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Abstract: A large portion of Canada is covered by wetlands; mapping and monitoring them is
of great importance for various applications. In this regard, Remote Sensing (RS) technology has
been widely employed for wetland studies in Canada over the past 45 years. This study evaluates
meta-data to investigate the status and trends of wetland studies in Canada using RS technology
by reviewing the scientific papers published between 1976 and the end of 2020 (300 papers in total).
Initially, a meta-analysis was conducted to analyze the status of RS-based wetland studies in terms of
the wetland classification systems, methods, classes, RS data usage, publication details (e.g., authors,
keywords, citations, and publications time), geographic information, and level of classification
accuracies. The deep systematic review of 128 peer-reviewed articles illustrated the rising trend
in using multi-source RS datasets along with advanced machine learning algorithms for wetland
mapping in Canada. It was also observed that most of the studies were implemented over the
province of Ontario. Pixel-based supervised classifiers were the most popular wetland classification
algorithms. This review summarizes different RS systems and methodologies for wetland mapping
in Canada to outline how RS has been utilized for the generation of wetland inventories. The results
of this review paper provide the current state-of-the-art methods and datasets for wetland studies in
Canada and will provide direction for future wetland mapping research.

Keywords: Canada; classification; remote sensing; wetland

1. Introduction

Wetlands are ecosystems where terrestrial and aquatic regions meet and share some
characteristics. Wetlands also contain water for some periods of a year and are charac-
terized by the presence of water, hydric soil, and specific vegetation adapted to a wet
environment [1,2]. Wetlands are invaluable natural resources that provide exceptional
benefits to humans and the surrounding environment [2]. Due to numerous environ-
mental services of wetlands, including carbon sequestration [3], water purification [4],
sediment filtration [5], soil conservation [6], and other critical services, wetlands have
been called the “kidneys” of nature [7]. Additionally, from an economic perspective,
wetlands are important due to their extensive applications for recreational activities [8],
fish and shellfish aquacultures [9], flood mitigation [10], and providing diverse wildlife
habitat [11,12]. Despite their numerous benefits, wetlands have been threatened by climate
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change, natural catastrophic events (i.e., wildfire), and anthropogenic activities, such as
intense irrigation practices, water drainage, groundwater extraction, and replacement by
urban and agricultural landscapes [13]. Therefore, it is vital to obtain precise, reliable, and
up-to-date information about the different characteristics of wetlands (i.e., extent, type,
health, and status).

Traditionally, wetland mapping was conducted by collecting airborne photographs
and in situ data through intensive field surveys [14,15]. Although these methods were
very accurate, they were resource-intensive and practically infeasible for large-scale studies
with frequent data collection necessities. Consequently, advanced Remote Sensing (RS)
techniques were proposed for wetland mapping and monitoring [2,16–18]. RS systems
provide frequent Earth Observation (EO) datasets with diverse characteristics and broad
area coverage, making them attractive to map and monitor wetlands’ dynamics from local
to global scales through time [2,19,20]. However, it should be noted that the possibility of
obtaining reliable information about wetlands using RS data does not obviate the necessity
of collecting in situ data, and their incorporation shall provide more profound results.

Passive and active RS systems capture EO data in different parts of the electromagnetic
spectrum. In this regard, aerial [21–23], multispectral [18,24–27], Synthetic Aperture Radar
(SAR) [28–31], hyperspectral [20,32], Digital Elevation Model (DEM) [33–36], and Light
Detection and Ranging (LiDAR) point cloud datasets [36–38] have been extensively used
separately or in conjunctions for wetland mapping. Since each of these data sources
acquire EO data in different parts of the electromagnetic spectrum, they provide diverse
information about the spectral and physical characteristics of wetlands [39]. Moreover,
deployment of these sensors on airborne, spaceborne, and Unmanned Aerial Vehicle (UAV)
platforms allows recording EO data over wetlands with different spatial resolutions and
coverages. Finally, the integration of RS data with machine learning algorithms provides an
excellent opportunity to fully exploit RS data for accurate wetland mapping and monitoring
tasks [40,41].

Machine learning algorithms allow extracting and interpreting RS data automatically
and robustly to map wetlands and derive relevant information about the wetlands’ con-
dition. For instance, Random Forest (RF) [42–45], Support Vector Machine (SVM) [46–49],
Maximum Likelihood (ML) [50–53], Classification and Regression Tree (CART) [35,36],
and Deep Learning (DL) [21,27,40,54] algorithms have been implemented to produce high-
quality wetland maps. In this regard, both pixel-based and object-based approaches have
been applied to exploit the most delicate possible information about wetlands by integrat-
ing RS data and machine learning algorithms [55–62]. Moreover, studies [21,40,41,47,48,63]
were also dedicated to assessing the performance of machine learning algorithms for accu-
rate wetland mapping and monitoring to elucidate the path for other interested researchers
all around the globe.

Global wetland extents were predicted to be from approximately 7.1 million km2

to 26.6 million km2 [64] and 25% of globally documented wetlands have been recorded
over Canada, covering approximately 14% of the total Canadian terrestrial surface [65].
Wetlands are extended across Canada, with the greatest concentration in northern regions.
The Northwest Territories (NT), Ontario (ON), and Manitoba (MB) provinces contain the
highest coverage of wetlands [66]. Considering the environmental and economic benefits
of wetlands, as well as the immense wetland extent in Canada, it is essential to produce
precise wetland inventories for conservation and sustainable developments. Accordingly,
different Canadian associations have categorized wetland types based on their morphology,
hydrology, hydrochemistry, plant communities, soil and sediment characteristics, depth,
productivity, and wildlife usages to establish practical guidelines to study and monitor
wetlands [67]. One of these categorizations that has received much attention is the Canadian
Wetland Classification System (CWCS), by which wetlands are divided into five classes:
bog, fen, marsh, swamp, and shallow water [67].

Due to the importance of wetlands for the Canadian environment, many studies have
been conducted to produce wetland inventories from local to national scales using different
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types of EO datasets and machine learning algorithms [40,41,68–70]. For instance, the
study by [23] was an early study that employed aerial imagery for wetland mapping in
Canada. Later, a combination of multi-source RS datasets, including aerial, SAR, DEM,
and optical satellite images, were employed in most of the Canadian provinces for wetland
classification [7,71–73]. A significant effort has also been made to produce nation-wide
wetland inventories using cloud computing methods. For instance, [68] created the first
Canada-wide wetland inventory with 30 m spatial resolution and based on the CWCS cate-
gories. In this regard, they processed over 30,000 Landsat-8 images within the Google Earth
Engine (GEE) cloud computing platform. Afterwards, two generations of Canadian wet-
land inventories with 10m spatial resolution were produced by combining Sentinel-1 and
Sentinel-2 images within GEE [69,70]. However, they have addressed various uncertainties
regarding the large-scale and wetland types mapping.

Until now, several studies have been conducted to review the wetland studies which
have been conducted using RS technology. For instance, a two-part review [74,75] provided
a guide on how RS data can be used to quantify boreal wetland extent and monitor
drivers of change on wetland environments, along with a technical review of RS data
processing and analysis techniques. The authors of [2,76] also comprehensively discussed
the characteristics and importance of wetlands, as well as the advantages and disadvantages
of various RS sensors and methods used in wetland research. Additionally, [18] considered
the global application of SAR data for wetland mapping. Furthermore, [17] conducted
a meta-analysis of wetland classification focusing on the publication trends in North
America. However, there is a need for a national-scale, bibliographic analysis of efforts to
map wetlands with RS data within and across Canada. Therefore, this review paper aims
to provide necessary information on (1) identifying and categorizing wetland studies using
RS data, (2) illustrating the geographical distribution of inventories, (3) discussing the
classification techniques for wetland mapping, (4) assessing RS data applications, and (5)
discussing classification accuracy through a systematic literature search and meta-analysis
of studies conducted in Canada. Additionally, a comprehensive review of lead- and co-
authors and their affiliated universities/institutions who have published research studies in
Canada is provided. Keywords and citation surveys have also been individually analyzed.

2. Wetland Classification Systems in Canada

Multiple wetland classification systems have been proposed and utilized in Canada.
The three well-known Wetland Classification Systems (WCS) are presented in Figure 1a.
CWCS is the main system used across Canada. The Alberta Wetland Classification System
(AWCS) is a customized form of CWCS for the Alberta province [77]. Both systems have the
same wetland classes with the difference in forms and subclasses. The Enhanced Wetland
Classification System (EWCS) is another system applied in Canada. This system divides
the original five classes of the CWCS into 19 finer subclasses [78].

CWCS has emerged from a series of developments within the NWWG started in
1976 [79]. The second edition and final document of CWCS was released in 1997 [67], which
classifies wetlands into five major classes and has additional characteristics features of form
and sub-form. These forms can be further categorized regarding dominant vegetations.
Each of the five classes of CWCS is briefly described below and summarized in Figure 1b.
A more detailed description of each wetland class can also be found in [80,81].

Bog is a type of ombrogenous peatland, which means its major water source is precip-
itation [39]. Therefore, it is an acidic and low nutrient environment mostly covered with
sphagnum moss, sedge, and ericaceous shrub species [82]. Bog’s vegetation form may vary
between open, shrubby, or treed depending on soil, hydrology, and nutrient characteristics.

Fen, another type of peatland, is similar to bog in terms of peat accumulation. How-
ever, its water source is not limited to precipitation like with bogs, but includes water
surface flows and groundwater contributions to its moisture [82]. Fens are typically di-
vided into two classes of rich fens and poor fens based on having contact with mineral-rich
water and nutrient availability. The vegetation cover of poor fens is similar to bog, while
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sedges, brown moss, grass, and graminoids are the dominant vegetation species in rich
fens. Nevertheless, all fens have minerotrophic indicator species meaning that they only
grow in the right nutrient environments [80].
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Figure 1. (a): The well-known Wetland Classification Systems used in Canada. (b): Wetland classes based on the CWCS.

Swamps exist in both mineral and peatland wetland types [80]. Swamps are often
found in contact with other hydrological systems; hence they are difficult to identify. One
of the distinguishing characteristics of swamps is that the woody vegetation (trees and
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shrubs) dominates the swamp environment (30% up to 100%) [82]. Additionally, the peat
soil in swamps is composed of well-decomposed wooded species rather than the organic
sphagnum or sedge-dominated peat in bogs and fens. The water table fluctuates in swamps,
and they are not permanently saturated or inundated like bogs and fens; thus, the soil layer
can be well-aerated [80].

Marsh is a type of mineral wetland class that experiences a high temporally periodical
(seasonal/annual) rate of inundation. The hydrology inputs are from numerous sources,
such as tides, water flow, groundwater, surface runoff, precipitation, and flooding. The
variety of dissolved mineral inputs and freshening ventilation lead to high productivity
and a diverse range of vegetation species [80]. Marsh vegetation communities are of-
ten comprised of emergent aquatic types, such as rushes, sedges, grasses, broad-leaved
emergent, floating, and submerged aquatic plants [83].

Shallow water is a semi-permanent to permanent water body with a water depth of
fewer than 2 m during mid-summer [39]. However, mudflats might be exposed in occasions
of water drawdown. Submerged aquatic and floating vegetation with the capability of
adaptation to constant inundation are present in shallow waters [82].

3. Method of META-Analysis

Figure 2 shows the workflow of preparing the documents for content analyses in this
review. The bibliographic database of the present review was attained through perform-
ing a title, abstract, and keywords systematic literature search of relevant articles in the
two well-known scientific databases of Clarivate Analytics Web of Science and Elsevier
Scopus. To this end, all the combinations of search words (see Table 1) were applied to
select English language journal papers, conference papers, and review papers between
1975 and the end of 2020. For instance, the combination of “wetland”, “Canada”, and
“remote sensing” was the first combination for the literature search. It is worth mentioning
that “Canada” was separately considered to include those research papers conducted over
the entire country of Canada, as well as papers in which the province name was not stated
in the title, abstract, or keywords. Afterwards, the Preferred Reporting Item for Systematic
Review and Meta-Analysis (PRISMA) checklist was applied to organize the collected docu-
ments [84]. First, all the results for each combination were separately examined, and then
the duplicate documents were removed. Subsequently, the remaining corpus of documents
was combined to generate a consolidated database that encompassed 686 papers. A title
filtering was then performed to identify the duplicate documents obtained by different
combinations, which led to 473 documents. Later, those documents that their source file
was not found, along with irrelevant documents, were also excluded, which finally resulted
in 300 remaining papers. Following this filtering step, the title, abstract, and keywords
sections of the remaining papers were screened to distinguish papers associated with wet-
land mapping from other wetland studies. This was performed because further attributes
(see Figure 2) were derived from wetland mapping-related papers as the primary focus of
this review. Finally, all 300 papers were fully inspected to extract different attributes (see
Table 2), such as year, study area, classification method, and data type, for further analyses
(see Table A2).
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Figure 2. Workflow of preparing content analyses of this review paper.

Table 1. List of search words to prepare the procurements of this review.

First Word Second Word Third Word

Wetland And

Canada
Newfoundland and Labrador (NL)
Ontario
Quebec (QC)
Nova Scotia (NS)
New Brunswick (NB)
Manitoba
British Columbia (BC)
Prince Edward Island (PE)
Saskatchewan (SK)
Alberta (AB)
Northwest Territories
Yukon (YT)
Nunavut (NU)

And
Remote Sensing

Radar
Satellite
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Table 2. The 14 attributes considered for content analysis of all 300 papers for further investigations.

Attribute Categories

1 First Author Name
2 Co-authors Name
3 Publication year Value
4 Citation Value
5 Paper type Type: Journal, Conference
6 Study area Type: 13 provinces/territories and Canada
7 Affiliation Type: University, Organization
8 Data type Type: Optical, SAR, LiDAR, UAV, Aerial, Orthophoto, Multi-sensor
9 Method Type: (Supervised, Unsupervised), (Object-based, Pixel-based)

10 Number of wetland classes Value: One, Two, Three, Four, Five, CWCS, and Six or more
11 Classifier Type: 8 classifiers, multiple classifiers, and Other
12 Journal Name
13 Area extent Type: Very small, Local, Regional, Provincial, National
14 Accuracy Value

4. Results and Discussion

Several statistical analyses were first conducted in the following subsections based
on the procedure defined in the method section. In addition to demonstrating the general
characteristics of 300 RS-based wetland studies in Canada (e.g., publication details, geo-
graphical information, and RS datasets), a comprehensive survey and discussion of the
meta-analysis status and trends were provided to present a comprehensive overview of
128 mapping studies. Policymakers can gain advantages from this overview in wetland
mapping over Canada using RS technology.

4.1. Publication Details
4.1.1. Number of Annual Publications

Figure 3 shows a schematic summary of the distribution of published articles during
the time-period studied period along with the number of journal and conference papers.
Figure 3 also includes those journals that have published more than one paper in each
time interval. It is worth noting that for the period 2006–2020, those journals that have
published more than three papers are only provided. According to Figure 3, several clear-up
conclusions can be drawn and summarized as follows. Over time, the number of published
papers increased. As such, the distribution of articles shows a major positive trend in
publications of wetland studies in Canada. A total of 9 (3%), 14 (4.7%), 10 (3.4%), 37 (12.4%),
43 (14.4%), 62 (20.7%), and 124 (41.5%) papers were, respectively, published in 1976–1985,
1986–1995, 1996–2000, 2001–2005, 2006–2010, 2011–2015, and 2016–2020. These results show
that the published articles gradually increased about 50% in the period 1976–2020.

After evaluating the time-level publication rates, we examined the number of publi-
cations for each year according to the study area. To this end, 300 articles were divided
into 12 categories based on the Canadian provinces and territories, including BC, QC,
SK, NU, MB, YT, NS, NL, AB, NT, NB, and ON. Figure 4 summarizes yearly trends in
Canada’s wetland publications according to the study area. Based on the results, there
were no studies published from 1983 to 1987. It must be kept in mind that in this period,
articles were presented in printed mode. Although many of them have been scanned into
searchable formats and made available online, there may have been some other articles
that were not scanned. Additionally, our extensive search of online resources indicates no
studies published before 1987, and a small number of papers were published in early 2000
as well as in 2004. Almost 75% of the total 300 papers were published after 2004. The year
2020, with a total of 15 papers, had the most published articles since 1976. Moreover, the
years 2019, 2018, and 2017, with a total of 24 published articles, were the second years with
the most papers published about RS-based wetland studies in Canada.



Remote Sens. 2021, 13, 4025 8 of 43

Figure 3. Schematic summary of the number and percentage of RS-based wetland publications along with a list of the key
journals and the corresponding number of studies published in each for various time intervals.

Figure 4. The number of publications on RS-based wetlands studies in Canada for each year (since 1976) according to the
study area (i.e., Canadian provinces/territories).

After 2000, a wide range of studies has been conducted in different provinces of
Canada so that the study on the YT and NB were started in 2011 and 2016, respectively. As
such, the wetlands of all 12 Canadian provinces/territories were considered as the study
area. After 2017, in most years, a large number of studies were developed in NL, ON, and
AB (see Figure 4). We found that 22% (23 out of 103 articles), 18% (19 out of 103 articles),
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and 18% (18 out of 103 articles) of the studies published in 2017-2020 were, respectively,
conducted in NL, AB, and ON.

4.1.2. Keyword Analysis

Figure 5 a illustrates the word cloud generated from the keywords’ frequencies. The
size of each keyword is related to the frequency that a keyword has been used in all
300 papers. Considering the combination for the literature search, the biggest keywords
were “Wetland” and “Remote Sensing”. Since the reviewed papers came from different
journals with various formats, the keywords were not consistent. Therefore, we prepro-
cessed the words before feeding them into the word-cloud generator. For this purpose,
all plural keywords were converted to their singular form. Lower- and upper-case words
were justified, and all the first letters were capitalized. For instance, “Remote sensing”,
“landsat”, and “wetland” were changed to “Remote Sensing”, “Landsat”, and “Wetland”,
respectively. With this substitution, the word cloud generator algorithm considered such
words the same (e.g., “landsat”, “Landsat”, “LandSat”, and “LANDSAT” were considered
as one keyword of Landsat). The acronyms and their expanded versions were justified;
then, acronyms were used in the word cloud. Finally, due to the similar meaning of some
words, such as UAV and Unmanned Aerial System (UAS), they were merged and one of
them was used.
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To find out how many times a keyword has been used throughout the years, Figure 5b
scatters the keywords per year. Each dot shows that the keyword has been mentioned in
papers published in the corresponding year, and its size represents its frequency. Colors
were selected arbitrarily for better visualization. The vertical axis representing the publica-
tion year was limited to 2000–2020 and the publications before 2000 were not displayed in
this figure. As is clear, “wetland(s)” and “remote sensing” were the most frequently used
keywords followed by “synthetic aperture radar (SAR)”, “Landsat”, and “RADARSAT-2.”

