS have produced severe misclassification in these two categories.
The SCNN, A-ConvNet, and MFFN-GAP models can identify and distinguish each type
of target. Meanwhile, it can be seen that there are fewer “pepper” noise classification
phenomena appearing on the classification map. Finally, compared with the ground-
truth, it can be concluded that the proposed MFFN-CPMN method has a smoother label
consistency in each class area and has better classification appearance performance.

3.3.2. Gaofen-3 SAR Image

The four quantitative metrics, including the accuracy of each class, OA, AA, and
kappa coefficient of the different classification methods, are listed in Table 6. As can be
observed, the proposed MFFN-CPMN outperforms the other approaches as it produced
the highest classification accuracies. The OA, AA, and kappa reach 90.03%, 91.91%, and
0.8704, respectively. Compared with Gabor and CoTF, the proposed MFFN-GAP achieves
higher accuracy than traditional features, which illustrates that our MFFN model can learn
a high-level representation from low-level Gabor features. The classification accuracies
of BoVW, DCAE, and EPLS are unsatisfactory, mainly because the multiplicative noise
contained in the Gaofen-3 image weakens the feature expression ability of these models in
the feature learning process. Our MFFN takes into account the influence of noise in feature
learning, and the introduced denoise mechanism makes the learned features more robust.
Compared with SCNN and A-ConvNet, we can see that the MFFN-GAP can get a 2% ~ 4%
improvement in AA. This indicates that the multi-scale convolution module and feature
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fusion strategy designed in our MFFN model improve the feature discrimination ability
than the single-scale convolution module in SCNN and A-ConvNet. In addition, MFFN-
CPMN outperforms MFFN-GAP with about 3% improvement in AA. It indicates that global
second-order statistics in the MFFN can enhance the classification performance than global
average pooling. Meanwhile, our MFFN-CPMN integrates the covariance matrix into the
deep manifold network, which can also obtain more accurate feature representations and
classification performance than the pooling method proposed by MSCP.

Figure 12. Classification maps of TerraSAR-X image with different methods. (a) Ground-truth. (b) Gabor. (c) CoTF. (d)
BOVW. (e) DCAE. (f) EPLS. (g) SCNN. (h) A-ConvNet. (i) MFFN-GAP. (j) MSCP. (k) MFFN-CPMN.

Table 6. Classification performance of Gaofen-3 SAR image with different methods.

Gabor CoTF BOVW DCAE EPLS SCNN A-ConvNet MFFN-
GAP MSCP MFFN-

CPMN

Mountain 46.23 ± 0.51 71.57 ± 0.54 51.57 ± 1.16 61.85 ± 0.80 49.28 ± 0.29 81.75 ± 0.90 85.24 ± 0.36 83.18 ± 0.09 81.25 ± 0.74 84.04 ± 0.36
Water 92.85 ± 0.24 89.05 ± 0.08 91.03 ± 0.09 91.28 ± 0.14 93.45 ± 0.28 94.56 ± 1.15 95.54 ± 0.86 96.02 ± 0.28 95.16 ± 0.34 95.42 ± 0.12

Building 58.04 ± 1.25 82.06 ± 1.01 67.91 ± 0.37 77.46 ± 0.66 60.71 ± 0.03 81.16 ± 1.09 86.67 ± 1.30 84.44 ± 0.13 86.89 ± 0.46 89.89 ± 0.05
Roads 69.25 ± 0.04 91.24 ± 0.18 87.14 ± 0.80 93.57 ± 1.06 68.98 ± 3.15 92.78 ± 0.08 92.90 ± 0.77 95.46 ± 0.33 97.70 ± 0.17 98.38 ± 0.88

Woodland 81.24 ± 1.67 84.30 ± 0.46 80.26 ± 1.00 84.83 ± 0.30 78.45 ± 0.83 84.33 ± 0.42 66.49 ± 0.11 87.30 ± 0.39 88.24 ± 0.64 89.45 ± 0.07
Open land 69.48 ± 0.75 69.60 ± 0.47 72.43 ± 0.80 74.32 ± 1.11 55.48 ± 0.79 78.49 ± 0.92 95.91 ± 0.32 89.22 ± 0.66 92.93 ± 0.77 94.31 ± 0.78