4.1.3. Journal and Conference Analyses

In total, the 300 papers were published in 68 journals and 13 well-known international
conferences. The journal publishers, as well as journals and conference papers, which
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published more than three times, are illustrated in Figure 6. The Canadian Journal of Remote
Sensing and Remote Sensing (MDPI) with 46 and 40 papers were the top two journals, re-
spectively. Moreover, Hydrological Processes, Remote Sensing of Environment, and International
Journal of Remote Sensing with 19, 14, and 12 papers, respectively, were the other journals
of interest in this field. In terms of the publisher center, most of the journal papers were
published by Taylor & Francis followed by Wiley, MDPI, and Elsevier. Less than 8% of the
journal papers were published by the SPIE, IEEE, and Springer. Among the conference
papers, the IEEE IGARSS with 16 papers is the top conference for publishing papers on
wetland studies in Canada, where the ISPRS Archive was the second one with 10 papers.

Figure 6. Percentage of published RS-based wetland studies in Canada per (a) journal, (b) international conference, and
(c) publisher.

4.1.4. First and Co-Authors Analysis

This section summarizes the number of authors and co-authors in word-cloud, re-
spectively. All the 300 papers were written by 210 unique first authors, and there were
943 co-authorships by 614 unique co-authors. Figure 7 displays all the authors who have
more than three papers in their contributions, whether as author or co-author. Brisco B. is
the lead author with a considerable difference from others. Additionally, Amani M. and
Mahdianpari M. with 10 contributions are at the top as first authors. Brisco B. and Salehi B.
with about 35 and 25 papers, also have the highest number of papers, respectively.
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Figure 7. Authors who have contributed more than three papers as first author or co-author (alphabetically ordered).

4.1.5. Affiliation Analysis

In Table 3, the top universities and institutions and their contribution are summa-
rized. For this analysis, only institutions with three or more publications were considered.
Memorial University of Newfoundland has the highest number of publications in wetland
classification. However, multiple institutions from ON (e.g., Canada Centre for Remote
Sensing and National Wildlife Research Centre) also have a significant contribution with a
total number of 61 papers.

Table 3. The detailed information of affiliations analysis.

Institute Country/Province Papers Citation CPP

Memorial University of Newfoundland NL 29 787 27.14
Canada Centre for Remote Sensing ON 15 952 63.47

INRS QC 11 419 38.09
University of Saskatchewan SK 10 423 42.3

Ducks Unlimited Canada MB 9 23 2.56
University of Western Ontario ON 9 279 31

University of Alberta AB 9 236 26.22
Canada Center for Mapping and Earth Observation ON 9 71 7.89

National Wildlife Research Centre ON 8 105 13.125
Carleton University ON 7 176 25.14

Université de Sherbrook QC 7 85 12.14
Canadian Wildlife Service of Environment Canada QC 6 218 36.33

University of Toronto ON 6 150 25
National Water Research Institute, Environment Canada SK 6 416 69.33

McMaster University ON 5 93 18.6
University of New Brunswick NB 5 26 5.2

University of Calgary AB 5 270 54
University of Victoria BC 5 211 42.2

Wilfrid Laurier University ON 4 270 67.5
University of Guelph ON 4 106 26.5

University of Alaska Fairbanks Alaska, U.S. 4 85 21.25
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Table 3. Cont.

Institute Country/Province Papers Citation CPP

University of Lethbridge AB 4 44 11
McGill University QC 3 375 125

University of Waterloo ON 3 102 34
Trent University ON 3 48 16
Université Laval QC 3 110 36.67

Environment and Climate Change Canada QC 3 70 23.33
The University of British Columbia BC 3 65 21.67

University of California at Los Angeles CA, U.S. 3 39 13
Ontario Centre for Remote Sensing ON 3 26 8.67

Wood Environment & Infrastructure Solutions NL 3 23 7.67

In terms of citation, publications of the Canada Centre for Remote Sensing have
attracted the greatest amount with a total citation of 952, followed by Memorial University
of Newfoundland (787); University of Saskatchewan (423); INRS (419); National Water
Research Institute, Environment Canada (416); and McGill University (375). Additionally,
regarding Citation Per Paper (CPP), McGill University with a CPP of 125 is the highest. The
next top institutions were the National Water Research Institute, Wilfrid Laurier University,
and the Canada Centre for Remote Sensing having CPP values of 69.33, 67.5, and 63.46,
respectively.

4.1.6. Citation Analysis

Citation analysis helps to ascertain prominent documents that significantly influence
the corresponding field [85]. Furthermore, it also reflects the objectivity and quality of
a paper by manifesting the number of attracted scholars to cite such a paper. Therefore,
the citation number of all considered papers until the end of 2020 was extracted from
Google Scholar to identify the high-contributing papers. It should be noted that earlier
papers may have more citations than the recently published articles due to a more extended
availability to the scientific community. Thus, the average citation per year was also
calculated along with the total number of citations to reduce the effect of the elapsed time
since publication. Table 4 presents the ten most cited papers devoted to wetland mapping
in Canada. Based on Table 4, Ref. [27] was recognized as the most influential paper in the
wetland studies conducted in Canada, in which the authors examined the applicability
of various deep Convolutional Neural Networks (CNNs) for wetland mapping using
high-resolution RS imagery.

Table 4. Highly cited papers devoted to wetland studies in Canada.

Rank First Author
Average Number

of Citations
per Year

Total Citations Publication Year Region

1 Mahdianpari et al. [27] 44 132 2018 Part of NL
2 Mahdianpari et al. [86] 37.5 75 2019 Entire NL
3 Kokelj and Jorgenson [87] 30.37 243 2013 -
4 Mahdianpari et al. [44] 29.75 119 2017 Part of NL
5 Touzi, R. [88] 28.5 399 2006 Part of ON
6 Mahdavi et al. [2] 24 72 2018 -
7 Delancey et al. [21] 23 23 2020 Part of AB
8 Hird et al. [40] 22.5 90 2017 Part of AB
9 Connon et al. [89] 18.28 128 2014 Part of NT

10 Amani et al. [68] 17 34 2019 Entire Canada
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4.1.7. Number of Wetland Classes

As mentioned, 128 out of the 300 papers were about wetland classification in Canada.
These 128 papers were analyzed based on the number of wetland classes they included
(see Figure 8). Almost all the papers (i.e., 114 papers) used five or fewer wetland classes. In
total, 40 articles focused on five wetland classes (i.e., based on CWCS). Then, the second
highest amount (29) belongs to papers covering one wetland class. The number of papers
considering two, three, and four wetland classes were 14, 20, and 12, respectively. A few
studies considered more than five classes. For example, four papers mapped six and seven
classes, and two papers considered eight classes. There were only three papers discussing
a large number of wetland classes, including 11, 12, and 17 classes.

Figure 8. The number of papers based on the number of wetland classes included.

4.1.8. Province- and Territories-Based Analysis

The percentage of the papers based on the number of mapped wetland classes in each
Canadian province/territory are illustrated in Figure 9. Note that articles that covered
large regions and nationwide study areas were not considered in this analysis.

Since almost 90 percent of the papers considered five or fewer wetland types, the
classes in Figure 9 were decided to be from one to five, and others were considered as having
six or more classes. Furthermore, an extra category of CWCS was also considered to depict
the percentage of papers that followed the CWCS specifications. The NL province had the
highest number of published papers (86.4%) based on CWCS specifications, followed by
NS, BC, and YT (~50%). ON had the highest number of papers overall (36); however, none
of them used CWCS. In addition, NB and SK were not studied in any CWCS-structured
paper. Finally, the only paper studying wetlands in NU considered only one wetland class.
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Figure 9. The province-based analysis of the number of wetland classes included in the published papers with the Canada
wetland layer (Canada post-2000 wetland extent [90,91]) superimposed onto the map.

4.1.9. Geographical Distribution Based on Provinces/Territories

Figure 10 schematically illustrates a breakdown of RS-based wetland mapping stud-
ies in Canada by provinces/territories. This figure shows the spatial pattern of wetland
mapping in Canada using RS data. Lighter and darker green hues indicate the lower
and higher number of studies, respectively. The white hue depicts no study in the cor-
responding province/territory of Canada. It should be noted that some papers cover
multiple study areas (i.e., multiple provinces, ecoregions, and entire Canada), and as a
result, each corresponding province/territory was included in the count, separately. In
Figure 10, those papers categories in Canada-wide studies contain all provinces. Based
on a Figure 10, a large proportion of the studies were developed and assessed for only a
few provinces, especially ON and NL. The literature search revealed that more than 40%
of the individual case studies were focused on areas in ON and NL (darker green hues in
Figure 10). Figure 10 also illustrates that NT with a total of 12 papers and AB and MB with
11 papers are other provinces where the wetlands were considered as the case studies. Very
few published wetland research studies were identified from several provinces of Canada,
including NU, YT, NB, NS, and BC. Overall, each of YT, NB, and NS accounted for two
(less than 1.5% of published articles) studies.

As mentioned before, from all papers counted for all provinces in Figure 10, some
papers contained multiple case studies and included several provinces. For example,
ref. [92] expanded their study into more than one province, including MB and ON. On the
other hand, ref. [54] applied their method on wetland mapping in AB and QC. As such,
ref. [93] contained multiple case studies, including MB, NL, QC, and SK.
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Figure 10. A choropleth map of Canada based on the number of RS-based wetland studies developed in various provinces.
Lighter and darker green hues, respectively, indicate the low and high numbers of published papers.

4.1.10. Geographical Distribution Based on the Extent of the Study Area

We also examined the number of publications according to the extent of the study
area (see Table 5). As such, the 128 wetland classification studies were divided into five
categories based on the extent of the study area: very small (less than 100 km2), local
(between 100 km2 and 3000 km2), regional (more than 3000 km2 and less than a provincial
scale), provincial, and national (Canada-wide) scales.

Table 5. The number of publications focusing on various scales of the study area (small, local, regional, provincial, and
national) in each Canadian province/territory.

Scale ON NL SK NT NS MB QC AB YT NU NB BC Canada Total Percentage

Very small 8 4 1 4 2 1 5 3 − − 2 1 − 32 25%
Local 16 10 2 3 − 3 2 1 − − − 1 − 36 28%

Regional 13 6 4 5 − 7 6 7 2 1 − 1 − 50 40%
Provincial − 4 − − − − 1 − − − − − − 5 4%
National − − − − − − − − − − − − 5 5 4%

According to Table 5, the regional scale with a total of 50 papers, including 2 conference
papers and 48 journal papers, had the highest number of published articles since 1976. The
local and very small scales with a total of 36 and 32 publications were, respectively, the
second and third scales. Each of the provincial and national study areas accounted for five
(about 4% of published articles) articles.

4.2. Classification Methods

Table A1 and Figure 11 summarize the information about wetland classification meth-
ods used in Canada. Different types of unsupervised and supervised classifiers have been
used for wetland mapping in Canada. In total, 16 classification methods were employed
across the 128 Canadian wetland classification studies. The RF [94–96], ML [97,98], Decision
Tree (DT) [38,99–102], SVM [46–48], Multiple Classifier System (MCS) [11,103], Iterative
Self-Organizing Data Analysis Technique (ISODATA) [104,105], CNN [21,27,54], k-Nearest
Neighbors (k-NN) [106,107], and Artificial Neural Network (ANN) [30,108–110] were the
most commonly used algorithms. The Linear Discriminant Analysis (LDA) [83,111,112],
Fuzzy Rule-Based Classification Systems (FRBCSs) [11,19], Markov Random Fields (MRF)-
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based method [113,114], k-means, and classification methods based on polarization target
decomposition [115,116] were used once or less than three times and, here, were categorized
as the “Other” group.
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Figure 11 shows that researchers have tended to use supervised methods (87%) in
studies related to wetland classification in Canada rather than unsupervised approaches
(13%). This is mainly because the unsupervised methods typically deal with the untagged
data, which require further analysis for mapping classes, and they usually have lower
accuracies than supervised methods. Moreover, the RF classifier (27.86%) was the most
widely used algorithm, followed by ML (25.71%) and DT (10.34%) classifiers. The ANN
(2.86%), k-NN (2.86%), CNN (3.57%), and MCS (3.57%) were rarely employed in the studies.
SVM and ISODATA were also used in more than five studies. Finally, 11.43% of the studies
used other classifiers for Canadian wetland mapping.

The performance of the machine learning algorithms depends on several factors, in-
cluding the complexity of the study area, type of RS data, quality of training samples, input
features, classification algorithm, and tuning parameter settings [2]. Several metrics like
overall accuracy, Kappa coefficient, producer’s accuracy, and user’s accuracy are typically
used for classification performance evaluation. The wetland classification review studies
rarely reported a complete confusion matrix to express wetland map errors (omission and
commission errors), whereas they commonly stated the overall accuracy. Accordingly, the
overall accuracy is here considered as a metric for comparing the accuracy of wetland
mapping from different points of view.

The boxplots of the overall accuracy obtained from different algorithms are displayed
in Figure 12 to evaluate their performance in wetland mapping in Canada. As shown in
Figure 12 all classifiers had more than 80% median overall accuracy, except the “Other”
group with the lowest median overall accuracy by 76%. Among them, RF (88%), CNN
(86.6%), and MCS (85.75%) had higher median overall accuracies than the others. As
expected, the “Other” group had the greatest range of overall accuracy results this group
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included dissimilar classification methods with different performances. ML, SVM, k-NN,
DT, NN, and ISODATA with the median overall accuracies between 83% and 85% were
the mid-range classifiers. The best (97.67%) and worst (62.40%) overall accuracies were
achieved by RF [117] and Other [118] classifiers, respectively.

Figure 12. Boxplot distributions of the overall accuracies obtained by different classifiers used for wetland classification
in Canada.

There are different wetland classification strategies. For instance, analysis of pixel
information (i.e., pixel-based methods) has been emphasized in some studies. However,
recent studies have frequently argued the higher potential of object-based methods for
accurate wetland mapping [2]. The pixel-based methods utilize the spectral information of
individual image pixels for classification [2,119]. In contrast, homogeneous information
(e.g., geometrical or textural information) in images is considered through object-based
methods [17,119]. The pixel-based classification methods were preferred to the object-based
approaches in most of the wetland classification studies of Canada. This could be mainly
due to the simplicity and comprehensibility of the pixel-based methods compared to
object-based approaches. However, our investigations showed that object-based methods
had been extensively utilized in recent wetland mapping studies [7,68,73,103,120] due to
their higher performance than pixel-based methods. The highest median overall accuracy
(87.2%) was achieved by the object-based methods indicating their higher potential in
generating accurate wetland maps in Canada. Finally, the pixel-based methods involved a
wider range of overall accuracies and had the lowest overall accuracy.

4.3. RS Data Used in Wetland Studies of Canada

RS datasets with diverse characteristics (e.g., different spatial, spectral, temporal, and
radiometric resolutions) have been widely used for wetland mapping in Canada. In situ
data and aerial imagery were the main data resources for wetland mapping in Canada
before advancing spaceborne RS systems in the last four decades. Spaceborne RS systems
provide a wide variety of datasets with different sensors and, these are great resources
for wetland studies at different scales. Additionally, much of the spaceborne RS data is
free [121], leading to high utilization in wetland studies. Moreover, with the advent of UAV
technology in recent years, images with very high spatial and temporal resolutions have
been provided for wetland studies. In general, with the availability of RS datasets acquired
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by diverse spaceborne/airborne sensors, researchers have more options to produce highly
accurate wetland maps. For example, multi-spectral passive optical satellite/aerial images
have been frequently employed for wetland studies due to their straightforward interpre-
tation and rich spectral information. However, such datasets are susceptible to clouds,
resulting in their inefficiency in the cloudy regions [2,121]. Moreover, due to their short
wavelength, optical signals cannot penetrate into the vegetation canopy [18]. In contrast,
SAR signals are less affected by climate conditions (e.g., clouds and rain) [2,121,122]. SAR
signals also have a high capability to penetrate into vegetation canopies, making them
more beneficial than optical sensors to obtain information about wetland characteristics
like structure, surface roughness, and moisture content [2,18]. Furthermore, modern SAR
missions (e.g., RADARSAT-2, RADARSAT Constellation Mission (RCM)) acquire data in
any combination of linear (horizontal and vertical) or circular (right or left) polarizations,
which are very helpful for mapping treed and herbaceous wetlands [18,123].

Many wetland studies have combined optical and SAR data to achieve more accurate
results. Additionally, a combination of optical, SAR, and elevation data has been extensively
used for wetland studies in Canada (see Figure 13) and has usually provided the highest
classification accuracies. As shown in Figure 13, single optical data (95 studies) is the most
common data for wetland studies in Canada. Moreover, SAR data (57 studies) or dual
combinations of SAR and optical data (53 studies) were often used. Single elevation data
type (22 studies) was mostly employed to produce different topographic features, which
can be accommodated for 3D analysis of wetland species and wetland mapping. Dual
combinations of optical and elevation data (19 studies), and triple combination of optical,
SAR, and elevation data (24 studies) were moderately considered as input data for wetland
studies in Canada. The combination of elevation data with SAR data were the least utilized
data types (only six studies). A total of 12 studies employed other data types, such as data
derived from satellite telemetry, radiometers, satellite transmitters and ground penetrating
radar for wetland studies in Canada.

The studies typically conducted on RS data acquired by different platforms, such
as airborne, spaceborne or a combination of them. Most of the studies (~67%) were
based on the spaceborne RS systems. This is probably due to the high capability and
cost-effectiveness of spaceborne RS datasets for wetland mapping and monitoring over
large areas in Canada. The airborne RS datasets were used in 13% of studies, where its
combination with spaceborne RS datasets has been utilized in 20% of wetland studies.
Recently, the use of Unmanned Aerial Vehicles (UAVs) equipped with RS sensors has
become popular in wetland studies. In fact, the provided drone datasets could be a
paradigm shift as they can be easily customized according to wetland studies specifications
in contrast to spaceborne and piloted airborne RS datasets.

Figure 14 provides the frequently used optical and SAR sensors in wetland studies
in Canada. Landsat, Sentinel-2, and RapidEye were the most common medium resolu-
tion spaceborne optical systems, while IKONOS and WorldView-2 were the most widely
used high-resolution spaceborne optical sensors in wetland studies in Canada. Among
them, Landsat 4/5 images were often employed in studies due to their affordable spa-
tial/temporal resolutions and rich archive datasets. Moreover, ERS-1 and -2, Sentinel 1,
and RADARSAT-1 and -2 are the most popular C-band SAR systems, where ALOS-1 and
-2 and TRASAR-X were widely used L-band and X-band SAR system in RS-based wet-
land studies in Canada. RADARSAT-2 images were frequently employed for wetland
studies among SAR sensors because it is a Canadian SAR system, and it provides full/dual-
polarization data with suitable azimuth and slant range resolutions. Finally, Compact
Airborne Spectrographic Imager (CASI) hyperspectral system was the most popular sensor
among airborne sensors.
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Figure 13. Data type(s) used in wetland studies in Canada.

Figure 14. The frequently used (a) optical and (b) SAR satellites in wetland mapping in Canada and (c) the description of
the most widely used RS systems.
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For a closer look, the overall accuracy reported in wetland classification studies for
various data types is shown in Figure 15a. Based on Figure 15a, the median overall accuracy
of the various data types and their combinations is more than 80%. LiDAR/DEM data
obtained the highest median overall accuracy (92%), resulted from only 3 papers out of
22 LiDAR/DEM papers that reported accuracy. The lowest median overall accuracy (82.4%)
was achieved based on the SAR data type. However, a combination of SAR by another
data type (e.g., optical or DEM) resulted in a better median overall accuracy. The median
overall accuracy obtained by the optical data improved by combining with LiDAR/DEM
data. Given the large number of studies conducted based on optical data, a wide range
of overall accuracy (between 62.40% and 96.17%) was observed by this data, which was.
Finally, the best overall accuracy (97.6%) was achieved by a triple combination of SAR,
optical, and elevation data.

Figure 15. The overall accuracies reported in RS-based wetland classification studies in Canada (a) based on the different
data types employed, and (b) based on the spatial resolution of the imagery.

Depending on the selected spatial resolution, wetland classification studies in Canada
can also be categorized into three groups of high-resolution (<4 m), medium-resolution
(4–30 m), and low-resolution (>30 m). Accordingly, the median overall accuracy achieved
by reviewed papers using high, medium, and low spatial resolutions are illustrated in
Figure 15b. The median of overall accuracy for all the spatial resolutions was more than
80%. The best median overall accuracy was achieved for studies that used medium-
resolution datasets for wetland mapping, closely followed by the high-resolution datasets.
Moreover, a great range of overall accuracies was reported in various studies using medium
resolution images. As expected, the weakest results belonged to studies that used low
spatial resolution data. The highest (97.67%) and lowest (62.40%) overall accuracies were
obtained using a high-resolution and medium resolution data, respectively.

The results showed that 18 types of RS systems were used more than three times in
128 wetland classification studies, which are depicted in Figure 16. Airborne platforms,
followed by RADARSAT-2 and Landsat 4-5, were the most frequently utilized sensors in
Canada for wetland mapping using RS data. Among the Landsat series, Landsat 7 was
less used, which was probably due to the failure of the Scan Line Corrector (SLC) on its
board. Sentinel-1/2, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Quickbird, ERS-1 and -2, and ALOS-2 were also among the sensors which were
used in combination with other sensors. However, Quickbird, ASTER, GeoEye, and ERS-1
and -2 were the least common sensors with five or less uses.
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Figure 16. Frequency of different sensors used in RS-based wetland classification studies in Canada. Blue and red bards
indicate if a single or multi-source data are used.

4.4. Level of Classification Accuracy

For a comprehensive investigation of the RS-based Canadian wetland studies, the
reported overall accuracies were assessed and compared with various parameters, in-
cluding the year of publication, the extent of the study area, and the number of classes
considered in the classification method (see Figure 17). Figure 17a presents the histogram
of the overall classification accuracies reported in 128 papers. Note that a wide range of
studies (39 papers) did not report the overall accuracy of their classification methods (black
column in Figure 17a). According to Figure 17a, almost 80% (46 papers) of the studies have
an overall accuracy between 84% and 93%; while only 33 papers have an overall accuracy
of less than 84% (between 62% and 83%).

Based on Figure 17b, there is not a clear relationship between the overall classification
accuracy and the year of publication. Two articles that were published in 1976–1995 have
close overall accuracy to each other and the medium overall accuracy of 86%. Two articles
that were published in 1996–2000 have achieved different accuracies. The medium overall
accuracy of those articles is 71%. In another time-interval, there is a greater number of
publications that have a wide range of overall accuracies between 63% and 96%.

Based on Figure 17c, wetland classification methods applied to the provincial scales
have the highest median overall accuracies, followed by very small and local study areas.
On the other hand, the papers on national scales have the lowest median overall accuracies.
Based on Figure 17d, more than 90% of the investigated articles used a few classes (between
two and six). In these papers, the overall accuracies vary between 62% and 96%. However,
the median overall accuracies of these papers are 87% for 1–3 classes and 86% for 4–6 classes.
In the case of 7–9 classes, the total number of papers decreases to four papers. The median
overall accuracy of these four papers is 89%. Moreover, those articles that considered a
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greater number of classes have higher median overall accuracies. We also found two papers
that considered 10–18 classes for classifying wetlands and achieved the median overall
accuracies of 94%. As seen, a higher number of classes seem to be more accurate for the
wetland classification method. We expect higher accuracies for a lower number of classes.
Therefore, due to the significant discrepancy in the number of papers, it is impossible
to provide a solid conclusion about the relationship between the overall accuracy of
classification method and the number of classes.

Figure 17. Overall accuracies reported in in RS-based wetland classification studies in Canada based on (a) the number
of papers, (b) the year of publications, (c) the extent of study area, and (d) the number of classes considered in the
classification method.

5. Conclusions

This review paper demonstrated the trends of RS-based wetlands studies in Canada
by investigating 300 articles published from 1976 to 2020. In total, twelve subfields were
summarized, including classification methods and their overall accuracies, RS datasets,
journals, number of wetland classes, authors/co-authors contributions and affiliations,
publications per year, geographical distributions, scale of the study areas, citation, and
keywords. Eventually, a deeper meta-analysis was carried out to discuss the utilization of
RS systems in these subfields over Canada particularly, which differentiates our survey
from previous reviews. Consequently, this paper addresses the status of wetland studies
in Canada using RS data and highlights opportunities and limitations for generating and
updating Canadian wetland inventories, as well as classification protocols improvements.
In summary, the meta-analysis of 300 wetland studies, 128 of which were related to wetland
classification, presented the following outcomes:

• RS datasets have been increasingly used in the last four years, especially in NL.
However, the largest number of studies has been conducted in ON over the past
40 years.

• Around half of the research studies have been implemented over the three provinces
of ON, NL, and QC, indicating the requirement for more efforts of wetlands mapping



Remote Sens. 2021, 13, 4025 23 of 43

in other Canadian provinces to have a highly accurate and consistent country-wide
wetland inventory.

• A total of 40% of the studies have been conducted over regional scales, and only
five research papers have been published on a country scale. Although small-scale
analysis can result in a classification with relatively higher accuracy, country-based
classification can provide valuable details on the status and extent of wetlands for
national and local administrative decision-makers.

• Novel deep learning methods and MCSs achieved more accurate maps in comparison
to traditional techniques. RF, CNN, and MCS techniques provided the highest median
overall accuracies.

• Pixel-based and supervised classification methods were the most popular techniques
to map wetlands in Canada due to the simplicity and higher accuracies of these
strategies compared to the object-based and unsupervised approaches, respectively.
However, the median accuracy of object-based methods was more than pixel-based
techniques and, therefore, they have been more frequently used in recent studies.

• Optical imagery and the combinations of optical and SAR datasets have been the
most commonly used RS datasets to map wetlands in Canada. Availability, fulfilled
archive, the high capability, and cost-effectiveness of optical and SAR imageries have
attracted numerous focuses to utilize them. LiDAR/DEM data also resulted in the
highest classification accuracies over small regions.

• Most (but not all) of the reviewed studies did not present the full confusion matrix and
only reported the overall accuracy to evaluate the results which were easily affected
by the stratification of samples between dry and wet classes. Additionally, accuracy
statistics often depend on the different factors, such as the geographic extent of the
study area, type of RS data, the degrees of wetland species, the quality of training
and tests samples, and classification algorithm and its tuning parameter settings.
Therefore, it would be required to increase the number of wetland studies that try to
actually quantify wetland classification errors in different aspects.

• Approximately 30% of the studies considered the five CWCS wetland classes, and
around 54% provides wetland maps using a lower number of classes.

• Frequencies of “SAR” and “RADARSAT (1/2)” displayed the importance of SAR
data for wetland mapping in Canada because of the capability of SAR data to acquire
images in any weather conditions considering the dominant cloudy and snowy climate
of Canada.

This review paper highlights the efficiency of RS technology for accurate and con-
tinuous mapping of wetlands in Canada. The results can effectively help in selecting the
optimum RS data and method for future wetland studies in Canada. In summary, imple-
mentation an object-based RF method along with a combination of optical and SAR images
can be the optimum workflow to achieve a reasonable accuracy for wetland mapping at
various scales in Canada.
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Appendix A

Table A1. Characteristics of the mostly used classifiers for wetland classification in Canada using RS data.

Classifier Description Type

ISODATA
It is a modified version of k-means clustering in which k is allowed to
range over an interval. It includes the merging and splitting of
clusters during the iterative process.

Unsupervised

ML
It is a parametric algorithm based on Bayesian theory, assuming data
of each class follow the normal distribution. Accordingly, a pixel with
the maximum probability is assigned to the corresponding class.

Supervised/Unsupervised

k-NN
It is a non-parametric algorithm that classifies a pixel by a variety
vote of its neighbors, with the pixel being allocated to the class most
common among its k nearest neighbors.

Supervised

SVM
It is a type of non-parametric algorithm that defines a hyperplane/set
of hyperplanes in feature spaces used for maximizing the distance
between training samples of classes space and classify other pixels.

Supervised

DT
It is a non-parametric algorithm belonging to the category of
classification and regression trees (CART). It employs a tree structure
model of decisions for assigning a label to each pixel.

Supervised

RF
It is an improved version of DT, which includes an ensemble of
decision trees, in which each tree is formed by a subset of training
samples with replacements.

Supervised

ANN

It is a multi-stage classifier that typically includes the neurons
arranged in the input, hidden, and output layers. It is able to
learn a non-linear/linear function approximator for the
classification scheme.

Supervised

CNN
It is a class of multilayered neural networks/deep neural networks,
with a remarkable architecture to detect and classify complex features
in an image.

Supervised

MCS It advantages from performances of dissimilar classifiers on a specific
LULC to achieve accurate classification of the image. Supervised

Table A2. List of 300 studies and main characteristics.

No. First Author Year Region Classification Method Data

1 Jeglum J. K. et al. [124] 1975 ON − Aerial
2 Boissonneau A. N. et al. [125] 1976 ON PB */Supervised/Other Optical + Aerial
3 Wedler E. et al. [126] 1981 ON − Radar
4 Hughes F. M. et al. [127] 1981 AB − −
5 Neraasen T. G. et al. [128] 1981 Canada − Optical
6 Watson E. K. et al. [129] 1981 BC − Aerial
7 Tomlins G. F. et al. [130] 1981 BC − −
8 Pala S. et al. [131] 1982 ON − Aerial
9 Lafrance P. et al. [132] 1987 QC − Optical
10 Lafrance P. et al. [133] 1988 QC − Optical
11 Peddle D. R. et al. [134] 1989 Canada PB/Supervised/ML Optical
12 Kneppeck I.D. et al. [135] 1989 AB − −
13 Drieman J. A. et al. [136] 1989 ON − Radar
14 Konrad S. R. et al. [137] 1990 Canada PB/Unsupervised/ML Optical + Aerial
15 Franklin S. E. et al. [138] 1990 NL − Optical
16 Matthews S. B. et al. [139] 1991 NT − Optical
17 McNairn H. E. et al. [23] 1993 ON PB/Supervised/ML Aerial
18 Franklin S. E. et al. [140] 1994 NL − Aerial + Optical
19 Cihlar J. et al. [141] 1994 MB − Optical
20 Franklin S. E. et al. [142] 1994 NL − Aerial
21 Yatabe S. M. et al. [50] 1995 ON PB/Supervised/ML Radar + Optical
22 Strong L. L. [12] 1995 SK − Other = Aerial Video
23 Bubier J. L. [143] 1995 MB − Optical

24 Pietroniro A. et al. [144] 1996 NT PB/Supervised +
Unsupervised/Other Optical + Aerial
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25 Hall F. G. et al. [145] 1996 Canada − Optical + Radar + Aerial
26 Halsey L. [22] 1997 MB − Aerial

27 Steyaert L. T. [93] 1997 MB, SK PB/Unsupervised/ML +
Other = ISOCLASS Optical + Aerial

28 Hall F. G. et al. [106] 1997 SK PB/Supervised/KNN Optical
29 Franklin S. E. et al. [146] 1997 NL − Aerial
30 Collins N. et al. [147] 1997 NS − Aerial
31 Wang J. et al. [25] 1998 ON PB/Supervised/ML Optical + Radar + Aerial
32 Pietroniro A. et al. [148] 1999 AB − Optical + LiDAR/DEM
33 Ghedira H. et al. [30] 2000 QC PB/Supervised/DL = NN Radar
34 McLaren B. E. et al. [71] 2001 NL PB/Supervised/Other Radar + Optical + Aerial
35 Baghdadi N. et al. [101] 2001 ON PB/Supervised/DT Radar

36 Rapalee G. et al. [149] 2001 Canada PB/Supervised/Other Optical + Aerial +
LiDAR/DEM

37 Murphy M. A. [29] 2001 ON PB/Supervised/ISODATA +
Other Radar

38 Pietroniro A. et al. [150] 2001 AB − Optical + Radar
39 Hall-Atkinson C et al. [151] 2001 NT − Radar + Optical + Aerial
40 Sokol J. et al. [152] 2001 NL − Radar

41 Dechka J. A. et al. [111] 2002 SK
PB/Supervised +
Unsupervised/ISODATA +
Other

Optical + Aerial

42 Gadallah F.L et al. [105] 2002 MB PB/Supervised/ISODATA Optical + Radar + Aerial
43 Arzandeh S. et al. [97] 2002 ON PB/Supervised/ML Optical + Radar + Aerial
44 Deslandes S. et al. [100] 2002 QC PB/Supervised/DT Optical + Radar + Aerial

45 Jollineau M. et al. [153] 2002 ON PB/Supervised +
Unsupervised/ML + K-Means Optical

46 Töyrä J. et al. [154] 2002 Canada − Optical + Radar

47 Pietroniro A. et al. [155] 2002 AB − Optical + RADAR +
LiDAR

48 Poulin M. et al. [156] 2002 QC − Optical + Aerial
49 Quinton W. L. et al. [157] 2003 NT PB/Supervised/ML Optical + Aerial

50 Bernier M. et al. [158] 2003 QC PB/Supervised/ML + DL =
NN Radar

51 Thomas V. et al. [118] 2003 MB PB/Supervised/ML Other
52 Jobin B. et al. [51] 2003 QC PB/Supervised/ML Optical + Aerial
53 Arzandeh S. et al. [159] 2003 ON PB/Supervised/ML Optical + Radar + Aerial
54 Havholm K. G. et al. [160] 2003 MB − Other
55 Wessels J. et al. [161] 2003 Canada − Optical + Radar
56 Bernier M. et al. [110] 2003 QC − Radar
57 Racine M. J. et al. [162] 2004 QC PB/Supervised/ML Radar
58 Rosenqvist A. et al. [163] 2004 Canada − Radar
59 Sokol J. et al. [164] 2004 Canada − Radar
60 Li J. et al. [33] 2005 Canada PB/Supervised/Other Optical + Radar + LiDAR
61 Tedford B. et al. [165] 2005 SK − Optical + Radar
62 Grenier M. et al. [166] 2005 QC − Optical + Radar
63 Cheng W. F. et al. [167] 2005 NL − -
64 Ju W. et al. [168] 2005 Canada − LiDAR/DEM
65 Hudon C. et al. [169] 2005 QC − Optical + Aerial
66 Niemann K.O. [170] 2005 Canada − Optical + Radar
67 Smith K. B. et al. [171] 2005 Canada − Optical + Radar
68 Li J. et al. [172] 2005 ON − Radar

69 Töyrä J. et al. [173] 2005 AB − Optical + Radar +
LiDAR/DEM + Aerial

70 Mialon A. et al. [174] 2005 Canada − Optical +Radar
71 Brown L. et al. [175] 2006 NU − Optical + Radar + Aerial

72 Prowse T. D. et al. [176] 2006 AB, BC,
SK − Optical + Radar + Aerial
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73 Peters D. L. et al. [177] 2006 AB, NT − LiDAR/DEM
74 Dillabaugh K. et al. [178] 2006 ON − Optical
75 Grenier M. et al. [3] 2007 QC OB */Supervised/Other Optical + Radar
76 Hogg A. R. et al. [35] 2007 ON PB/Supervised/CART LiDAR/DEM
77 Li J. et al. [179] 2007 ON PB/Supervised/ML Optical + Radar
78 Stevens C. E. et al. [180] 2007 AB − LiDAR/DEM
79 Smith C. et al. [80] 2007 Canada − -
80 Touzi R. et al. [88] 2007 ON − Radar

81 Fournier R. A. et al. [181] 2007 Canada − Optical + Radar + LiDAR
+Aerial

82 Touzi R. et al. [182] 2007 ON − Radar
83 Gillanders S. N. et al. [104] 2008 AB PB/Supervised/ISODATA Optical
84 Jollineau M. et al. [154] 2008 ON PB/Supervised/ML + Other Optical
85 Jollineau M. Y. et al. [32] 2008 ON PB/Supervised/ML + Other Optical
86 Grenier M. et al. [3] 2008 QC OB/Supervised/Other Optical + Radar

87 Dillabaugh K. A. et al. [109] 2008 ON PB/Supervised/ML + DL =
NN Optical

88 Hogg A. R. et al. [183] 2008 ON − Aerial + LiDAR/DEM
89 Sass G. Z. et al. [184] 2008 AB − Radar
90 Liu Y. et al. [185] 2008 ON − LiDAR/DEM
91 Creed I. F. et al. [186] 2008 AB − Radar
92 Touzi R. et al. [187] 2008 ON − Radar

93 Kaheil Y. H. et al. [49] 2009 AB PB/Supervised/SVM + Other Radar + Optical + LiDAR
+ LiDAR/DEM

94 Richardson M. C. et al. [36] 2009 ON PB/Supervised/CART LiDAR/DEM

95 Dissanska M. et al. [108] 2009 QC OB/Supervised/DL = NN +
Other Optical + Aerial + DEM

96 Harris A. et al. [188] 2009 ON − Aerial + Optical + Radar
97 Rosa E. et al. [189] 2009 QC − Radar
98 Raynolds M. K. et al. [190] 2009 NT − Optical + Other
99 Pirie L. D. et al. [191] 2009 NT − Optical
100 Spooner I. et al. [192] 2009 NS − Other
101 Clark R. B. et al. [193] 2009 AB − Radar
102 Fang X. et al. [194] 2009 SK − Aerial + LiDAR/DEM
103 Touzi R. et al. [195] 2009 ON − Radar
104 Touzi R. et al. [196] 2009 ON − Radar
105 Collin A. et al. [37] 2010 QC PB/Supervised/ML LiDAR
106 Andrea J. M. et al. [197] 2010 ON − Optical
107 Soverel N.O. et al. [198] 2010 Canada − Optical
108 Levrel G. et al. [199] 2010 QC − Radar
109 Sannel A. B. K. et al. [200] 2010 Canada − Optical + Aerial
110 Neta T. et al. T. [201] 2010 MB, ON − Optical
111 Midwood J. D. et al. [202] 2010 ON − Optical
112 Touzi R. et l. [203] 2010 QC − Radar
113 Fang X. et al. [204] 2010 SK − Optical + Lidar/DEM
114 Brisco B. et al. [205] 2011 MB PB/Supervised/ML + Other Radar + LiDAR/DEM
115 Crowell N. et al. [206] 2011 NS − LiDAR/DEM