OA 67.18 ± 0.16 80.58 ± 0.52 71.32 ± 0.61 77.60 ± 0.59 67.70 ± 0.08 84.94 ± 0.41 86.76 ± 0.27 87.72 ± 0.06 88.10 ± 0.28 90.03 ± 0.17
AA 69.52 ± 0.59 81.30 ± 0.12 75.09 ± 0.86 80.55 ± 0.37 67.73 ± 0.38 85.51 ± 0.27 87.12 ± 0.57 89.27 ± 0.05 90.36 ± 0.09 91.91 ± 0.16

κ × 100 59.27 ± 0.31 75.06 ± 0.62 63.88 ± 0.81 71.44 ± 0.67 59.56 ± 0.10 80.48 ± 0.49 82.73 ± 0.24 84.11 ± 0.07 84.59 ± 0.34 87.04 ± 0.21

Figure 13 shows the classification result maps by using different methods on the
Gaofen-3 SAR image. As we can see, the Gabor, BoVW, and EPLS methods produce more
serious misclassifications on the classification results between mountains and open land.
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Meanwhile, buildings and woodland areas are confused in supervised CNN methods,
including SCNN and A-ConvNet. The method based on the covariance descriptor can
obtain more superior performance in the building areas, which shows that the covariance
feature can deal with targets containing complex terrain information. Compared with the
ground-truth, the proposed MFFN-CPMN method can maintain fewer noise classifications
in each class, which indicates that our method can extract more robust and effective features
than other methods. Hence, the MFFN-CPMN shows great efficiency for processing
complex SAR image classification tasks.

Figure 13. Classification maps of Gaofen-3 SAR image with different methods. (a) Ground-truth. (b)
Gabor. (c) CoTF. (d) BOVW. (e) DCAE. (f) EPLS. (g) SCNN. (h) A-ConvNet. (i) MFFN-GAP. (j) MSCP.
(k) MFFN-CPMN.

3.3.3. Airborne SAR Image

Table 7 lists the accuracy of each class, OA, AA, kappa coefficient of the Airborne SAR
image with different methods. Furthermore, the classification map of our method and
several contrast methods are shown in Figure 14. The OA, AA, and kappa of the proposed
MFFN-CPMN are much superior to that of the others. The OA, AA, and kappa obtained by
the MFFN-CPMN model is 88.37%, 93.79%, and 0.7894, respectively. Compared with Gabor
and CoTF, the proposed MFFN-GAP achieves higher accuracy than traditional features.
Due to the limited ability of feature expression, the traditional features failed to capture
structural information present in the road. Compared with BoVW, DCAE, and EPLS, our
MFFN-GAP yields superior accuracies, in which OA is improved over 5%. It illustrates
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that the proposed MFFN can learn effective spatial features to enhance classification
performance. The proposed MFFN-GAP has an average accuracy improvement of about
5% over supervised training methods, including SCNN and A-ConvNet. This indicated the
advantages of multi-scale and multi-layer feature fusion introduced by our model. Besides,
the MFFN-CPMN can acquire the optimal classification accuracy compared with MFFN-
GAP and MSCP, which shows that the proposed covariance classification framework can
help MFFN improve its accuracy in SAR image classification.

Table 7. Classification performance of airborne SAR image with different methods.

Gabor CoTF BOVW DCAE EPLS SCNN A-ConvNet MFFN-
GAP MSCP MFFN-

CPMN

Open land 66.93 ± 0.38 76.18 ± 0.88 81.65 ± 1.44 67.64 ± 0.28 80.34 ± 0.75 85.37 ± 1.05 91.55 ± 0.49 86.48 ± 0.11 85.71 ± 0.62 86.39 ± 0.03
Road 43.53 ± 0.54 67.57 ± 0.49 80.28 ± 0.44 74.82 ± 0.26 68.64 ± 0.43 88.93 ± 0.52 93.13 ± 1.20 83.62 ± 0.53 84.48 ± 0.95 89.35 ± 0.27
Water 57.64 ± 0.04 92.12 ± 1.32 87.57 ± 0.62 92.80 ± 0.12 87.87 ± 0.40 84.33 ± 0.74 85.79 ± 0.12 97.15 ± 0.93 98.46 ± 0.05 98.68 ± 0.09

Runway 84.13 ± 0.55 96.30 ± 0.77 97.11 ± 1.01 96.09 ± 1.11 95.00 ± 0.37 97.90 ± 1.03 97.41 ± 0.39 99.88 ± 0.93 99.68 ± 0.43 99.93 ± 0.39
Woodland 60.83 ± 0.60 79.51 ± 0.39 78.91 ± 0.21 77.93 ± 0.54 77.22 ± 1.23 69.78 ± 0.42 72.21 ± 0.67 85.71 ± 0.01 86.25 ± 0.95 89.64 ± 0.23
Residential 70.47 ± 0.65 91.43 ± 0.58 81.97 ± 1.05 87.53 ± 1.03 76.29 ± 0.92 94.58 ± 0.55 85.14 ± 0.22 88.61 ± 1.22 91.38 ± 0.37 93.00 ± 0.05
Commercial 96.54 ± 0.95 97.92 ± 0.89 95.59 ± 0.34 96.79 ± 0.90 92.65 ± 0.23 77.90 ± 0.22 76.77 ± 1.00 99.11 ± 0.11 99.38 ± 0.18 99.54 ± 0.06

OA 67.27 ± 0.44 78.88 ± 0.41 82.25 ± 0.11 72.74 ± 0.23 80.28 ± 0.39 83.20 ± 0.10 87.41 ± 0.25 87.41 ± 0.07 87.51 ± 0.33 88.37 ± 0.07
AA 68.58 ± 0.08 85.87 ± 0.31 86.17 ± 0.80 84.80 ± 0.49 82.57 ± 0.32 85.54 ± 0.54 86.00 ± 0.87 91.51 ± 0.19 92.15 ± 0.13 93.79 ± 0.18

κ × 100 48.60 ± 0.23 64.43 ± 0.37 68.84 ± 0.27 57.24 ± 0.38 65.57 ± 0.45 70.01 ± 0.14 76.15 ± 0.39 77.05 ± 0.14 76.67 ± 0.41 78.94 ± 0.11

Figure 14. Classification maps of Chinese airborne SAR image with different methods. (a) Ground-
truth. (b) Gabor. (c) CoTF. (d) BOVW. (e) DCAE. (f) EPLS. (g) SCNN. (h) A-ConvNet. (i) MFFN-GAP.
(j) MSCP. (k) MFFN-CPMN.



Remote Sens. 2021, 13, 328 22 of 26

From the classification maps, it can be seen that traditional feature methods cannot
identify roads. The BoVW, DCAE, and EPLS models produced more “salt and pepper”
noise classification results. For SCNN and A-ConvNet, there is confusion between wood-
land and residential areas. For the proposed MFFN-CPMN, it appears more homogeneous
on the classification map than others, especially in commercial and open land areas. Note
that there is confusion between the runway area and its adjacent open land category.
Therefore, it still needs to further improve the accuracy of the class boundary in our
MFFN-CPMN method.

3.3.4. F-SAR Image

Table 8 shows the accuracy of per class, OA, AA, kappa coefficient of the F-SAR image
with different methods. These results are consistent with the observations above. It is
seen from the compared results that the proposed MFFN-CPMN achieves the highest
classification accuracies. The overall accuracy of our approach can reach 96.61%, the
average accuracy can reach 96.35%, and the κ can reach 0.9399. Compared with Gabor,
CoTF, BoVW, and DCAE, the proposed MFFN-GAP produces higher accuracies, which
indicates that the proposed model has a superior ability to learn more discriminative
features. The scenes of water, open land, and vegetation in the image are relatively simple
and regular, and the comparison methods can also achieve relatively high accuracy. The
challenging task is to classify the residential area accurately, we can see that our MFFN-
CPMN model achieves the highest classification accuracy compared with EPLS, SCNN,
and A-ConvNet. In addition, compared with MFFN-GAP, we can see that our MFFN-
CPMN is more suitable to deal with objects with complex structural information in the
SAR classification task.

Table 8. Classification performance of F-SAR image with different methods.