116 Quinton W. L. et al. [207] 2011 NT PB/Supervised/Other Optical + Aerial +
LiDAR/DEM

117 Rokitnicki-Wojcik D. et al. [208] 2011 ON OB/Supervised/Other + DT Optical
118 Muskett R. R. et al. [209] 2011 YT − Optical + Other
119 Chen B. et al. [210] 2011 Canada − Optical
120 Neta T. et al. [211] 2011 ON, MB − Optical + Aerial

121 Hogan D. et al. [212] 2011 AB, BC,
YT − Optical + Aerial

122 Shook K. R. et al. [213] 2011 SK − LiDAR/DEM
123 Watchorn K. E. et al. [92] 2012 MB, ON −
124 Fraser S. et al. [214] 2012 MB − Optical + Other
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125 Guo X. et al. [215] 2012 SK PB + OB/Supervised/ML +
KNN Radar

126 Allard M. et al. [11] 2012 QC OB/Supervised/Multiple
classifier Optical

127 Dribault Y. et al. [19] 2012 QC OB/Supervised/Other Optical + Aerial
128 Barker R. et al. [216] 2012 QC − Aerial
129 Kaya S. et al. [217] 2012 Canada − Radar
130 Pivot F. C [218] 2012 MB − Radar
131 Midwood J. D. et al. [219] 2012 ON − Optical

132 Gala T. S. et al. [220] 2012 SK − Optical + Radar +
LiDAR/DEM

133 Brisco B. et al. [48] 2013 MB PB/Supervised/SVM + ML Radar + Aerial

134 Chen W. et al. [221] 2013 MB PB/Supervised/Other Optical + Radar +
LiDAR/DEM

135 Lantz N. J. et al. [63] 2013 ON OB + PB/Supervised/NN +
ML Optical

136 Millard K. et al. [42] 2013 ON PB/Supervised/RF Radar + LiDAR
137 Kokelj, S. V. et al. [87] 2013 YT, NT − LiDAR
138 Doiron M. et al. [222] 2013 NU − Optical
139 McClymont A. F et al. [223] 2013 NT − Other
140 Lapointe J. et al. [224] 2013 QC − Other

141 Huschle G. et al. [225] 2013 SK, MB,
ON − Other

142 Mattar K. E. [226] 2013 ON − Radar
143 Jacome A. et al. [227] 2013 QC − Radar
144 Chasmer L. et al. [102] 2014 NT PB/Supervised/DT + Other Optical + LiDAR/DEM

145 Banks S. N. et al. [228] 2014 NT PB/Supervised +
Unsupervised/ML Optical + Radar + UAV

146 Banks S. N. et al. [229] 2014 NT PB/Supervised +
Unsupervised/Other Radar + UAV

147 Touzi R. et al. [115] 2014 AB PB/Supervised/Other Radar
148 Pastick N. J. et al. [99] 2014 YT PB/Supervised/DT Optical
149 Sutherland G. et al. [38] 2014 AB PB/Supervised/DT LiDAR + LiDAR/DEM

150 Ullmann T. et al. [52] 2014 NT PB/Supervised +
Unsupervised/ML Optical + Radar

151 Dech J. P. et al. [95] 2014 ON − LiDAR/DEM
152 Gosselin G. et al. [116] 2014 QC OB/Supervised/ML + Other Optical + Radar
153 Ahern F. J. et al. [230] 2014 ON PB/Supervised/Other Radar
154 Armenakis C. et al. [231] 2014 BC, NS − -
155 Connon R. F. et al. [89] 2014 NT − Optical + Aerial
156 Ely C. R. et al. [232] 2014 Canada − Radar
157 Chabot D. et al. [233] 2014 QC − UAS
158 Cable J. W. et al. [234] 2014 ON − Radar
159 Nelson T. A. et al. [235] 2014 Canada − Optical
160 Clare S. et al. [236] 2014 AB − -
161 Mui A. et al. [107] 2015 Canada OB/Supervised/KNN Optical + LiDAR/DEM
162 Dabboor M. et al. [16] 2015 MB PB/Unsupervised/Other Radar

163 Bourgeau-Chavez L. et al. [237] 2015 ON PB + OB/Supervised/ML +
Other Optical + Radar + Aerial

164 Sizo A. et al. [114] 2015 SK PB/Unsupervised/Other Optical

165 Umbanhowar Jr C. E et al. [238] 2015 MB PB/Unsupervised/ISODATA Optical + Aerial +
LiDAR/DEM

166 Sagin J. et al. [239] 2015 SK − Optical
167 Dingle R. L. et al. [240] 2015 ON − Optical
168 Kalacska M. et al. [241] 2015 ON PB/Supervised/Other Other
169 Kotchi S. O. et al. [242] 2015 QC − Optical + Radar
170 Tougas-Tellier M. A. et al. [243] 2015 QC − Optical + Aerial
171 Messmer D. J. et al. [244] 2015 ON − Optical + UAV + Aerial
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172 Brisco B. et al. [245] 2015 ON − Radar
173 Muster S. et al. [246] 2015 NU − Optical
174 Jiao X. et al. [247] 2015 AB − Radar
175 Li-Chee-Ming J. et al. [248] 2015 AB − Radar + UAV
176 Thompson S. D. et al. [249] 2016 BC PB/Unsupervised/Other Optical + LiDAR + Aerial
177 Braverman M. et al. [34] 2016 NT - LiDAR/DED

178 Marcaccio J. V.et al. [250] 2016 ON OB/Supervised/ML + Other Optical + Radar + Aerial +
UAV

179 Ou C. et al. [56] 2016 ON PB/Supervised/RF Optical + Radar +
LiDAR/DEM

180 Lara M. J. et al. [98] 2016 NT PB/Supervised/ML Optical + Radar + Aerial
181 Mohammadimanesh F. et al. [112] 2016 NL PB/Supervised/Other Radar
182 Chasmer L. et al. [251] 2016 AB − LiDAR + Aerial

183 Spence C. et al. [252] 2016 SK − Optical + UAV +
LiDAR/DEM

184 Shinneman A. L. C. et al. [253] 2016 MB − Optical
185 Finger T. A. et al. [254] 2016 ON − Other
186 Miller S. M. et al. [255] 2016 Canada − Optical + Aerial
187 Kross A. et al. [256] 2016 ON, AB − Optical
188 Shodimu O. et al. [257] 2016 NB − Optical
189 Schmitt A. et al. [258] 2016 Canada − Radar
190 Emmerton C. A. et al. [259] 2016 NU − Optical
191 Serran J. N. et al. [260] 2016 AB − Aerial + LiDAR/DEM
192 Bolanos S. et al. [261] 2016 AB, SK − Optical + Radar
193 Morsy S. et al. [262] 2016 ON − LiDAR
194 van der Kamp G. et al. [263] 2016 Canada − -
195 Sizo A. et al. [264] 2016 SK − Optical
196 Ullmann T. et al. [265] 2016 NT − Radar
197 Mahdianpari M. et al. [43] 2017 NL OB/Supervised/RF Radar

198 Banks S. et al. [58] 2017 NU PB/Supervised/RF Radar + Optical +
LiDAR/DEM + UAV

199 Merchant M.A. et al. [47] 2017 NT PB/Supervised/SVM Radar
200 Amani M. et al. [266] 2017 NL OB/Supervised/RF Optical

201 Hird J. N. et al. [40] 2017 AB PB/Supervised/ML Optical + Radar + Aerial +
LiDAR/DEM

202 Chen Z. et al. [57] 2017 NT PB + OB/Supervised/RF +
ML Optical

203 Bourgeau-Chavez L. L. et al. [55] 2017 AB PB + OB/Supervised/RF Optical + Radar

204 White L. et al. [60] 2017 ON PB/Supervised/RF Optical + Radar +
LiDAR/DEM

205 Mahdavi S. et al. [72] 2017 NL PB + OB/Supervised/RF Optical + Radar + Aerial

206 Franklin S. E. et al. [61] 2017 ON OB/Supervised/RF Optical + Radar + Aerial +
LiDAR/DEM

207 Mahdianpari M. et al. [44] 2017 NL OB/Supervised/RF + Other Optical + Radar
208 Amani M. et al. [39] 2017 NL OB/Supervised/RF Optical + Radar
209 Mahdianpari M. et al. [267] 2017 NL PB/Supervised/RF Radar + Aerial
210 Amani M. et al. [7] 2017 NL OB/Supervised/RF Optical + Radar + Aerial

211 Amani M. et al. [73] 2017 NL PB + OB/Supervised/KNN +
ML + SVM + CART + RF Optical + Aerial

212 Lovitt J. et al. [268] 2017 AB − UAV + LiDAR
213 Kim S. et al. [269] 2017 Canada − Optical + Radar
214 Mohammadimanesh F. et al. [270] 2017 NL − Radar + LiDAR/DEM
215 Dabboor M. et al. [271] 2017 ON − Radar
216 Chabot D. et al. [272] 2017 ON − UAS
217 Perreault N. et al. [273] 2017 NU − Optical
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218 Ullmann T. et al. [274] 2017 NT − Radar
219 Brisco et al. [275] 2017 Canada − -
220 Mahdavi S. et al. [2] 2018 Canada − -
221 Amani M. et al. [103] 2018 NL OB/Supervised/Other Optical + Radar
222 Wulder, M. A. et al. [90] 2018 Canada PB/Supervised/RF + Other Optical
223 Mohammadimanesh F. et al. [276] 2018 NL OB/Supervised/RF + SVM Radar
224 Chabot D. et al. [53] 2018 ON OB/Supervised/ML UAV
225 Paul S. S. et al. [113] 2018 Canada OB/Supervised/ML + Other Optical
226 D’Acunha B. et al. [277] 2018 BC − Optical
227 Arroyo-Mora J. P. et al. [20] 2018 ON − Optical + Other
228 Mahdianpari M. et al. [83] 2018 NL PB/Supervised/RF Radar
229 Ahern F. et al. [278] 2018 ON PB/Supervised/Other Radar

230 Jahncke R. et al. [94] 2018 NS PB/Supervised/RF Optical + Radar + LiDAR
+ Aerial

231 Mohammadimanesh F. et al. [96] 2018 NL OB/Supervised/RF Radar
232 Amani M. et al. [39] 2018 NL OB/Supervised/RF Optical

233 Mahdianpari M. et al. [27] 2018 NL PB /Supervised/DL + SVM +
RF Optical

234 Franklin S. E. et al. [62] 2018 ON PB + OB/Supervised/ML +
RF Optical + Radar

235 Whitley M. A. et al. [279] 2018 YT − Optical + LiDAR +
LiDAR/DEM

236 Jorgenson M. T. et al. [280] 2018 YT − Optical + Aerial +
LiDAR/DEM

237 Ward E. M. et al. [281] 2018 AB − Optical
238 Potter C. [282] 2018 YT − Optical
239 Campbell T. K. F. et al. [283] 2018 NT − Optical + Aerial

240 Blanchette M. et al. [284] 2018 QC − Optical + Aerial +
LiDAR/DEM

241 Warren R. K. et al. [285] 2018 NT − Optical
242 DeLancey E. R. et al. [286] 2018 AB − Radar + LiDAR/DEM
243 Chasmer L. E. et al. [287] 2018 AB − Optical

244 Montgomery J. S. et al. [288] 2018 AB − Optical + Radar +
LiDAR/DEM

245 Mahdavi S. et al. [82] 2019 NL OB/Supervised/RF Optical + Radar

246 Merchant M. A. et al. [289] 2019 YT OB/Supervised/KNN + SVM
+ RF

Optical + Radar +
LiDAR/DEM

247 Pouliot D. et al. [54] 2019 AB, QC PB/Supervised/DL = CNN Optical
248 Amani M. et al. [68] 2019 Canada PB/Supervised/RF Optical
249 Dabboor M. et al. [31] 2019 ON − Optical + Radar
250 Mohammadimanesh F. et al. [28] 2019 NL OB/Supervised/RF Radar
251 Rupasinghe P. A. et al. [46] 2019 ON PB/Supervised/SVM Optical + UAV
252 DeLancey E. R. et al. [41] 2019 AB PB/Supervised/DL Optical + Radar + LiDAR
253 Mahdianpari M. et al. [86] 2019 NL PB + OB/Supervised/RF Optical + Radar

254 Judah A. et al. [290] 2019 ON PB/Supervised/KNN + SVM
+ RF + Other Optical + Radar

255 Banks S. et al. [45] 2019 ON PB/Supervised/RF Radar + DSM/DEM
256 Pitcher L. H. et al. [291] 2019 YT − Radar
257 Gonsamo A. et al. [292] 2019 ON − Optical
258 Westwood A. et al. [293] 2019 NB, NS − Aerial

259 Brisco B. et al. [294] 2019 AB − Radar + UAV + LiDAR +
LiDAR/DEM

260 Jensen D. et al. [295] 2019 AB − Optical
261 Palumbo M. D. et al. [296] 2019 ON − Other
262 Montgomery J. et al. [297] 2019 AB − Optical + Radar + LiDAR
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263 Amani M. et al. [78] 2019 NL − Radar
264 Lane D. et al. [298] 2019 ON − LiDAR/DEM

265 Mahdianpari M. et al. [299] 2020 NL PB/Supervised/RF + CART +
Other Optical + DEM

266 Mahdianpari M. et al. [69] 2020 Canada OB/Supervised/RF Optical + Radar
267 Chen Z. et al. [300] 2020 ON − Radar + Optical + UAV
268 DeLancey E. R. et al. [21] 2020 AB PB/Supervised/DL = CNN Radar + Optical + Aerial
269 Merchant M. et al. [301] 2020 NT OB/Supervised/RF Optical + Radar + DEM

270 Siles G. et al. [302] 2020 AB OB/Supervised/ML + Other Optical + Radar +
LiDAR/DEM

271 White L. et al. [303] 2020 QC PB/Supervised/Other Radar + UAV
272 Valenti V. L. et al. [59] 2020 ON PB/Supervised/RF Optical + Radar

273 Hawkes V. C. et al. [304] 2020 AB Visual Analysis/Other Optical + Aerial +
LiDAR/DEM

274 Brisco B. et al. [305] 2020 Canada - Radar
275 Amani M. et al. [120] 2020 NL OB + PB/Supervised/RF Optical + Radar + LiDAR
276 Mahdianpari M. et al. [70] 2020 Canada OB/Supervised/RF Optical + Radar
277 LaRocque A. et al. [306] 2020 NB PB/Supervised/RF Optical + Radar
278 LaRocque A. et al. [117] 2020 NB PB/Supervised/RF Optical + Radar + DEM
279 Ahmed, M. I. et al. [307] 2020 SK − DEM
280 Bahrami A. et al. [308] 2020 QC − Radar + Other

281 Bergeron J. et al. [309] 2020 AB − Optical + LiDAR +
LiDAR/DEM

282 Mahoney C. et al. [310] 2020 AB − Radar
283 Wulder M. A. et al. [311] 2020 Canada − Optical + LiDAR
284 Janardanan R. et al. [312] 2020 Canada − Optical + UAV
285 O’Sullivan A. M. et al. [313] 2020 NB − LiDAR/DEM
286 Olthof I. et al. [314] 2020 QC, ON − Radar
287 Wadsworth E. et al. [315] 2020 Canada − LiDAR/DEM + Other
288 Amani M. et al. [316] 2020 Canada − Optical
289 Omari K. et al. [317] 2020 QC − Radar
290 Sewell P. D. et al. [318] 2020 AB − LiDAR
291 Peters D. L. et al. [319] 2020 AB − Optical + LiDAR
292 Zakharov I. et al. [320] 2020 AB − Radar
293 Wulder M. A. et al. [321] 2020 Canada − Optical
294 Wang L. et al. [322] 2020 QC − Radar
295 White L. et al. [323] 2020 ON − -
296 Wu J. et al. [324] 2020 NL − -
297 Haynes K. M. et al. [325] 2020 NT − LiDAR

298 Hopkinson C. et al. [326] 2020 BC − Optical + Radar +
LiDAR/DEM

299 Adeli S. et al. [18] 2020 Canada − -
300 Mahdianpari M. et al. [327] 2020 NL OB/Supervised/RF Optical + LiDAR/DEM

* PB and OB stand for Pixel-Based and Object-Based, respectively.
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85. Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [CrossRef]
86. Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland

at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform.
Remote Sens. 2019, 11, 43. [CrossRef]

87. Kokelj, S.V.; Jorgenson, M.T. Advances in Thermokarst Research. Permafr. Periglac. Process. 2013, 24, 108–119. [CrossRef]
88. Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45,

73–84. [CrossRef]
89. Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing Hydrologic Connectivity Due to Permafrost Thaw in the Lower

Liard River Valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [CrossRef]
90. Wulder, M.A.; Li, Z.; Campbell, E.M.; White, J.C.; Hobart, G.; Hermosilla, T.; Coops, N.C. A National Assessment Ofwetland Status

and Trends for Canada’s Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sens. 2018, 10, 1623.
[CrossRef]

91. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Disturbance-Informed Annual Land Cover Classification
Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Can. J. Remote Sens. 2018, 44, 67–87. [CrossRef]

92. Watchorn, K.E.; Goldsborough, L.G.; Wrubleski, D.A.; Mooney, B.G. A Hydrogeomorphic Inventory of Coastal Wetlands of the
Manitoba Great Lakes: Lakes Winnipeg, Manitoba, and Winnipegosis. J. Great Lakes Res. 2012, 38, 115–122. [CrossRef]

93. Steyaert, L.T.; Hall, F.G.; Loveland, T.R. Land Cover Mapping, Fire Regeneration, and Scaling Studies in the Canadian Boreal
Forest with 1 Km AVHRR and Landsat TM Data. J. Geophys. Res. Atmos. 1997, 102, 29581–29598. [CrossRef]

94. Jahncke, R.; Leblon, B.; Bush, P.; LaRocque, A. Mapping Wetlands in Nova Scotia with Multi-Beam RADARSAT-2 Polarimetric
SAR, Optical Satellite Imagery, and Lidar Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 139–156. [CrossRef]

95. Dech, J.P.; Mayhew-Hammond, S.; James, A.L.; Pokharel, B. Modeling Canada Yew (Taxus Canadensis Marsh.) Distribution and
Abundance in the Boreal Forest of Northeastern Ontario, Canada. Ecol. Indic. 2014, 36, 48–58. [CrossRef]

96. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Multi-Temporal, Multi-Frequency, and Multi-
Polarization Coherence and SAR Backscatter Analysis of Wetlands. ISPRS J. Photogramm. Remote Sens. 2018, 142, 78–93. [CrossRef]

97. Arzandeh, S.; Wang, J. Texture Evaluation of RADARSAT Imagery for Wetland Mapping. Can. J. Remote Sens. 2002, 28, 653–666.
[CrossRef]

98. Lara, M.J.; Genet, H.; Mcguire, A.D.; Euskirchen, E.S.; Zhang, Y.; Brown, D.R.N.; Jorgenson, M.T.; Romanovsky, V.; Breen, A.;
Bolton, W.R. Thermokarst Rates Intensify Due to Climate Change and Forest Fragmentation in an Alaskan Boreal Forest Lowland.
Glob. Chang. Biol. 2016, 22, 816–829. [CrossRef] [PubMed]

99. Pastick, N.J.; Rigge, M.; Wylie, B.K.; Jorgenson, M.T.; Rose, J.R.; Johnson, K.D.; Ji, L. Distribution and Landscape Controls of
Organic Layer Thickness and Carbon within the Alaskan Yukon River Basin. Geoderma 2014, 230–231, 79–94. [CrossRef]

100. Deslandes, S.; Grenier, M.; Bélanger, L.; Lacroix, G.; Zingraff, V. The Wetland Conservation Atlas of the St. Lawrence Valley
Produced from Decision Tree Classifications of RADARSAT and Landsat Images. In Proceedings of the International Geoscience
and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; Volume 5, pp. 2893–2895.

101. Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-Band SAR Data for Wetlands Mapping. Int. J. Remote Sens.
2001, 22, 71–88. [CrossRef]

102. Chasmer, L.; Hopkinson, C.; Veness, T.; Quinton, W.; Baltzer, J. A Decision-Tree Classification for Low-Lying Complex Land
Cover Types within the Zone of Discontinuous Permafrost. Remote Sens. Environ. 2014, 143, 73–84. [CrossRef]

103. Amani, M.; Salehi, B.; Mahdavi, S.; Brisco, B.; Shehata, M. A Multiple Classifier System to Improve Mapping Complex Land
Covers: A Case Study of Wetland Classification Using SAR Data in Newfoundland, Canada. Int. J. Remote Sens. 2018, 39,
7370–7383. [CrossRef]

104. Gillanders, S.N.; Coops, N.C.; Wulder, M.A.; Goodwin, N.R. Application of Landsat Satellite Imagery to Monitor Land-Cover
Changes at the Athabasca Oil Sands, Alberta, Canada. Can. Geogr. 2008, 52, 466–485. [CrossRef]

105. Gadallah, F.L. Historical Vegetation Reconstruction of a Degraded Sub-Arctic Coastal Marsh Using Landsat Imagery and Ancillary
Data. Ecoscience 2002, 9, 271–279. [CrossRef]

106. Hall, F.G.; Knapp, D.E.; Huemmrich, K.F. Physically Based Classification and Satellite Mapping of Biophysical Characteristics in
the Southern Boreal Forest. J. Geophys. Res. Atmos. 1997, 102, 29567–29580. [CrossRef]

107. Mui, A.; He, Y.; Weng, Q. An Object-Based Approach to Delineate Wetlands across Landscapes of Varied Disturbance with High
Spatial Resolution Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2015, 109, 30–46. [CrossRef]

108. Dissanska, M.; Bernier, M.; Payette, S. Object-Based Classification of Very High Resolution Panchromatic Images for Evaluating
Recent Change in the Structure of Patterned Peatlands. Can. J. Remote Sens. 2009, 35, 189–215. [CrossRef]

109. Dillabaugh, K.A.; King, D.J. Riparian Marshland Composition and Biomass Mapping Using Ikonos Imagery. Can. J. Remote Sens.
2008, 34, 143–158. [CrossRef]

110. Bernier, M.; Ghedira, H.; Gauthier, Y.; Magagi, R.; Filion, R.; De Sève, D.; Ouarda, T.B.M.J.; Villeneuve, J.P.; Buteau, P. Détection
et Classification de Tourbières Ombrotrophes Du Québec à Partir d’images RADARSAT-1. Can. J. Remote Sens. 2003, 29, 88–98.
[CrossRef]

http://doi.org/10.1186/2046-4053-4-1
http://doi.org/10.1177/1094428114562629
http://doi.org/10.3390/rs11010043
http://doi.org/10.1002/ppp.1779
http://doi.org/10.1109/TGRS.2006.886176
http://doi.org/10.1002/hyp.10206
http://doi.org/10.3390/rs10101623
http://doi.org/10.1080/07038992.2018.1437719
http://doi.org/10.1016/j.jglr.2011.05.008
http://doi.org/10.1029/97JD01220
http://doi.org/10.1016/j.jag.2018.01.012
http://doi.org/10.1016/j.ecolind.2013.06.017
http://doi.org/10.1016/j.isprsjprs.2018.05.009
http://doi.org/10.5589/m02-061
http://doi.org/10.1111/gcb.13124
http://www.ncbi.nlm.nih.gov/pubmed/26463267
http://doi.org/10.1016/j.geoderma.2014.04.008
http://doi.org/10.1080/014311601750038857
http://doi.org/10.1016/j.rse.2013.12.016
http://doi.org/10.1080/01431161.2018.1468117
http://doi.org/10.1111/j.1541-0064.2008.00225.x
http://doi.org/10.1080/11956860.2002.11682713
http://doi.org/10.1029/97JD02578
http://doi.org/10.1016/j.isprsjprs.2015.08.005
http://doi.org/10.5589/m09-002
http://doi.org/10.5589/m08-011
http://doi.org/10.5589/m02-083


Remote Sens. 2021, 13, 4025 35 of 43

111. Dechka, J.A.; Franklin, S.E.; Watmough, M.D.; Bennett, R.P.; Ingstrup, D.W. Classification of Wetland Habitat and Vegetation
Communities Using Multi-Temporal Ikonos Imagery in Southern Saskatchewan. Can. J. Remote Sens. 2002, 28, 679–685. [CrossRef]

112. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S. Unsupervised Wishart Classfication of Wetlands in
Newfoundland, Canada Using Polsar Data Based on Fisher Linear Discriminant Analysis. In Proceedings of the International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Prague, Czech Republic,
12–19 July 2016; Volume 41, pp. 305–310.

113. Paul, S.S.; Li, J.; Wheate, R.; Li, Y. Application of Object Oriented Image Classification and Markov Chain Modeling for Land Use
and Land Cover Change Analysis. J. Environ. Inform. 2018, 31, 30–40. [CrossRef]

114. Sizo, A.; Noble, B.; Bell, S. Futures Analysis of Urban Land Use and Wetland Change in Saskatoon, Canada: An Application in
Strategic Environmental Assessment. Sustaininability 2015, 7, 811–830. [CrossRef]

115. Touzi, R.; Omari, K.; Sleep, B. Combination of Target Scattering Decomposition with the Optimum Degree of Polarization for
Improved Classification of Boreal Peatlands in the Athabasca Region. In Proceedings of the International Geoscience and Remote
Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1013–1016.

116. Gosselin, G.; Touzi, R.; Cavayas, F. Polarimetric Radarsat-2 Wetland Classificationusing the Touzi Decomposition: Case of the Lac
Saint-Pierre Ramsar Wetland. Can. J. Remote Sens. 2014, 39, 491–506. [CrossRef]

117. LaRocque, A.; Phiri, C.; Leblon, B.; Pirotti, F.; Connor, K.; Hanson, A. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1
PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sens. 2020, 12, 2095. [CrossRef]

118. Thomas, V.; Treitz, P.; Jelinski, D.; Miller, J.; Lafleur, P.; McCaughey, J.H. Image Classification of a Northern Peatland Complex
Using Spectral and Plant Community Data. Remote Sens. Environ. 2003, 84, 83–99. [CrossRef]

119. You, Y.; Cao, J.; Zhou, W. A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and
Multi-Objective Scenarios. Remote Sens. 2020, 12, 2460. [CrossRef]

120. Amani, M.; Mahdavi, S.; Berard, O. Supervised Wetland Classification Using High Spatial Resolution Optical, SAR, and LiDAR
Imagery. J. Appl. Remote Sens. 2020, 14, 1. [CrossRef]

121. Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.;
Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications:
A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [CrossRef]

122. Moghimi, A.; Khazai, S.; Mohammadzadeh, A. An Improved Fast Level Set Method Initialized with a Combination of K-Means
Clustering and Otsu Thresholding for Unsupervised Change Detection from SAR Images. Arab. J. Geosci. 2017, 10, 1–18.
[CrossRef]

123. Marti-Cardona, B.; Lopez-Martinez, C.; Dolz-Ripolles, J.; Bladè-Castellet, E. ASAR Polarimetric, Multi-Incidence Angle and
Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sens. Environ. 2010, 114, 2802–2815.
[CrossRef]

124. Jeglum, J.K.; Boissonneau, A.N. Regional Level of Wetlands Mapping for the Northern Clay Section of Ontario. In Proceedings of
the 5th Canadian Symposium on Remote Sensing, Edmonton, AB, Canada, 28–31 August 1978.

125. Boissonneau, A.N.; Jeglum, J.K. A regional level of wetlands mapping for the northern Clay Section of Ontario. In Proceedings of
the 3rd Canadian Symposium on Remote Sensing, Edmonton, AB, Canada, 22–24 September 1975; pp. 349–357.

126. Wedler, E.; Kessler, R. Interpretation of Vegetative Cover in Wetlands Using Four-Channel SAR Imagery. In Proceedings of the
47th American Society of Photogrammetry, Annual Meeting, Washington, DC, USA, 22–27 February 1981; pp. 111–124.

127. Hughes, F.M.; Cordes, L.D. Peace-Athabasca Delta—Wetland in Transition ( Alberta, Canada). Geogr. Mag. 1981.
128. Neraasen, T.G.; Macaulay, A.J.; Mroczynski, R.P. Pintails and Pixels: A Potential Application of Landsat Technology to Waterfowl Habitat

Inventory; Purdue University: West Lafayette, IN, USA, 1981.
129. Watson, E.K.; Ryswyk, V.A.N. Remote Sensing Applications for British Columbia Wetlands Using 35 Mm Aerial Photography. In

Proceedings of the 7th Canadian Symposium on Remote Sensing, Winnipeg, MB, Canada, 8–11 September 1981; pp. 211–221.
130. Tomlins, G.F.; Thomson, K.P.B. Toward an Operational, Satellite-Based, Wetland Monitoring Program for the Fraser River Estuary,

British Columbia. In Proceedings of the 7th Canadian Symposium on Remote Sensing, Winnipeg, MB, Canada, 8–11 September
1981; pp. 74–82.

131. Pala, S.; Boissonneau, A. Wetland Classification Maps for the Hudson Bay Lowland. Le Nat. Can. 1982, 109, 653–659.
132. Lafrance, P.; Dubois, J.; Bonn, F. Remote Sensing of Humid Environments: Comparison of MSS, TM and SPOT Images [La

Teledetection Des Milieux Humides: Comparaison Des Images MSS, TM et SPOT]. Nat. Can. 1987, 114, 433–448.
133. Lafrance, P.; Dubois, J.; Bonn, F. Enhancement of a SPOT Simulation by Integration of Panchromatic into Multi-Spectral Mode:

Example of Wetlands (Canada). Photo Interpret. Images Aeriennes Spat. 1988.
134. Peddle, D.R.; Franklin, S.E. High Resolution Satellite Image Texture for Moderate Relief Terrain Analysis. In Proceedings of the

12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July
1989; IEEE: Piscataway, NJ, USA, 1989; Volume 2, pp. 653–655.

135. Kneppeck, I.D.; Ahern, F.J. Stratification of a Regenerating Burned Forest in Alberta Using Thematic Mapper and C-SAR Images.
In Proceedings of the Digest—International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada,
10–14 July 1989; Volume 3, pp. 1391–1396.

http://doi.org/10.5589/m02-064
http://doi.org/10.3808/jei.201700368
http://doi.org/10.3390/su7010811
http://doi.org/10.5589/m14-002
http://doi.org/10.3390/rs12132095
http://doi.org/10.1016/S0034-4257(02)00099-8
http://doi.org/10.3390/rs12152460
http://doi.org/10.1117/1.JRS.14.024502
http://doi.org/10.1109/JSTARS.2020.3021052
http://doi.org/10.1007/s12517-017-3072-3
http://doi.org/10.1016/j.rse.2010.06.015


Remote Sens. 2021, 13, 4025 36 of 43

136. Drieman, J.A.; Leckie, D.G.; Ahern, F.J. Multitemporal C-SAR for Forest Typing in Eastern Ontario. In Proceedings of the 12th
Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989;
IEEE: Piscataway, NJ, USA, 1989; Volume 3, pp. 1376–1378.

137. Konrad, S.R.; Rempel, R.S. Cost-Effectiveness of Landsat TM Classification by Operations Staff. IEEE Trans. Geosci. Remote Sens.
1990, 28, 769–771. [CrossRef]

138. Franklin, S.E.; Peddle, D.R. Classification of SPOT HRV Imagery and Texture Features. Remote Sens. 1990, 11, 551–556. [CrossRef]
139. Matthews, S.B. An Assessment of Bison Habitat in the Mills/Mink Lakes Area, Northwest Territories, Using LANDSAT Thematic

Mapper Data. Arctic 1991, 44, 75–80. [CrossRef]
140. Franklin, S.E.; Gillespie, R.T.; Titus, B.D.; Pike, D.B. Aerial and Satellite Sensor Detection of Kalmia Angustifolia at Forest

Regeneration Sites in Central Newfoundland. Int. J. Remote Sens. 1994, 15, 2553–2557. [CrossRef]
141. Cihlar, J.; Manak, D.; Voisin, N. AVHRR Bidirectional Reflectance Effects and Compositing. Remote Sens. Environ. 1994, 48, 77–88.

[CrossRef]
142. Franklin, S.E.; Titus, B.D.; Gillespie, R.T. Remote Sensing of Vegetation Cover at Forest Regeneration Sites. Glob. Ecol. Biogeogr.

Lett. 1994, 4, 40–46. [CrossRef]
143. Bubier, J.L.; Moore, T.R.; Bellisario, L.; Comer, N.T.; Crill, P.M. Ecological Controls on Methane Emissions from a Northern

Peatland Complex in the Zone of Discontinuous Permafrost, Manitoba, Canada. Glob. Biogeochem. Cycles 1995, 9, 455–470.
[CrossRef]

144. Pietroniro, A.; Prowse, T.D.; Lalonde, V. Classifying Terrain in a Muskeg-Wetland Regime for Application to GRU-Type Distributed
Hydrologic Models. Can. J. Remote Sens. 1996, 22, 45–52. [CrossRef]

145. Hall, F.G.; Sellers, P.J.; Williams, D.L. Initial Results from the Boreal Ecosystem-Atmosphere Experiment, BOREAS; The Finnish Society
of Forest Science and The Finnish Forest Research Institute: Helsinki, Finland, 1996.

146. Franklin, S.E.; Gillespie, R.T.; Titus, B.D.; McCaffrey, T.M. Discrimination of Kalmia Angustifolia Using Compact Airborne
Spectrographic Imager (CASI) Data. Can. J. Remote Sens. 1997, 23, 71–75. [CrossRef]

147. Collins, N.; Davis, L. Minimizing Impacts of Highway Construction on Freshwater Wetlands in Nova Scotia. In Ecological
Reclamation in Canada at Century’s Turn, Proceedings of the 35th Annual Meeting of the Canadian Society of Environmental Biologists,
Regina, SK, Canada, 26–29 September 1995; University of Regina Press: Regina, SK, Canada, 1997; Volume 28, p. 80.

148. Pietroniro, A.; Prowse, T.; Peters, D.L. Hydrologic Assessment of an Inland Freshwater Delta Using Multi-temporal Satellite
Remote Sensing. Hydrol. Process. 1999, 13, 2483–2498. [CrossRef]

149. Rapalee, G.; Steyaert, L.T.; Hall, F.G. Moss and Lichen Cover Mapping at Local and Regional Scales in the Boreal Forest Ecosystem
of Central Canada. J. Geophys. Res. Atmos. 2001, 106, 33551–33563. [CrossRef]

150. Pietroniro, A.; Leconte, R.; Peters, D.L.; Prowse, T.D. Application of a Hydrodynamic Model in a Freshwater Delta Using Remote
Sensing. IAHS Publ. 2001, 519–525.

151. Hall-Atkinson, C.; Smith, L.C. Delineation of Delta Ecozones Using Interferometric SAR Phase Coherence: Mackenzie River
Delta, NWT, Canada. Remote Sens. Environ. 2001, 78, 229–238. [CrossRef]

152. Sokol, J.; Pultz, T.J.; Bulzgis, V. Monitoring Wetland Hydrology in Atlantic Canada Using Multi-Temporal and Multi-Beam
Radarsat Data. IAHS Publ. 2001, 526–530.

153. Jollineau, M.; Howarth, P. Use of High-Resolution Imagery to Map Wetland Environments in South-Central Ontario, Canada. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; IEEE:
Piscataway, NJ, USA, 2002; Volume 5, pp. 3089–3091.

154. Töyrä, J.; Pietroniro, A.; Martz, L.W.; Prowse, T.D. A Multi-sensor Approach to Wetland Flood Monitoring. Hydrol. Process. 2002,
16, 1569–1581. [CrossRef]

155. Pietroniro, A.; Toyra, J. A Multi-Sensor Remote Sensing Approach for Monitoring Large Wetland Complexes in Northern Canada.
In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002;
IEEE: Piscataway, NJ, USA, 2002; Volume 2, pp. 1069–1072.

156. Poulin, M.; Careau, D.; Rochefort, L.; Desrochers, A. From Satellite Imagery to Peatland Vegetation Diversity: How Reliable Are
Habitat Maps? Conserv. Ecol. 2002, 6. [CrossRef]

157. Quinton, W.L.; Hayashi, M.; Pietroniro, A. Connectivity and Storage Functions of Channel Fens and Flat Bogs in Northern Basins.
Hydrol. Process. 2003, 17, 3665–3684. [CrossRef]

158. Bernier, M.; Ghedira, H.; Gauthier, Y.; Magagi, R.; Filion, R.; De Seve, D.; Ouarda, T.; Villeneuve, J.P.; Buteau, P. Remote Sensing
and Classification Bogs in Quebec Using Radarsat-1 Images. Can. J. Remote Sens. 2003, 29, 88–98.