Gabor CoTF BOVW DCAE EPLS SCNN A-ConvNet MFFN-
GAP MSCP MFFN-

CPMN

Water 95.45 ± 1.01 93.48 ± 0.15 89.43 ± 0.36 95.21 ± 0.46 93.30 ± 0.39 95.08 ± 0.46 92.95 ± 0.85 95.44 ± 0.45 96.65 ± 0.56 95.91 ± 0.55
Residential 86.76 ± 1.25 90.25 ± 0.39 88.11 ± 0.33 92.05 ± 0.43 85.94 ± 0.47 85.66 ± 0.02 94.06 ± 0.39 91.90 ± 0.27 95.02 ± 0.14 95.47 ± 0.20
Vegetation 78.13 ± 0.83 95.19 ± 0.22 88.23 ± 0.12 92.56 ± 0.22 84.84 ± 0.54 93.71 ± 0.14 93.99 ± 0.51 95.71 ± 0.16 95.65 ± 0.43 96.29 ± 0.31
Open land 92.45 ± 0.41 85.75 ± 0.76 94.62 ± 0.57 93.63 ± 0.87 92.11 ± 0.73 97.42 ± 1.03 99.17 ± 0.49 97.51 ± 0.12 97.16 ± 0.22 97.71 ± 0.33

OA 83.40 ± 0.76 91.90 ± 0.31 90.08 ± 0.14 92.84 ± 0.54 87.14 ± 0.48 93.90 ± 0.69 95.49 ± 0.28 95.80 ± 0.32 96.02 ± 0.29 96.61 ± 0.23
AA 88.20 ± 1.10 91.17 ± 0.44 90.10 ± 0.24 93.36 ± 0.64 89.05 ± 0.35 92.97 ± 0.58 95.04 ± 0.57 95.14 ± 0.24 96.12 ± 0.37 96.35 ± 0.18

κ × 100 72.43 ± 1.02 85.48 ± 0.27 82.94 ± 0.17 87.42 ± 0.67 78.24 ± 0.66 89.29 ± 0.64 92.06 ± 0.33 92.59 ± 0.29 92.97 ± 0.41 93.99 ± 0.26

Figure 15 depicts the classification result map by using different methods on the F-SAR
image. It can be observed that the proposed MFFN-CPMN achieves the optimal visual
effect, in which the spatial label smoothness is much better than other methods. Compared
with deep models such as EPLS, SCNN, and A-ConvNet, our MFFN-CPMN yields better
classification performance in residential, which is coincident with the results of Table 8.
Hence, the MFFN-CPMN can greatly improve the performance for processing complex
SAR image classification tasks.

3.4. Discussion on Transferability of Pre-Trained MFFN

Another noteworthy point is to explore the transferability of the pre-trained MFFN
model over different datasets. In some application scenarios with tight time constraints, it
is necessary to realize the fast feature extraction for some new SAR datasets from different
sensors or different resolutions. To explore the effectiveness of the transferability of the
MFFN, we conducted experiments on four real SAR datasets. Specifically, we trained the
MFFN-GAP model with unlabeled data from one of the datasets and then transferred
it to the other three datasets for feature extraction and classification. Tables 9–12 report
whether the three images transfer the pre-trained MFFN from other images to evaluate the
classification accuracy of the current data set. From Tables 9–12, we can see that the accuracy
difference between the results obtained using the migration model on other datasets
and the results obtained without the migration model is only about 1–2%, except for the
migration of F-SAR to Airborne SAR. It shows that our model can quickly obtain a relatively
reliable classification result when migrating to other datasets for feature extraction. When
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facing some real-time application scenarios, it saves a bit of network pre-training time.
Additionally, we found that better classification accuracy can be obtained by transferring
the pre-trained model based on the Gaofen-3 SAR image to the Airborne SAR image. The
possible reason is that Gaofen-3 SAR data contains more complex structural information
than Airborne SAR data. This information provides a more effective feature extractor for
Airborne SAR. In contrast, when the model pre-trained with Airborne SAR or F-SAR is
applied to the other two images, we see that their classification accuracy has decreased. This
is mainly because the Airborne SAR and F-SAR images contain too many homogeneous
patches. These patches are not enough to provide enough discriminative information.
Thus, it is necessary to select the image with rich structure information to improve the
transferability of the model.

Figure 15. Classification maps of F-SAR image with different methods. (a) Ground-truth. (b) Gabor. (c) CoTF. (d) BOVW. (e)
DCAE. (f) EPLS. (g) SCNN. (h) A-ConvNet. (i) MFFN-GAP. (j) MSCP. (k) MFFN-CPMN.

Table 9. Comparison of the performance with or without transfer model from the TerraSAR-X image.

Accuracy Gaofen-3 Airborne F-SAR

With Transfer
OA 0.8641 0.8701 0.9573
AA 0.8799 0.9102 0.9493

Kappa 0.8246 0.7645 0.9248

Without Transfer
OA 0.8772 0.8741 0.9661
AA 0.8927 0.9151 0.9635

Kappa 0.8411 0.7705 0.9399

Table 10. Comparison of the performance with or without transfer model from the Gaofen-3 image.

Accuracy TerraSAR-X Airborne F-SAR

With Transfer
OA 0.8574 0.8805 0.9604
AA 0.8556 0.9211 0.9552

Kappa 0.8024 0.7815 0.9300

Without Transfer
OA 0.8673 0.8741 0.9661
AA 0.8711 0.9151 0.9635

Kappa 0.8162 0.7705 0.9399
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Table 11. Comparison of the performance with or without transfer model from the airborne image.

Accuracy Gaofen-3 TerraSAR-X F-SAR

With Transfer
OA 0.8563 0.8553 0.9609
AA 0.8727 0.8549 0.9561

Kappa 0.8148 0.7999 0.9308

Without Transfer
OA 0.8772 0.8673 0.9661
AA 0.8927 0.8711 0.9635

Kappa 0.8411 0.8162 0.9399

Table 12. Comparison of the performance with or without transfer model from the F-SAR image.

Accuracy Gaofen-3 TerraSAR-X Airborne

With Transfer
OA 0.8536 0.8544 0.8357
AA 0.8690 0.8571 0.8688

Kappa 0.8116 0.7989 0.7115

Without Transfer
OA 0.8772 0.8673 0.8741
AA 0.8927 0.8711 0.9151

Kappa 0.8411 0.8162 0.7705

4. Conclusions

In this paper, a novel HR SAR image classification method, using multi-scale feature
fusion and covariance pooling manifold network (MFFN-CPMN), is presented. In the
MFFN- CPMN, deep data features and global statistical properties of SAR image are jointly
considered in the representation learning. Specifically, considering the scarcity of SAR
labeled data, a denoising dual-sparse encoder is proposed to pre-train the parameters of
the constructed MFFN. Meanwhile, to reduce the burden of MFFN training, we introduce
the multi-scale and multi-directional Gabor features at the input of MFFN to suppress
speckle noise and provide more abundant low-level features. Further, a covariance pooling
manifold network is utilized to extract the global second-order statistics of SAR images over
the fusional feature maps. Our MFFN-CPMN combines the advantages of multi-feature
information fusion of SAR images, making it more suitable for processing complex SAR
image classification tasks. Experimental results on three HR SAR images demonstrate that
our proposed framework produces optimal results in both accuracy and visual appearance
compared with some related approaches. Besides, experiments verify the potential trans-
ferability of the pre-training model between SAR images of different sensors. It provides a
solution for some rapid SAR application scenarios.

Future work can be carried out in the following aspects. To solve the problem of
limited labeled samples, we intend to consider using some new data generation techniques,
such as generating adversarial networks (GAN) [38] to increase the amount of SAR data.
Moreover, we will try to use the limited labeled samples to achieve the end-to-end training
of the entire MFFN-CPMN model.

Author Contributions: Methodology, W.L. and Y.W.; resources, Y.W.; software, W.L.; writing—review
and editing, W.L., M.L., Y.C., and X.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Natural Science Foundation of China under grant number
61772390, grant number 61871312; the Civil Space Thirteen Five Years Pre-Research Project under
grant number D040114; the Natural Science Basic Research Plan in Shaanxi Province of China under
grant number 2019JZ14; the Fundamental Research Funds for the Central Universities; the Innovation
Fund of Xidian University under grant number 20109206247.

Acknowledgments: The authors would like to thank all reviewers and editors for their comments
on this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2021, 13, 328 25 of 26

References
1. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE

Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]
2. Prats-Iraola, P.; Scheiber, R.; Rodriguez-Cassola, M.; Mittermayer, J.; Wollstadt, S.; Zan, F.D.; Bräutigam, B.; Schwerdt, M.; Reigber,

A.; Moreira, A. On the processing of very high resolution spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52,
6003–6016. [CrossRef]

3. Deledalle, C.A.; Denis, L.; Tabti, S.; Tupin, F. MuLoG, or How to apply Gaussian denoisers to multi-channel SAR speckle
reduction? IEEE Trans. Image Process. 2017, 26, 4389–4403. [CrossRef]

4. Dumitru, C.O.; Datcu, M. Information content of very high resolution SAR images: Study of feature extraction and imaging
parameters. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4591–4610. [CrossRef]

5. Martín-de-Nicolás, J.; Jarabo-Amores, M.-P.; Mata-Moya, D.; del-Rey-Maestre, N.; Bárcena-Humanes, J.-L. Statistical analysis of
SAR sea clutter for classification purposes. Remote Sens. 2014, 6, 9379–9411.