159. Arzandeh, S.; Wang, J. Monitoring the Change of Phragmites Distribution Using Satellite Data. Can. J. Remote Sens. 2003, 29,
24–35. [CrossRef]

160. Havholm, K.G.; Bergstrom, N.D.; Jol, H.M.; Running, G.L. GPR Survey of a Holocene Aeolian/Fluvial/Lacustrine Succession,
Lauder Sandhills, Manitoba, Canada. Geol. Soc. Lon. Spec. Publ. 2003, 211, 47–54. [CrossRef]

161. Wessels, J.; Ball, D.; Prieto, D.F.; Ahern, F. Operational Wetlands Monitoring for the Ramsar Convention: TESEO Powers a
Breakthrough. In Proceedings of the IGARSS 2003—2003 IEEE International Geoscience and Remote Sensing Symposium.
Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 3,
pp. 1486–1489.

http://doi.org/10.1109/TGRS.1990.573024
http://doi.org/10.1080/01431169008955039
http://doi.org/10.14430/arctic1573
http://doi.org/10.1080/01431169408954266
http://doi.org/10.1016/0034-4257(94)90116-3
http://doi.org/10.2307/2997752
http://doi.org/10.1029/95GB02379
http://doi.org/10.1080/07038992.1996.10874636
http://doi.org/10.1080/07038992.1997.10874680
http://doi.org/10.1002/(SICI)1099-1085(199911)13:16&lt;2483::AID-HYP934&gt;3.0.CO;2-9
http://doi.org/10.1029/2001JD000509
http://doi.org/10.1016/S0034-4257(01)00221-8
http://doi.org/10.1002/hyp.1021
http://doi.org/10.5751/ES-00446-060216
http://doi.org/10.1002/hyp.1369
http://doi.org/10.5589/m02-077
http://doi.org/10.1144/GSL.SP.2001.211.01.04


Remote Sens. 2021, 13, 4025 37 of 43

162. Racine, M.-J.; Bernier, M.; Ouarda, T.B.M.J. Evaluation of RADARSAT-1 Images Acquired in Fine-Beam Mode for Boreal Peatlands:
A Study in the La Grande River Watershed, James Bay, Québec, Canada. In Proceedings of the Remote Sensing for Environmental
Monitoring, GIS Applications, and Geology IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2004;
Volume 5574, pp. 160–171.

163. Rosenqvist, A.; Shimada, M.; Chapman, B.; McDonald, K.; De Grandi, G.; Jonsson, H.; Williams, C.; Rauste, Y.; Nilsson, M.;
Sango, D. An Overview of the JERS-1 SAR Global Boreal Forest Mapping (GBFM) Project. In Proceedings of the IGARSS
2004—2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE:
Piscataway, NJ, USA, 2004; Volume 2, pp. 1033–1036.

164. Sokol, J.; NcNairn, H.; Pultz, T.J. Case Studies Demonstrating the Hydrological Applications of C-Band Multipolarized and
Polarimetric SAR. Can. J. Remote Sens. 2004, 30, 470–483. [CrossRef]

165. Tedford, B.; Hopkins, N.; Boychuk, L.; Kazmerik, B. “The Harder You Look, the More Wetlands You Will Find”. An Evaluation of
Wetland Identification Methods Utilizing Medium and High-Resolution Data Sources in the Glaciated Prairie Region of Canada.
In Proceedings of the 26th Canadian Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June 2005; p. 319.

166. Grenier, M.; Demers, A.-M.; Labrecque, S.; Fournier, R.A.; Drolet, B.; Benoit, M. A Classification Method to Map Wetlands in
Quebec for the Canadian Wetland Inventory Using a Top-down Approach with Object-Oriented Segmentation. In Proceedings of
the 26th Canadian Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June 2005.

167. Cheng, W.F.; Satish, M.G.; Liu, L.; Pomeroy, J.; Mahoney, M. Development of an Integrated GIS and Remote Sensing Geodatabase
for Wetland Assessment along a Proposed Highway in Southern Labrador, Canada. In Proceedings of the Annual Conference—
Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2005; pp. EV-159-1–EV-159-9.

168. Ju, W.; Chen, J.M. Distribution of Soil Carbon Stocks in Canada’s Forests and Wetlands Simulated Based on Drainage Class,
Topography and Remotely Sensed Vegetation Parameters. Hydrol. Process. Int. J. 2005, 19, 77–94. [CrossRef]

169. Hudon, C.; Gagnon, P.; Jean, M. Hydrological Factors Controlling the Spread of Common Reed (Phragmites Australis) in TheSt.
Lawrence River (Québec, Canada). Ecoscience 2005, 12, 347–357. [CrossRef]

170. Niemann, K.O.; Moore, K.; Stockler, C.; Beaudet, F. Identification Coastal Seagrasses through the Fusion of Landsat and
RADARSAT Imagery. In Proceedings of the 26th Canadian Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June
2005; p. 483.

171. Smith, K.B.; Smith, C.E.; Richard, A.J. Mapping the Boreal Forest Using an Object-Oriented Earthcover Classification. In
Proceedings of the 26th Canadian Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June 2005; p. 223.

172. Li, J.; Chen, W.; Touzi, R. SAR Backscatter Characteristics of Wetlands in Mer Bleue. In Proceedings of the 26th Canadian
Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June 2005; p. 485.

173. Töyrä, J.; Pietroniro, A. Towards Operational Monitoring of a Northern Wetland Using Geomatics-Based Techniques. Remote Sens.
Environ. 2005, 97, 174–191. [CrossRef]

174. Mialon, A.; Royer, A.; Fily, M. Wetland Seasonal Dynamics and Interannual Variability over Northern High Latitudes, Derived
from Microwave Satellite Data. J. Geophys. Res. Atmos. 2005, 110. [CrossRef]

175. Brown, L.; Young, K.L. Assessment of Three Mapping Techniques to Delineate Lakes and Ponds in a Canadian High Arctic
Wetland Complex. Arctic 2006, 59, 283–293. [CrossRef]

176. Prowse, T.D.; Beltaos, S.; Gardner, J.T.; Gibson, J.J.; Granger, R.J.; Leconte, R.; Peters, D.L.; Pietroniro, A.; Romolo, L.A.; Toth, B.
Climate Change, Flow Regulation and Land-Use Effects on the Hydrology of the Peace-Athabasca-Slave System; Findings from
the Northern Rivers Ecosystem Initiative. Environ. Monit. Assess. 2006, 113, 167–197. [CrossRef] [PubMed]

177. Peters, D.L.; Prowse, T.D.; Pietroniro, A.; Leconte, R. Flood Hydrology of the Peace-Athabasca Delta, Northern Canada. Hydrol.
Process. Int. J. 2006, 20, 4073–4096. [CrossRef]

178. Dillabaugh, K.; King, D. Wetland Composition and Productivity Mapping Using Ikonos Imagery. In Proceedings of the American
Society for Photogrammetry and Remote Sensing—20th Biennial Workshop on Aerial Photography, Videography, and High
Resolution Digital Imagery for Resource Assessment, Weslaco, TX, USA, 4–6 October 2005; pp. 516–523.

179. Li, J.; Chen, W.; Touzi, R. Optimum RADARSAT-1 Configurations for Wetlands Discrimination: A Case Study of the Mer Bleue
Peat Bog. Can. J. Remote Sens. 2007, 33, S46–S55. [CrossRef]

180. Stevens, C.E.; Paszkowski, C.A.; Foote, A.L. Beaver (Castor Canadensis) as a Surrogate Species for Conserving Anuran Amphib-
ians on Boreal Streams in Alberta, Canada. Biol. Conserv. 2007, 134, 1–13. [CrossRef]

181. Fournier, R.A.; Grenier, M.; Lavoie, A.; Hélie, R. Towards a Strategy to Implement the Canadian Wetland Inventory Using Satellite
Remote Sensing. Can. J. Remote Sens. 2007, 33, S1–S16. [CrossRef]

182. Touzi, R.; Deschamps, A.; Rother, G. Wetland Characterization Using Polarimetric RADARSAT-2 Capability. Can. J. Remote Sens.
2007, 33, S56–S67. [CrossRef]

183. Hogg, A.R.; Holland, J. An Evaluation of DEMs Derived from LiDAR and Photogrammetry for Wetland Mapping. For. Chron.
2008, 84, 840–849. [CrossRef]

184. Sass, G.Z.; Creed, I.F. Characterizing Hydrodynamics on Boreal Landscapes Using Archived Synthetic Aperture Radar Imagery.
Hydrol. Process. Int. J. 2008, 22, 1687–1699. [CrossRef]

185. Liu, Y.; Yang, W.; Wang, X. Development of a SWAT Extension Module to Simulate Riparian Wetland Hydrologic Processes at a
Watershed Scale. Hydrol. Process. Int. J. 2008, 22, 2901–2915. [CrossRef]

http://doi.org/10.5589/m03-073
http://doi.org/10.1002/hyp.5775
http://doi.org/10.2980/i1195-6860-12-3-347.1
http://doi.org/10.1016/j.rse.2005.03.012
http://doi.org/10.1029/2004JD005697
http://doi.org/10.14430/arctic314
http://doi.org/10.1007/s10661-005-9080-x
http://www.ncbi.nlm.nih.gov/pubmed/16520874
http://doi.org/10.1002/hyp.6420
http://doi.org/10.5589/m07-046
http://doi.org/10.1016/j.biocon.2006.07.017
http://doi.org/10.5589/m07-051
http://doi.org/10.5589/m07-047
http://doi.org/10.5558/tfc84840-6
http://doi.org/10.1002/hyp.6736
http://doi.org/10.1002/hyp.6874


Remote Sens. 2021, 13, 4025 38 of 43

186. Creed, I.F.; Sass, G.Z.; Wolniewicz, M.B.; Devito, K.J. Incorporating Hydrologic Dynamics into Buffer Strip Design on the
Sub-Humid Boreal Plain of Alberta. For. Ecol. Manag. 2008, 256, 1984–1994. [CrossRef]

187. Touzi, R.; Deschamps, A.; Rother, G. Scattering Type Phase for Wetland Classification Using C-Band Polarimetric SAR. In
Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11
July 2008; IEEE: Piscataway, NJ, USA, 2008; Volume 2, p. II-285.

188. Harris, A.; Bryant, R.G. A Multi-Scale Remote Sensing Approach for Monitoring Northern Peatland Hydrology: Present
Possibilities and Future Challenges. J. Environ. Manag. 2009, 90, 2178–2188. [CrossRef]

189. Rosa, E.; Larocque, M.; Pellerin, S.; Gagné, S.; Fournier, B. Determining the Number of Manual Measurements Required to
Improve Peat Thickness Estimations by Ground Penetrating Radar. Earth Surf. Process. Landforms 2009, 34, 377–383. [CrossRef]

190. Raynolds, M.K.; Walker, D.A. Effects of Deglaciation on Circumpolar Distribution of Arctic Vegetation. Can. J. Remote Sens. 2009,
35, 118–129. [CrossRef]

191. Pirie, L.; Francis, C.; Johnston, V. Evaluating the Potential Impact of a Gas Pipeline on Whimbrel Breeding Habitat in the Outer
Mackenzie Delta, Northwest Territories. Avian Conserv. Ecol. 2009, 4, 2. [CrossRef]

192. Spooner, I.; Stevens, G.; Morrow, J.; Pufahl, P.; Grieve, R.; Raeside, R.; Pilon, J.; Stanley, C.; Barr, S.; McMullin, D. Identification
of the Bloody Creek Structure, a Possible Impact Crater in Southwestern Nova Scotia, Canada. Meteorit. Planet. Sci. 2009, 44,
1193–1202. [CrossRef]

193. Clark, R.B.; Creed, I.F.; Sass, G.Z. Mapping Hydrologically Sensitive Areas on the Boreal Plain: A Multitemporal Analysis of ERS
Synthetic Aperture Radar Data. Int. J. Remote Sens. 2009, 30, 2619–2635. [CrossRef]

194. Fang, X.; Pomeroy, J.W. Modelling Blowing Snow Redistribution to Prairie Wetlands. Hydrol. Process. Int. J. 2009, 23, 2557–2569.
[CrossRef]

195. Touzi, R.; Deschamps, A.; Demers, A.M.; Rother, G. The Touzi Decomposition for Wetland Classification Using Polarimetric
C-Band SAR. In Proceedings of the 4th Int. Workshop Sci. Appl. SAR Polarimetry Polarimetric Interferometry (PolInSAR),
Frascati, Italy, 26–30 January 2009; p. 261.

196. Touzi, R.; Deschamps, A.; Rother, G. Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 3241–3261. [CrossRef]

197. Maxie, A.J.; Hussey, K.F.; Lowe, S.J.; Middel, K.R.; Pond, B.A.; Obbard, M.E.; Patterson, B.R. A Comparison of Forest Resource
Inventory, Provincial Land Cover Maps and Field Surveys for Wildlife Habitat Analysis in the Great Lakes–St. Lawrence Forest.
For. Chron. 2010, 86, 77–86. [CrossRef]

198. Soverel, N.O.; Coops, N.C.; White, J.C.; Wulder, M.A. Characterizing the Forest Fragmentation of Canada’s National Parks.
Environ. Monit. Assess. 2010, 164, 481–499. [CrossRef] [PubMed]

199. Levrel, G.; Rousseau, A.N. Étalonnage de Sondes FDR («frequency Domain Reflectometry») Sur Les Cinq Premiers Centimètres
Des Sols et Des Couverts de Bryophytes de Deux Tourbières Minérotrophes Du Milieu Boréal Québécois (Canada). Can. J. Remote
Sens. 2010, 36, 313–331. [CrossRef]

200. Sannel, A.B.K.; Brown, I.A. High-Resolution Remote Sensing Identification of Thermokarst Lake Dynamics in a Subarctic Peat
Plateau Complex. Can. J. Remote Sens. 2010, 36, S26–S40. [CrossRef]

201. Neta, T.; Cheng, Q.; Bello, R.L.; Hu, B. Lichens and Mosses Moisture Content Assessment through High-spectral Resolution
Remote Sensing Technology: A Case Study of the Hudson Bay Lowlands, Canada. Hydrol. Process. 2010, 24, 2617–2628. [CrossRef]

202. Midwood, J.D.; Chow-Fraser, P. Mapping Floating and Emergent Aquatic Vegetation in Coastal Wetlands of Eastern Georgian
Bay, Lake Huron, Canada. Wetlands 2010, 30, 1141–1152. [CrossRef]

203. Touzi, R.; Gosselin, G. Peatland Subsurface Water Flow Monitoring Using Polarimetric L-Band PALSAR. In Proceedings of the
2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ,
USA, 2010; pp. 750–753.

204. Fang, X.; Pomeroy, J.W.; Westbrook, C.J.; Guo, X.; Minke, A.G.; Brown, T. Prediction of Snowmelt Derived Streamflow in a
Wetland Dominated Prairie Basin. Hydrol. Earth Syst. Sci. 2010, 14, 991–1006. [CrossRef]

205. Brisco, B.; Kapfer, M.; Hirose, T.; Tedford, B.; Liu, J. Evaluation of C-Band Polarization Diversity and Polarimetry for Wetland
Mapping. Can. J. Remote Sens. 2011, 37, 82–92. [CrossRef]

206. Crowell, N.; Webster, T.; O’Driscoll, N.J. GIS Modelling of Intertidal Wetland Exposure Characteristics. J. Coast. Res. 2011, 27,
44–51. [CrossRef]

207. Quinton, W.L.; Hayashi, M.; Chasmer, L.E. Permafrost-Thaw-Induced Land-Cover Change in the Canadian Subarctic: Implications
for Water Resources. Hydrol. Process. 2011, 25, 152–158. [CrossRef]

208. Rokitnicki-Wojcik, D.; Wei, A.; Chow-Fraser, P. Transferability of Object-Based Rule Sets for Mapping Coastal High Marsh Habitat
among Different Regions in Georgian Bay, Canada. Wetl. Ecol. Manag. 2011, 19, 223–236. [CrossRef]

209. Muskett, R.R.; Romanovsky, V.E. Alaskan Permafrost Groundwater Storage Changes Derived from GRACE and Ground
Measurements. Remote Sens. 2011, 3, 378–397. [CrossRef]

210. Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Barr, A.G.; Black, T.A.; Arain, M.A.; Bourque, C.P.-A.; Flanagan, L.B.
Assessing Eddy-Covariance Flux Tower Location Bias across the Fluxnet-Canada Research Network Based on Remote Sensing
and Footprint Modelling. Agric. For. Meteorol. 2011, 151, 87–100. [CrossRef]

211. Neta, T.; Cheng, Q.; Bello, R.L.; Hu, B. Development of New Spectral Reflectance Indices for the Detection of Lichens and Mosses
Moisture Content in the Hudson Bay Lowlands, Canada. Hydrol. Process. 2011, 25, 933–944. [CrossRef]

http://doi.org/10.1016/j.foreco.2008.07.021
http://doi.org/10.1016/j.jenvman.2007.06.025
http://doi.org/10.1002/esp.1741
http://doi.org/10.5589/m09-006
http://doi.org/10.5751/ACE-00298-040202
http://doi.org/10.1111/j.1945-5100.2009.tb01217.x
http://doi.org/10.1080/01431160802552819
http://doi.org/10.1002/hyp.7348
http://doi.org/10.1109/TGRS.2009.2018626
http://doi.org/10.5558/tfc86077-1
http://doi.org/10.1007/s10661-009-0908-7
http://www.ncbi.nlm.nih.gov/pubmed/19415515
http://doi.org/10.5589/m10-051
http://doi.org/10.5589/m10-010
http://doi.org/10.1002/hyp.7669
http://doi.org/10.1007/s13157-010-0105-z
http://doi.org/10.5194/hess-14-991-2010
http://doi.org/10.5589/m11-017
http://doi.org/10.2112/JCOASTRES-D-10-00187.1
http://doi.org/10.1002/hyp.7894
http://doi.org/10.1007/s11273-011-9213-7
http://doi.org/10.3390/rs3020378
http://doi.org/10.1016/j.agrformet.2010.09.005
http://doi.org/10.1002/hyp.7878


Remote Sens. 2021, 13, 4025 39 of 43

212. Hogan, D.; Thompson, J.E.; Esler, D.; Boyd, W.S. Discovery of Important Postbreeding Sites for Barrow’s Goldeneye in the Boreal
Transition Zone of Alberta. Waterbirds Int. J. Waterbird Biol. 2011, 34, 261–268. [CrossRef]

213. Shook, K.R.; Pomeroy, J.W. Memory Effects of Depressional Storage in Northern Prairie Hydrology. Hydrol. Process. 2011, 25,
3890–3898. [CrossRef]

214. Fraser, S.; Storie, S. Detecting Historic Wetlands Using Radar Data: A Review. In Proceedings of the 2012 IEEE International
Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 772–774.

215. Guo, X.; Pomeroy, J.W.; Fang, X.; Lowe, S.; Li, Z.; Westbrook, C.; Minke, A. Effects of Classification Approaches on CRHM Model
Performance. Remote Sens. Lett. 2012, 3, 39–47. [CrossRef]

216. Barker, R.; King, D.J. Blanding’s Turtle (Emydoidea Blandingii) Potential Habitat Mapping Using Aerial Orthophotographic
Imagery and Object Based Classification. Remote Sens. 2012, 4, 194–219. [CrossRef]

217. Kaya, S.; Brisco, B.; Cull, A.; Gallant, A.; Sadinski, W.; Thompson, D. Canadian SAR Remote Sensing for the Terrestrial Wetland
Global Change Research Network (TWGCRN). In Proceedings of the Remote Sensing and Hydrology 2010 Symposium, Jackson
Hole, WY, USA, 27–30 September 2010; Volume 2730.

218. Pivot, F.C. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada. Remote Sens. 2012, 4,
2133–2155. [CrossRef]

219. Midwood, J.D.; Chow-Fraser, P. Changes in Aquatic Vegetation and Fish Communities Following 5 Years of Sustained Low Water
Levels in Coastal Marshes of Eastern G Eorgian B Ay, L Ake H Uron. Glob. Chang. Biol. 2012, 18, 93–105. [CrossRef]

220. Gala, T.S.; Melesse, A.M. Monitoring Prairie Wet Area with an Integrated LANDSAT ETM+, RADARSAT-1 SAR and Ancillary
Data from LIDAR. Catena 2012, 95, 12–23. [CrossRef]

221. Chen, W.; Foy, N.; Olthof, I.; Latifovic, R.; Zhang, Y.; Li, J.; Fraser, R.; Chen, Z.; McLennan, D.; Poitevin, J. Evaluating and Reducing
Errors in Seasonal Profiles of AVHRR Vegetation Indices over a Canadian Northern National Park Using a Cloudiness Index. Int.
J. Remote Sens. 2013, 34, 4320–4343. [CrossRef]

222. Doiron, M.; Legagneux, P.; Gauthier, G.; Lévesque, E. Broad-scale Satellite N Ormalized D Ifference V Egetation I Ndex Data
Predict Plant Biomass and Peak Date of Nitrogen Concentration in A Rctic Tundra Vegetation. Appl. Veg. Sci. 2013, 16, 343–351.
[CrossRef]

223. McClymont, A.F.; Hayashi, M.; Bentley, L.R.; Christensen, B.S. Geophysical Imaging and Thermal Modeling of Subsurface
Morphology and Thaw Evolution of Discontinuous Permafrost. J. Geophys. Res. Earth Surf. 2013, 118, 1826–1837. [CrossRef]

224. Lapointe, J.; Imbeau, L.; Tremblay, J.A.; Maisonneuve, C.; Mazerolle, M.J. Habitat Use by Female Peregrine Falcons (Falco
Peregrinus) in an Agricultural Landscape. Auk 2013, 130, 381–391. [CrossRef]

225. Huschle, G.; Toepfer, J.E.; Douglas, D.C. Migration and Wintering Areas of American Bitterns (Botaurus Lentiginosus) That Summer
in Central North America as Determined by Satellite and Radio Telemetry, 1998–2003. Waterbirds 2013, 36, 300–309. [CrossRef]

226. Mattar, K.E. Monitoring the Persistence of Odd and Even Scatterers in a Mixed Urban Environment Using Pol-InSAR Acquisitions.
Can. J. Remote Sens. 2013, 39, 34–41. [CrossRef]

227. Jacome, A.; Bernier, M.; Chokmani, K.; Gauthier, Y.; Poulin, J.; De Sève, D. Monitoring Volumetric Surface Soil Moisture Content
at the La Grande Basin Boreal Wetland by Radar Multi Polarization Data. Remote Sens. 2013, 5, 4919–4941. [CrossRef]

228. Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Assessing RADARSAT-2 for Mapping Shoreline Cleanup and Assessment
Technique (SCAT) Classes in the Canadian Arctic. Can. J. Remote Sens. 2014, 40, 243–267. [CrossRef]

229. Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Characterizing Scattering Behaviour and Assessing Potential for Classification
of Arctic Shore and Near-Shore Land Covers with Fine Quad-Pol RADARSAT-2 Data. Can. J. Remote Sens. 2014, 40, 291–314.
[CrossRef]

230. Ahern, F.J.; Brisco, B.; Murnaghan, K.; White, L.; Wdowinski, S.; Hong, S.-H.; Atwood, D. PolSAR Imaging of Wetlands: New
Insights into Backscatter Physics. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC,
Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1171–1174.

231. Armenakis, C.; Alexandridis, T.; Nirupama, N.; Zalidis, G. A Study on Degradation of Coastal Wetlands Using Examples from
Greece and Canada. Int. J. Ecol. Dev. 2014, 29.

232. Ely, C.R.; Sladen, W.J.L.; Wilson, H.M.; Savage, S.E.; Sowl, K.M.; Henry, B.; Schwitters, M.; Snowdon, J. Delineation of Tundra
Swan Cygnus c. Columbianus Populations in North America: Geographic Boundaries and Interchange. Wildfowl 2014, 64,
132–147.

233. Chabot, D.; Carignan, V.; Bird, D.M. Measuring Habitat Quality for Least Bitterns in a Created Wetland with Use of a Small
Unmanned Aircraft. Wetlands 2014, 34, 527–533. [CrossRef]

234. Cable, J.W.; Kovacs, J.M.; Shang, J.; Jiao, X. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern
Ontario, Canada. Remote Sens. 2014, 6, 2372–2392. [CrossRef]

235. Nelson, T.A.; Coops, N.C.; Wulder, M.A.; Perez, L.; Fitterer, J.; Powers, R.; Fontana, F. Predicting Climate Change Impacts to the
Canadian Boreal Forest. Diversity 2014, 6, 133–157. [CrossRef]

236. Clare, S.; Creed, I.F. Tracking Wetland Loss to Improve Evidence-Based Wetland Policy Learning and Decision Making. Wetl. Ecol.
Manag. 2014, 22, 235–245. [CrossRef]

237. Bourgeau-Chavez, L.; Endres, S.; Battaglia, M.; Miller, M.E.; Banda, E.; Laubach, Z.; Higman, P.; Chow-Fraser, P.;
Marcaccio, J. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PAL-
SAR and Landsat Imagery. Remote Sens. 2015, 7, 8655–8682. [CrossRef]

http://doi.org/10.1675/063.034.0301
http://doi.org/10.1002/hyp.8381
http://doi.org/10.1080/01431161.2010.531778
http://doi.org/10.3390/rs4010194
http://doi.org/10.3390/rs4072133
http://doi.org/10.1111/j.1365-2486.2011.02558.x
http://doi.org/10.1016/j.catena.2012.02.022
http://doi.org/10.1080/01431161.2013.775536
http://doi.org/10.1111/j.1654-109X.2012.01219.x
http://doi.org/10.1002/jgrf.20114
http://doi.org/10.1525/auk.2013.12150
http://doi.org/10.1675/063.036.0307
http://doi.org/10.5589/m13-006
http://doi.org/10.3390/rs5104919
http://doi.org/10.1080/07038992.2014.968276
http://doi.org/10.1080/07038992.2014.979487
http://doi.org/10.1007/s13157-014-0518-1
http://doi.org/10.3390/rs6032372
http://doi.org/10.3390/d6010133
http://doi.org/10.1007/s11273-013-9326-2
http://doi.org/10.3390/rs70708655


Remote Sens. 2021, 13, 4025 40 of 43

238. Umbanhowar Jr, C.E.; Camill, P.; Edlund, M.B.; Geiss, C.; Henneghan, P.; Passow, K. Lake–Landscape Connections at the
Forest–Tundra Transition of Northern Manitoba. Inland Waters 2015, 5, 57–74. [CrossRef]

239. Sagin, J.; Sizo, A.; Wheater, H.; Jardine, T.D.; Lindenschmidt, K.-E. A Water Coverage Extraction Approach to Track Inundation in
the Saskatchewan River Delta, Canada. Int. J. Remote Sens. 2015, 36, 764–781. [CrossRef]

240. Dingle Robertson, L.; King, D.J.; Davies, C. Assessing Land Cover Change and Anthropogenic Disturbance in Wetlands Using
Vegetation Fractions Derived from Landsat 5 TM Imagery (1984–2010). Wetlands 2015, 35, 1077–1091. [CrossRef]

241. Kalacska, M.; Lalonde, M.; Moore, T.R. Estimation of Foliar Chlorophyll and Nitrogen Content in an Ombrotrophic Bog from
Hyperspectral Data: Scaling from Leaf to Image. Remote Sens. Environ. 2015, 169, 270–279. [CrossRef]

242. Kotchi, S.O.; Brazeau, S.; Turgeon, P.; Pelcat, Y.; Légaré, J.; Lavigne, M.-P.; Essono, F.N.; Fournier, R.A.; Michel, P. Evaluation of
Earth Observation Systems for Estimating Environmental Determinants of Microbial Contamination in Recreational Waters. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3730–3741. [CrossRef]

243. Tougas-Tellier, M.; Morin, J.; Hatin, D.; Lavoie, C. Freshwater Wetlands: Fertile Grounds for the Invasive P Hragmites Australis in
a Climate Change Context. Ecol. Evol. 2015, 5, 3421–3435. [CrossRef]

244. Messmer, D.J.; Petrie, S.A.; Badzinski, S.S.; Gloutney, M.L.; Schummer, M.L. Habitat Associations of Breeding Mallards and
Canada Geese in Southern Ontario, Canada. Wildl. Soc. Bull. 2015, 39, 543–552. [CrossRef]

245. Brisco, B.; Ahern, F.; Hong, S.-H.; Wdowinski, S.; Murnaghan, K.; White, L.; Atwood, D.K. Polarimetric Decompositions of
Temperate Wetlands at C-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3585–3594. [CrossRef]

246. Muster, S.; Langer, M.; Abnizova, A.; Young, K.L.; Boike, J. Spatio-Temporal Sensitivity of MODIS Land Surface Temperature
Anomalies Indicates High Potential for Large-Scale Land Cover Change Detection in Arctic Permafrost Landscapes. Remote Sens.
Environ. 2015, 168, 1–12. [CrossRef]

247. Jiao, X.; Zhang, Y.; Guindon, B. Synergistic Use of RADARSAT-2 Ultra Fine and Fine Quad-Pol Data to Map Oilsands Infrastructure
Land: Object-Based Approach. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 193–203. [CrossRef]

248. Li-Chee-Ming, J.; Murnaghan, K.; Sherman, D.; Poncos, V.; Brisco, B.; Armenakis, C. Validation of Spaceborne Radar Surface
Water Mapping with Optical SUAS Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 363. [CrossRef]

249. Thompson, S.D.; Nelson, T.A.; Giesbrecht, I.; Frazer, G.; Saunders, S.C. Data-Driven Regionalization of Forested and Non-Forested
Ecosystems in Coastal British Columbia with LiDAR and RapidEye Imagery. Appl. Geogr. 2016, 69, 35–50. [CrossRef]

250. Marcaccio, J.V.; Chow-Fraser, P. Mapping Options to Track Invasive Phragmites Australis in the Great Lakes Basin in Canada. In
Proceedings of the 3rd International Conference “Water Resources and Wetlands”, Tulcea, Romania, 8–10 September 2014.

251. Chasmer, L.; Hopkinson, C.; Montgomery, J.; Petrone, R. A Physically Based Terrain Morphology and Vegetation Structural
Classification for Wetlands of the Boreal Plains, Alberta, Canada. Can. J. Remote Sens. 2016, 42, 521–540. [CrossRef]

252. Spence, C.; Mengistu, S. Deployment of an Unmanned Aerial System to Assist in Mapping an Intermittent Stream. Hydrol. Process.
2016, 30, 493–500. [CrossRef]

253. Shinneman, A.L.C.; Umbanhowar, C.E.; Edlund, M.B.; Hobbs, W.O.; Camill, P.; Geiss, C. Diatom Assemblages Reveal Regional-
Scale Differences in Lake Responses to Recent Climate Change at the Boreal-Tundra Ecotone, Manitoba, Canada. J. Paleolimnol.
2016, 56, 275–298. [CrossRef]

254. Finger, T.A.; Afton, A.D.; Schummer, M.L.; Petrie, S.A.; Badzinski, S.S.; Johnson, M.A.; Szymanski, M.L.; Jacobs, K.J.; Olsen, G.H.;
Mitchell, M.A. Environmental Factors Influence Lesser Scaup Migration Chronology and Population Monitoring. J. Wildl. Manag.
2016, 80, 1437–1449. [CrossRef]

255. Miller, S.M.; Commane, R.; Melton, J.R.; Andrews, A.E.; Benmergui, J.; Dlugokencky, E.J.; Janssens-Maenhout, G.; Michalak,
A.M.; Sweeney, C.; Worthy, D.E.J. Evaluation of Wetland Methane Emissions across North America Using Atmospheric Data and
Inverse Modeling. Biogeosciences 2016, 13, 1329–1339. [CrossRef]

256. Kross, A.; Seaquist, J.W.; Roulet, N.T. Light Use Efficiency of Peatlands: Variability and Suitability for Modeling Ecosystem
Production. Remote Sens. Environ. 2016, 183, 239–249. [CrossRef]

257. Shodimu, O.; Al-Tahir, R. Modeling Land Cover Dynamics to Assess the Sustainability of Wetland Services: A Case Study of the
Grand Lake Meadows, Canada. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Halifax, NS,
Canada, 5–9 October 2015; Volume 34, p. 12033.

258. Schmitt, A.; Wendleder, A.; Murnaghan, K.; Brisco, B.; Poncos, V. Multi-Sensor Wetland Mapping over the Peace Athabasca Delta.
In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016;
pp. 1–4.

259. Emmerton, C.A.; St. Louis, V.L.; Humphreys, E.R.; Gamon, J.A.; Barker, J.D.; Pastorello, G.Z. Net Ecosystem Exchange of CO2
with Rapidly Changing High Arctic Landscapes. Glob. Chang. Biol. 2016, 22, 1185–1200. [CrossRef]

260. Serran, J.N.; Creed, I.F. New Mapping Techniques to Estimate the Preferential Loss of Small Wetlands on Prairie Landscapes.
Hydrol. Process. 2016, 30, 396–409. [CrossRef]

261. Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational Surface Water Detection and Monitoring Using Radarsat 2. Remote Sens.
2016, 8, 285. [CrossRef]

262. Morsy, S.; Shaker, A.; El-Rabbany, A. Potential Use of Multispectral Airborne LiDAR Data in Land Cover Classification. In
Proceedings of the Asian conference on Remote Sensing (ACRS), Colombo, Sri Lanka, 17–21 October 2016; pp. 17–21.

263. van der Kamp, G.; Hayashi, M.; Bedard-Haughn, A.; Pennock, D. Prairie Pothole Wetlands–Suggestions for Practical and
Objective Definitions and Terminology. Wetlands 2016, 36, 229–235. [CrossRef]

http://doi.org/10.5268/IW-5.1.752
http://doi.org/10.1080/01431161.2014.1001084
http://doi.org/10.1007/s13157-015-0696-5
http://doi.org/10.1016/j.rse.2015.08.012
http://doi.org/10.1109/JSTARS.2015.2426138
http://doi.org/10.1002/ece3.1576
http://doi.org/10.1002/wsb.550
http://doi.org/10.1109/JSTARS.2015.2414714
http://doi.org/10.1016/j.rse.2015.06.017
http://doi.org/10.1016/j.jag.2015.01.007
http://doi.org/10.5194/isprsarchives-XL-1-W4-363-2015
http://doi.org/10.1016/j.apgeog.2016.02.002
http://doi.org/10.1080/07038992.2016.1196583
http://doi.org/10.1002/hyp.10597
http://doi.org/10.1007/s10933-016-9911-5
http://doi.org/10.1002/jwmg.21131
http://doi.org/10.5194/bg-13-1329-2016
http://doi.org/10.1016/j.rse.2016.05.004
http://doi.org/10.1111/gcb.13064
http://doi.org/10.1002/hyp.10582
http://doi.org/10.3390/rs8040285
http://doi.org/10.1007/s13157-016-0809-9


Remote Sens. 2021, 13, 4025 41 of 43

264. Sizo, A.; Noble, B.F.; Bell, S. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland
Change in Urban Environments. Environ. Manag. 2016, 57, 696–710. [CrossRef] [PubMed]

265. Ullmann, T.; Schmitt, A.; Jagdhuber, T. Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for
the Tundra Environment of the Mackenzie Delta Region, Canada. Remote Sens. 2016, 8, 1027. [CrossRef]

266. Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.; Brisco, B. Evaluation of Multi-Temporal Landsat 8 Data for Wetland Classification in
Newfoundland, Canada. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth,
TX, USA, 23–28 July 2017; pp. 6229–6231.

267. Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F. The Effect of PolSAR Image De-Speckling on Wetland Classification:
Introducing a New Adaptive Method. Can. J. Remote Sens. 2017, 43, 485–503. [CrossRef]

268. Lovitt, J.; Rahman, M.M.; McDermid, G.J. Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex
Peatlands. Remote Sens. 2017, 9, 715. [CrossRef]

269. Kim, S.; Brisco, B.; Poncos, V. Inundation Extent Monitoring with Smap Data for Carbon Studies. In Proceedings of the
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5693–5696.

270. Mohammadimanesh, F.; Bahram, S.; Brisco, B.; Mahdianpari, M. Monitoring of Wetland Water Levels in Newfoundland and
Labrador Using Interferometric Synthetic Aperture Radar (INSAR) Technique. In Proceedings of the Asprs IGTF2017, Baltimore
MD, USA, 12–16 March 2017.

271. Dabboor, M.; Brisco, B.; Banks, S.; Murnaghan, K.; White, L. Multitemporal Monitoring of Wetlands Using Simulated Radarsat
Constellation Mission Compact Polarimetric SAR Data. In Proceedings of the International Geoscience and Remote Sensing
Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4586–4589.