6. Joughin, I.R.; Percival, D.B.; Winebrenner, D.P. Maximum likelihood estimation of K distribution parameters for SAR data. IEEE
Trans. Geosci. Remote Sens. 1993, 31, 989–999. [CrossRef]

7. Fukunaga, K. Introduction to Statistical Pattern Recognition; Academic: San Diego, CA, USA, 1990; Chapter 3.
8. Dai, D.; Yang, W.; Sun, H. Multilevel local pattern histogram for SAR image classification. IEEE Geosci. Remote Sens. Lett. 2011, 8,

225–229. [CrossRef]
9. Cui, S.; Dumitru, C.O.; Datcu, M. Ratio-detector-based feature extraction for very high resolution SAR image patch indexing.

IEEE Geosci. Remote Sens. Lett. 2013, 10, 1175–1179.
10. Popescu, A.; Gavat, I.; Datcu, M. Contextual descriptors for scene classes in very high resolution SAR images. IEEE Geosci. Remote

Sens. Lett. 2012, 9, 80–84. [CrossRef]
11. Dumitru, C.O.; Schwarz, G.; Datcu, M. Land cover semantic annotation derived from high-resolution SAR images. IEEE J. Sel.

Topics Appl. Earth Observ. Remote Sens. 2016, 9, 2215–2232. [CrossRef]
12. Soh, L.-K.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci.

Remote Sens. 1999, 37, 780–795. [CrossRef]
13. Tombak, A.; Turkmenli, I.; Aptoula, E.; Kayabol, K. Pixel-based classification of SAR images using feature attribute profiles. IEEE

Geosci. Remote Sens. Lett. 2019, 16, 564–567. [CrossRef]
14. Song, S.; Xu, B.; Yang, J. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the

SARHOG feature. Remote Sens. 2016, 8, 683. [CrossRef]
15. Guan, D.; Xiang, D.; Tang, X.; Wang, L.; Kuang, G. Covariance of Textural Features: A New Feature Descriptor for SAR Image

Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2019, 12, 3932–3942. [CrossRef]
16. Bridle, J.S. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of

parameters. In Advances in Neural Information Processing Systems; Morgan Kaufmann: San Mateo, CA, USA, 1990; pp. 211–217.
17. Maulik, U.; Chakraborty, D. Remote Sensing Image Classification: A survey of support-vector-machine-based advanced tech-

niques. IEEE Geosci. Remote Sens. Mag. 2017, 5, 33–52. [CrossRef]
18. Tison, C.; Nicolas, J.M.; Tupin, F.; Maitre, H. A new statistical model for Markovian classification of urban areas in high-resolution

SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2046–2057. [CrossRef]
19. Li, H.C.; Hong, W.; Wu, Y.R.; Fan, P.Z. On the empirical-statistical modeling of SAR images with generalized gamma distribution.

IEEE J. Sel. Top. Signal Process. 2011, 5, 386–397.
20. Goodman, J.W. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena; Springer: Berlin/Heidelberg,

Germany, 1975; pp. 9–75.
21. Kuruoglu, E.E.; Zerubia, J. Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process.

2004, 13, 527–533. [CrossRef]
22. Doulgeris, A.P.; Anfinsen, S.N.; Eltoft, T. Classification with a Non-Gaussian Model for PolSAR Data. IEEE Trans. Geosci. Remote

Sens. 2008, 46, 2999–3009. [CrossRef]
23. Li, H.C.; Krylov, V.A.; Fan, P.Z.; Zerubia, J.; Emery, W.J. Unsupervised learning of generalized gamma mixture model with

application in statistical modeling of high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2153–2170. [CrossRef]
24. Zhou, X.; Peng, R.; Wang, C. A two-component k–lognormal mixture model and its parameter estimation method. IEEE Trans.