272. Chabot, D.; Dillon, C.; Ahmed, O.; Shemrock, A. Object-Based Analysis of Uas Imagery to Map Emergent and Submerged
Invasive Aquatic Vegetation: A Case Study. J. Unmanned Veh. Syst. 2016, 5, 27–33. [CrossRef]

273. Perreault, N.; Lévesque, E.; Fortier, D.; Gratton, D.; Lamarque, L.J. Remote Sensing Evaluation of High Arctic Wetland Depletion
Following Permafrost Disturbance by Thermo-Erosion Gullying Processes. Arct. Sci. 2017, 3, 237–253. [CrossRef]

274. Ullmann, T.; Banks, S.N.; Schmitt, A.; Jagdhuber, T. Scattering Characteristics of X-, C- and L-Band Polsar Data Examined for the
Tundra Environment of the Tuktoyaktuk Peninsula, Canada. Appl. Sci. 2017, 7, 595. [CrossRef]

275. Brisco, B.; Ahern, F.; Murnaghan, K.; White, L.; Canisus, F.; Lancaster, P. Seasonal Change in Wetland Coherence as an Aid to
Wetland Monitoring. Remote Sens. 2017, 9, 158. [CrossRef]

276. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Motagh, M.; Brisco, B. An Efficient Feature Optimization for Wetland
Mapping by Synergistic Use of SAR Intensity, Interferometry, and Polarimetry Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73,
450–462. [CrossRef]

277. D’Acunha, B.; Lee, S.C.; Johnson, M.S. Ecohydrological Responses to Rewetting of a Highly Impacted Raised Bog Ecosystem.
Ecohydrology 2018, 11, e1922. [CrossRef]

278. Ahern, F.; Brisco, B.; Murnaghan, K.; Lancaster, P.; Atwood, D.K. Insights into Polarimetric Processing for Wetlands from
Backscatter Modeling and Multi-Incidence Radarsat-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3040–3050.
[CrossRef]

279. Whitley, M.A.; Frost, G.V.; Jorgenson, M.T.; Macander, M.J.; Maio, C.V.; Winder, S.G. Assessment of LiDAR and Spectral Techniques
for High-Resolution Mapping of Sporadic Permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 2018, 10, 258.
[CrossRef]

280. Jorgenson, T.M.; Frost, G.V.; Dissing, D. Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim Delta,
Alaska. Remote Sens. 2018, 10, 1280. [CrossRef]

281. Ward, E.M.; Gorelick, S.M. Drying Drives Decline in Muskrat Population in the Peace-Athabasca Delta, Canada. Environ. Res.
Lett. 2018, 13, 124026. [CrossRef]

282. Potter, C. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska. Carbon Balance Manag. 2018, 13, 1–10. [CrossRef]
283. Campbell, T.K.F.; Lantz, T.C.; Fraser, R.H. Impacts of Climate Change and Intensive Lesser Snow Goose (Chen Caerulescens

Caerulescens) Activity on Surfacewater in High Arctic Pond Complexes. Remote Sens. 2018, 10, 1892. [CrossRef]
284. Blanchette, M.; Rousseau, A.N.; Poulin, M. Mapping Wetlands and Land Cover Change with Landsat Archives: The Added Value

of Geomorphologic Data: Cartographie de La Dynamique Spatio-Temporelle Des Milieux Humides à Partir d’archives Landsat:
La Valeur Ajoutée de Données Géomorphologiques. Can. J. Remote Sens. 2018, 44, 337–356. [CrossRef]

285. Warren, R.K.; Pappas, C.; Helbig, M.; Chasmer, L.E.; Berg, A.A.; Baltzer, J.L.; Quinton, W.L.; Sonnentag, O. Minor Contribution
of Overstorey Transpiration to Landscape Evapotranspiration in Boreal Permafrost Peatlands. Ecohydrology 2018, 11, e1975.
[CrossRef]

286. DeLancey, E.R.; Kariyeva, J.; Cranston, J.; Brisco, B. Monitoring Hydro Temporal Variability in Alberta, Canada with Multi-
Temporal Sentinel-1 SAR Data. Can. J. Remote Sens. 2018, 44, 1–10. [CrossRef]

287. Chasmer, L.E.; Devito, K.J.; Hopkinson, C.D.; Petrone, R.M. Remote Sensing of Ecosystem Trajectories as a Proxy Indicator for
Watershed Water Balance. Ecohydrology 2018, 11, e1987. [CrossRef]

288. Montgomery, J.S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Rood, S.B. Wetland Hydroperiod Classification in the Western Prairies
Using Multitemporal Synthetic Aperture Radar. Hydrol. Process. 2018, 32, 1476–1490. [CrossRef]

http://doi.org/10.1007/s00267-015-0640-8
http://www.ncbi.nlm.nih.gov/pubmed/26645076
http://doi.org/10.3390/rs8121027
http://doi.org/10.1080/07038992.2017.1381549
http://doi.org/10.3390/rs9070715
http://doi.org/10.1139/juvs-2016-0009
http://doi.org/10.1139/as-2016-0047
http://doi.org/10.3390/app7060595
http://doi.org/10.3390/rs9020158
http://doi.org/10.1016/j.jag.2018.06.005
http://doi.org/10.1002/eco.1922
http://doi.org/10.1109/JSTARS.2018.2850155
http://doi.org/10.3390/rs10020258
http://doi.org/10.3390/rs10081280
http://doi.org/10.1088/1748-9326/aaf0ec
http://doi.org/10.1186/s13021-017-0090-0
http://doi.org/10.3390/rs10121892
http://doi.org/10.1080/07038992.2018.1525531
http://doi.org/10.1002/eco.1975
http://doi.org/10.1080/07038992.2018.1417734
http://doi.org/10.1002/eco.1987
http://doi.org/10.1002/hyp.11506


Remote Sens. 2021, 13, 4025 42 of 43

289. Merchant, M.A.; Warren, R.K.; Edwards, R.; Kenyon, J.K. An Object-Based Assessment of Multi-Wavelength SAR, Optical Imagery
and Topographical Datasets for Operational Wetland Mapping in Boreal Yukon, Canada. Can. J. Remote Sens. 2019, 45, 308–332.
[CrossRef]

290. Judah, A.; Hu, B. The Integration of Multi-Source Remotely-Sensed Data in Support of the Classification of Wetlands. Remote
Sens. 2019, 11, 1537. [CrossRef]

291. Pitcher, L.H.; Pavelsky, T.M.; Smith, L.C.; Moller, D.K.; Altenau, E.H.; Allen, G.H.; Lion, C.; Butman, D.; Cooley, S.W.; Fayne, J.V.;
et al. AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska.
Water Resour. Res. 2019, 55, 937–953. [CrossRef]

292. Gonsamo, A.; Ter-Mikaelian, M.T.; Chen, J.M.; Chen, J. Does Earlier and Increased Spring Plant Growth Lead to Reduced Summer
Soil Moisture and Plant Growth on Landscapes Typical of Tundra-Taiga Interface? Remote Sens. 2019, 11, 1989. [CrossRef]

293. Westwood, A.R.; Staicer, C.; Sólymos, P.; Haché, S.; Fontaine, T.; Bayne, E.M.; Mazerolle, D. Estimating the Conservation Value
of Protected Areas in Maritime Canada for Two Species at Risk: The Olive-Sided Flycatcher (Contopus Cooperi) and Canada
Warbler (Cardellina Canadensis). Avian Conserv. Ecol. 2019, 14, 16. [CrossRef]

294. Brisco, B.; Shelat, Y.; Murnaghan, K.; Montgomery, J.; Fuss, C.; Olthof, I.; Hopkinson, C.; Deschamps, A.; Poncos, V. Evaluation
of C-Band SAR for Identification of Flooded Vegetation in Emergency Response Products. Can. J. Remote Sens. 2019, 45, 73–87.
[CrossRef]

295. Jensen, D.; Simard, M.; Cavanaugh, K.; Sheng, Y.; Fichot, C.G.; Pavelsky, T.; Twilley, R. Improving the Transferability of Suspended
Solid Estimation in Wetland and Deltaic Waters with an Empirical Hyperspectral Approach. Remote Sens. 2019, 11, 1629.
[CrossRef]

296. Palumbo, M.D.; Petrie, S.A.; Schummer, M.; Rubin, B.D.; Bonner, S. Mallard Resource Selection Trade-Offs in a Heterogeneous
Environment during Autumn and Winter. Ecol. Evol. 2019, 9, 1798–1808. [CrossRef] [PubMed]

297. Montgomery, J.; Brisco, B.; Chasmer, L.; Devito, K.; Cobbaert, D.; Hopkinson, C. SAR and Lidar Temporal Data Fusion Approaches
to Boreal Wetland Ecosystem Monitoring. Remote Sens. 2019, 11, 161. [CrossRef]

298. Lane, D.; McCarter, C.P.R.; Richardson, M.; McConnell, C.; Field, T.; Yao, H.; Arhonditsis, G.; Mitchell, C.P.J. Wetlands and
Low-Gradient Topography Are Associated with Longer Hydrologic Transit Times in Precambrian Shield Headwater Catchments.
Hydrol. Process. 2020, 34, 598–614. [CrossRef]

299. Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A
Large-Scale Change Monitoring of Wetlands Using Time Series Landsat Imagery on Google Earth Engine: A Case Study in
Newfoundland. GISci. Remote Sens. 2020, 57, 1102–1124. [CrossRef]

300. Chen, Z.; White, L.; Banks, S.; Behnamian, A.; Montpetit, B.; Pasher, J.; Duffe, J.; Bernard, D. Characterizing Marsh Wetlands in
the Great Lakes Basin with C-Band InSAR Observations. Remote Sens. Environ. 2020, 242, 111750. [CrossRef]

301. Merchant, M.; Haas, C. High-Latitude Wetland Mapping Using Multidate and Multisensor Earth Observation Data: A Case
Study in the Northwest Territories. J. Appl. Remote Sens. 2020, 14, 034511. [CrossRef]

302. Siles, G.; Trudel, M.; Peters, D.L.; Leconte, R. Hydrological Monitoring of High-Latitude Shallow Water Bodies from High-
Resolution Space-Borne D-InSAR. Remote Sens. Environ. 2020, 236, 111444. [CrossRef]

303. White, L.; McGovern, M.; Hayne, S.; Touzi, R.; Pasher, J.; Duffe, J. Investigating the Potential Use of RADARSAT-2 and UAS
Imagery for Monitoring the Restoration of Peatlands. Remote Sens. 2020, 12, 2383. [CrossRef]

304. Hawkes, V.C.; Miller, M.T.; Novoa, J.; Ibeke, E.; Martin, J.P. Opportunistic Wetland Formation, Characterization, and Quantification
on Landforms Reclaimed to Upland Ecosites in the Athabasca Oil Sands Region. Wetl. Ecol. Manag. 2020, 28, 953–970. [CrossRef]

305. Brisco, B.; Mahdianpari, M.; Mohammadimanesh, F. Hybrid Compact Polarimetric SAR for Environmental Monitoring with the
RADARSAT Constellation Mission. Remote Sens. 2020, 12, 1–20. [CrossRef]

306. Larocque, A.; Leblon, B.; Woodward, R.; Bourgeau-Chavez, L. Wetland Mapping in New Brunswick, Canada with Landsat5-Tm,
Alos-Palsar, and Radarsat-2 Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 301–308. [CrossRef]

307. Ahmed, M.I.; Elshorbagy, A.; Pietroniro, A. A Novel Model for Storage Dynamics Simulation and Inundation Mapping in the
Prairies. Environ. Model. Softw. 2020, 133, 104850. [CrossRef]

308. Bahrami, A.; Goïta, K.; Magagi, R. Analysing the Contribution of Snow Water Equivalent to the Terrestrial Water Storage over
Canada. Hydrol. Process. 2020, 34, 175–188. [CrossRef]

309. Bergeron, J.; Siles, G.; Leconte, R.; Trudel, M.; Desroches, D.; Peters, D.L. Assessing the Capabilities of the Surface Water and
Ocean Topography (SWOT) Mission for Large Lake Water Surface Elevation Monitoring under Different Wind Conditions. Hydrol.
Earth Syst. Sci. 2020, 24, 5985–6000. [CrossRef]

310. Mahoney, C.; Merchant, M.; Boychuk, L.; Hopkinson, C.; Brisco, B. Automated SAR Image Thresholds for Water Mask Production
in Alberta’s Boreal Region. Remote Sens. 2020, 12, 2223. [CrossRef]

311. Wulder, M.A.; Hermosilla, T.; White, J.C.; Coops, N.C. Biomass Status and Dynamics over Canada’s Forests: Disentangling
Disturbed Area from Associated Aboveground Biomass Consequences. Environ. Res. Lett. 2020, 15, 94093. [CrossRef]

312. Janardanan, R.; Maksyutov, S.; Tsuruta, A.; Wang, F.; Tiwari, Y.K.; Valsala, V.; Ito, A.; Yoshida, Y.; Kaiser, J.W.; Janssens-Maenhout,
G.; et al. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface
Observations. Remote Sens. 2020, 12, 375. [CrossRef]

313. O’Sullivan, A.M.; Devito, K.J.; Ogilvie, J.; Linnansaari, T.; Pronk, T.; Allard, S.; Curry, R.A. Effects of Topographic Resolution and
Geologic Setting on Spatial Statistical River Temperature Models. Water Resour. Res. 2020, 56, e2020WR028122. [CrossRef]

http://doi.org/10.1080/07038992.2019.1605500
http://doi.org/10.3390/rs11131537
http://doi.org/10.1029/2018WR023274
http://doi.org/10.3390/rs11171989
http://doi.org/10.5751/ACE-01359-140116
http://doi.org/10.1080/07038992.2019.1612236
http://doi.org/10.3390/rs11131629
http://doi.org/10.1002/ece3.4864
http://www.ncbi.nlm.nih.gov/pubmed/30847073
http://doi.org/10.3390/rs11020161
http://doi.org/10.1002/hyp.13609
http://doi.org/10.1080/15481603.2020.1846948
http://doi.org/10.1016/j.rse.2020.111750
http://doi.org/10.1117/1.JRS.14.034511
http://doi.org/10.1016/j.rse.2019.111444
http://doi.org/10.3390/rs12152383
http://doi.org/10.1007/s11273-020-09760-x
http://doi.org/10.3390/rs12203283
http://doi.org/10.5194/isprs-annals-V-3-2020-301-2020
http://doi.org/10.1016/j.envsoft.2020.104850
http://doi.org/10.1002/hyp.13625
http://doi.org/10.5194/hess-24-5985-2020
http://doi.org/10.3390/rs12142223
http://doi.org/10.1088/1748-9326/ab8b11
http://doi.org/10.3390/rs12030375
http://doi.org/10.1029/2020WR028122


Remote Sens. 2021, 13, 4025 43 of 43

314. Olthof, I.; Rainville, T. Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water
and Flooded-Vegetation Wetland Mapping. Remote Sens. 2020, 12, 1476. [CrossRef]

315. Wadsworth, E.; Champagne, C.; Berg, A.A. Evaluating the Utility of Remotely Sensed Soil Moisture for the Characterization of
Runoff Response over Canadian Watersheds. Can. Water Resour. J. 2020, 45, 77–89. [CrossRef]

316. Amani, M.; Brisco, B.; Mahdavi, S.; Ghorbanian, A.; Moghimi, A.; Delancey, E.R.; Merchant, M.; Jahncke, R.; Fedorchuk, L.; Mui,
A.; et al. Evaluation of the Landsat-Based Canadian Wetland Inventory Map Using Multiple Sources: Challenges of Large-Scale
Wetland Classification Using Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 32–52. [CrossRef]

317. Omari, K.; Chenier, R.; Touzi, R.; Sagram, M. Investigation of C-Band SAR Polarimetry for Mapping a High-Tidal Coastal
Environment in Northern Canada. Remote Sens. 2020, 12, 1941. [CrossRef]

318. Sewell, P.D.; Quideau, S.A.; Dyck, M.; Macdonald, E. Long-Term Effects of Harvest on Boreal Forest Soils in Relation to a Remote
Sensing-Based Soil Moisture Index. For. Ecol. Manag. 2020, 462, 117986. [CrossRef]

319. Peters, D.; Niemann, O.; Skelly, R. Remote Sensing of Ecosystem Structure: Fusing Passive and Active Remotely Sensed Data to
Characterize a Deltaic Wetland Landscape. Remote Sens. 2020, 12, 3819. [CrossRef]

320. Zakharov, I.; Kapfer, M.; Hornung, J.; Kohlsmith, S.; Puestow, T.; Howell, M.; Henschel, M.D. Retrieval of Surface Soil Moisture
from Sentinel-1 Time Series for Reclamation of Wetland Sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3569–3578.
[CrossRef]

321. Wulder, M.A.; Hermosilla, T.; Stinson, G.; Gougeon, F.A.; White, J.C.; Hill, D.A.; Smiley, B.P. Satellite-Based Time Series Land
Cover and Change Information to Map Forest Area Consistent with National and International Reporting Requirements. Forestry
2020, 93, 331–343. [CrossRef]

322. Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Sentinel-1 InSAR Measurements of Deformation over Discontinuous Permafrost
Terrain, Northern Quebec, Canada. Remote Sens. Environ. 2020, 248, 111965. [CrossRef]

323. White, L.; Ryerson, R.A.; Pasher, J.; Duffe, J. State of Science Assessment of Remote Sensing of Great Lakes Coastal Wetlands:
Responding to an Operational Requirement. Remote Sens. 2020, 12, 3024. [CrossRef]

324. Wu, J.; Gillani, S.S.M.; Wang, M. The Difference in Light Use Efficiency between an Abandoned Peatland Pasture and an Adjacent
Boreal Bog in Western Newfoundland, Canada. Wetlands 2020, 40, 733–743. [CrossRef]

325. Haynes, K.M.; Smart, J.; Disher, B.; Carpino, O.; Quinton, W.L. The Role of Hummocks in Re-Establishing Black Spruce Forest
Following Permafrost Thaw. Ecohydrology 2021, 14, e2273. [CrossRef]

326. Hopkinson, C.; Fuoco, B.; Grant, T.; Bayley, S.E.; Brisco, B.; Macdonald, R. Wetland Hydroperiod Change along the Upper
Columbia River Floodplain, Canada, 1984 to 2019. Remote Sens. 2020, 12, 4084. [CrossRef]

327. Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Warren, S.; Puestow, T.; Salehi, B.; Brisco, B. Smart Solutions for Smart
Cities: Urban Wetland Mapping Using Very-High Resolution Satellite Imagery and Airborne LiDAR Data in the City of St. John’s,
NL, Canada. J. Environ. Manag. 2021, 280, 111676. [CrossRef] [PubMed]

http://doi.org/10.3390/rs12091476
http://doi.org/10.1080/07011784.2019.1691943
http://doi.org/10.1109/JSTARS.2020.3036802
http://doi.org/10.3390/rs12121941
http://doi.org/10.1016/j.foreco.2020.117986
http://doi.org/10.3390/rs12223819
http://doi.org/10.1109/JSTARS.2020.3004062
http://doi.org/10.1093/forestry/cpaa006
http://doi.org/10.1016/j.rse.2020.111965
http://doi.org/10.3390/rs12183024
http://doi.org/10.1007/s13157-019-01224-0
http://doi.org/10.1002/eco.2273
http://doi.org/10.3390/rs12244084
http://doi.org/10.1016/j.jenvman.2020.111676
http://www.ncbi.nlm.nih.gov/pubmed/33246750

	Introduction 
	Wetland Classification Systems in Canada 
	Method of Meta-Analysis 
	Results and Discussion 
	Publication Details 
	Number of Annual Publications 
	Keyword Analysis 
	Journal and Conference Analyses 
	First and Co-Authors Analysis 
	Affiliation Analysis 
	Citation Analysis 
	Number of Wetland Classes 
	Province- and Territories-Based Analysis 
	Geographical Distribution Based on Provinces/Territories 
	Geographical Distribution Based on the Extent of the Study Area 

	Classification Methods 
	RS Data Used in Wetland Studies of Canada 
	Level of Classification Accuracy 

	Conclusions 
	
	References