Geosci. Remote Sens. 2015, 53, 2640–2651. [CrossRef]
25. Cintra, R.J.; Rgo, L.C.; Cordeiro, G.M.; Nascimento, A.D.C. Beta generalized normal distribution with an application for SAR

image processing. Statistics 2014, 48, 279–294. [CrossRef]
26. Wu, W.; Guo, H.; Li, X.; Ferro-Famil, L.; Zhang, L. Urban land use information extraction using the ultrahigh-resolution Chinese

Airborne SAR imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5583–5599.
27. Yue, D.X.; Xu, F.; Frery, A.C. A Generalized Gaussian Coherent Scatterer Model for Correlated SAR Texture. IEEE Trans. Geosci.

Remote Sens. 2020, 58, 2947–2964. [CrossRef]
28. Voisin, A.; Krylov, V.A.; Moser, G.; Serpico, S.B.; Zerubia, J. Classification of very high resolution SAR images of urban areas using

copulas and texture in a hierarchical Markov random field model. IEEE Geosci. Remote Sens. Lett. 2013, 10, 96–100. [CrossRef]
29. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

http://doi.org/10.1109/MGRS.2013.2248301
http://doi.org/10.1109/TGRS.2013.2294353
http://doi.org/10.1109/TIP.2017.2713946
http://doi.org/10.1109/TGRS.2013.2265413
http://doi.org/10.1109/36.263769
http://doi.org/10.1109/LGRS.2010.2058997
http://doi.org/10.1109/LGRS.2011.2160838
http://doi.org/10.1109/JSTARS.2016.2549557
http://doi.org/10.1109/36.752194
http://doi.org/10.1109/LGRS.2018.2879880
http://doi.org/10.3390/rs8080683
http://doi.org/10.1109/JSTARS.2019.2944943
http://doi.org/10.1109/MGRS.2016.2641240
http://doi.org/10.1109/TGRS.2004.834630
http://doi.org/10.1109/TIP.2003.818017
http://doi.org/10.1109/TGRS.2008.923025
http://doi.org/10.1109/TGRS.2015.2496348
http://doi.org/10.1109/TGRS.2014.2363356
http://doi.org/10.1080/02331888.2012.748776
http://doi.org/10.1109/TGRS.2019.2958125
http://doi.org/10.1109/LGRS.2012.2193869
http://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338


Remote Sens. 2021, 13, 328 26 of 26

30. Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High–resolution SAR image classification via deep convolutional autoencoders.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [CrossRef]

31. Geng, J.; Wang, H.; Fan, J.; Ma, X. Deep supervised and contractive neural network for SAR image classification. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 2442–2459. [CrossRef]

32. Zhao, Z.; Jiao, L.; Zhao, J.; Gu, J.; Zhao, J. Discriminant deep belief network for high-resolution SAR image classification. Pattern
Recognit. 2017, 61, 686–701. [CrossRef]

33. Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE
Geosci. Remote Sens. Lett. 2016, 13, 364–368. [CrossRef]

34. Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 4806–4817. [CrossRef]

35. Li, J.; Wang, C.; Wang, S.; Zhang, H.; Zhang, B. Classification of very high resolution SAR image based on convolutional neural
network. In Proceedings of the International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 18–21
May 2017.

36. Geng, J.; Deng, X.; Ma, X.; Jiang, W. Transfer Learning for SAR Image Classification via Deep Joint Distribution Adaptation
Networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5377–5392. [CrossRef]

37. Wu, W.; Li, H.; Li, X.; Guo, H.; Zhang, L. Polsar image semantic segmentation based on deep transfer learning-realizing smooth
classification with small training sets. IEEE Geosci. Remote Sens. Lett. 2019, 16, 977–981. [CrossRef]

38. Cui, Z.; Zhang, M.; Cao, Z.; Cao, C. Image data augmentation for SAR sensor via generative adversarial nets. IEEE Access 2019, 7,
42255–42268. [CrossRef]

39. Xu, Y.; Zhang, G.; Wang, K.; Leung, H. SAR Target Recognition Based on Variational Autoencoder. In Proceedings of the IEEE
MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 6–8 May 2019; Volume 1.

40. Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 1349–1362. [CrossRef]

41. Liu, X.; He, C.; Zhang, Q.; Liao, M. Statistical Convolutional Neural Network for Land-Cover Classification from SAR Images.
IEEE Geosci. Remote Sens. Lett. 2020, 17, 1548–1552. [CrossRef]

42. Tuzel, O.; Porikli, F.; Meer, P. Region covariance: A fast descriptor for detection and classification. In European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2, pp. 589–600.

43. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multi-layer stacked covariance pooling. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [CrossRef]

44. Li, X.; Lei, L.; Sun, Y.; Li, M.; Kuang, G. Multimodal Bilinear Fusion Network with Second-Order Attention-Based Channel
Selection for Land Cover Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 1011–1026. [CrossRef]

45. Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Geometric means in a novel vector space structure on symmetric positive-definite
matrices. SIAM J. Matrix Anal. Appl. 2007, 29, 328–347. [CrossRef]

46. Grigorescu, S.E.; Petkov, N.; Kruizinga, P. Comparison of texture features based on gabor filters. IEEE Trans. Image Process. 2002,
11, 1160–1167. [CrossRef]

47. Liu, C.; Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.
IEEE Trans. Image Process. 2002, 11, 467–476. [PubMed]

48. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

49. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp.
1097–1105.

50. Coates, A.; Ng, A.Y.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 215–223.

51. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; ACM: New York, NY, USA,
2008; pp. 1096–1103.

52. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
53. Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the International Conference on Learning Representations,

Banff, AB, Canada, 14–16 April 2014; pp. 1–10.
54. Wang, W.; Wang, R.; Huang, Z.; Shan, S.; Chen, X. Discriminant analysis on Riemannian manifold of Gaussian distributions for

face recognition with image sets. IEEE Trans. Image Process. 2018, 27, 151–163. [CrossRef]
55. Huang, Z.; Van Gool, L. A Riemannian network for spd matrix learning. In Proceedings of the Association for the Advance

Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
56. Abeyruwan, S.W.; Sarkar, D.; Sikder, F.; Visser, U. Semi-automatic extraction of training examples from sensor readings for fall

detection and posture monitoring. IEEE Sens. J. 2016, 16, 5406–5415. [CrossRef]

http://doi.org/10.1109/LGRS.2015.2478256
http://doi.org/10.1109/TGRS.2016.2645226
http://doi.org/10.1016/j.patcog.2016.05.028
http://doi.org/10.1109/LGRS.2015.2513754
http://doi.org/10.1109/TGRS.2016.2551720
http://doi.org/10.1109/TGRS.2020.2964679
http://doi.org/10.1109/LGRS.2018.2886559
http://doi.org/10.1109/ACCESS.2019.2907728
http://doi.org/10.1109/TGRS.2015.2478379
http://doi.org/10.1109/LGRS.2019.2949789
http://doi.org/10.1109/TGRS.2018.2845668
http://doi.org/10.1109/JSTARS.2020.2975252
http://doi.org/10.1137/050637996
http://doi.org/10.1109/TIP.2002.804262
http://www.ncbi.nlm.nih.gov/pubmed/18244647
http://doi.org/10.1109/TIP.2017.2746993
http://doi.org/10.1109/JSEN.2016.2559804

	Introduction 
	Related Work 
	Motivations and Contributions 

	Materials and Methods 
	Gabor Filtering-Based Multi-Scale Deep Fusion Feature Extraction 
	Extraction of Gabor Features 
	Multi-Scale Deep Feature Fusion Network 
	Greedy Layer-Wise Unsupervised Feature Learning 

	Global Second-Order Statistics Extraction and Classification Based on CPMN 
	Multilayer Feature Fusion Based on Covariance Pooling 
	Covariance Features Classification Based on Manifold Network 


	Results 
	Experimental Data and Settings 
	Parameter Settings and Performance Analysis of the Proposed MFFN-CPMN model 
	Effect of the Feature Number 
	Effect of Multi-Scale Convolution Kernel 
	Effect of the Denoising Dual-Sparse Encoder and Depth 
	Effect of Multi-Layer Feature Fusion 
	Effect of Covariance Pooling Manifold Network 

	Experiments Results and Comparisons 
	TerraSAR-X SAR Image 
	Gaofen-3 SAR Image 
	Airborne SAR Image 
	F-SAR Image 

	Discussion on Transferability of Pre-Trained MFFN 

	Conclusions 
	References

