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Abstract: Near surface wind speed has significant impacts on ecological environment change and
climate change. Based on the CN05.1 observation data (a gridded monthly dataset with the resolution
of 0.25 latitude by 0.25 longitude over China), this study evaluated the ability of 25 Global Climate
Models (GCMs) from Coupled Model Intercomparison Project phase 6 (CMIP6) in simulating the
wind speed in the Arid Region of Northwest China (ARNC) during 1971–2014. Then, the temporal
and spatial variations in the surface wind speed of ARNC in the 21st century were projected under
four Shared Socioeconomic Pathways (SSPs), SSP1-2.6, SSP2-4.5, SSP3-7.0, and SP5-8.5. The results
reveal that the preferred-model ensemble (PME) can fairly evaluate the temporal and spatial distribu-
tion of surface wind speed with the temporal and spatial correlation coefficients exceeding 0.5 at the
significance level of p = 0.05 when compared to the 25 single models and their ensemble mean. After
deviation correction, the PME can reproduce the distribution characteristics of high wind speed in
the east and low in the west, high in mountainous areas, and low in basins. Unfortunately, no models
or model ensemble can accurately reproduce the decreasing magnitude of observed wind speed. In
the 21st century, the surface wind speed in the ARNC is projected to increase under SSP1-2.6 scenario
but will decrease remarkably under the other three scenarios. Moreover, the higher the emission
scenarios, the more significant the surface wind speed decreases. Spatially, the wind speed will
increase significantly in the west and southeast of Xinjiang, decrease in the north of Xinjiang and the
south of Tarim Basin. What’s more, under the four scenarios, the surface wind speed will decrease
in spring, summer and autumn, especially in summer, and increase in winter. The wind speed
will decrease significantly in the north of Tianshan Mountains in summer, decrease significantly in
the north of Xinjiang and the southern edge of Tarim Basin in spring and autumn, and increase in
fluctuation with high values in Tianshan Mountains in winter.

Keywords: surface wind speed; CMIP6; Arid Region of Northwest China; SSPs; multi-model ensemble

1. Introduction

As an influencing factor of ecological environment change and climate change, surface
wind speed has a significant impact on the wind energy industry, surface evapotranspira-
tion, hydrological cycle and wind-related natural disasters (such as sandstorm, tornados,
and typhoons) [1–5]. Thus, it is crucial to study the variations of surface wind speed,
especially in the areas rich in wind energy resources, such as China. In the context of
global warming, many studies have pointed out that the global surface wind speed has
decreased over the past half-century (termed “global stilling”) [6]. Tian et al. [7] studied the
variation of surface wind speed in the northern hemisphere through the observation data
from 1979 to 2016 and concluded that in most areas of the northern hemisphere, including
North America, Europe, and Asia, the surface wind speed had shown a downward trend
in the past 40 years, such as Portugal, Canada, South Korea, the United States, France, and
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China [8–13]. In general, the above studies have made a detailed and in-depth analysis of
the temporal and spatial changes of wind speed over the past half-century, and revealed
the seasonal variation of wind speed, but pay less attention to future projection.

The ARNC, our study area, is located in the hinterland of the Eurasian continent. With
complex terrain, sensitive response to climate system change, and frequent sand and dust
events, it is one of the areas richest in wind energy resources in China and has excellent
potential for wind energy development. It has become one of the hotspot areas of wind
resources research [14,15]. Many studies show that [16–18], over the past half-century, the
change of surface wind speed in the ARNC is consistent with that of the whole of China
and even the northern hemisphere, showing a decreasing trend with a larger magnitude
than the whole China. The complexity of the terrain in the ARNC determines the regional
differences in the temporal and spatial distribution of surface wind energy resources.
Therefore, an in-depth study is necessary to investigate the temporal-spatial distribution
and variation of surface wind speed in the ARNC and the projection of future wind speed,
which can provide a scientific basis for the development of wind energy resources and the
site selection of wind farms, which is of great significance to the utilization and planning
of future wind energy in China.

The GCM (Global Climate Model, see Table 1 for Nomenclature, similarly hereinafter)
is the major tool for simulating and projecting climate change. Using GCM to study future
climate change can effectively deal with the risks of ecological environment protection
and social development brought by climate change. The Coupled Model Intercomparison
Project (CMIP), initiated and organized by the World Climate Research Programme’s
(WCRP) Working Group on Coupled Modelling (WGCM) in 1995 [19]. Its initial purpose
was to compare the performance of a limited number of global coupled climate models at
that time. In addition, an important feature is that the GCM output participating in CMIP
is made public in a standard format through the Earth System Grid Federation (ESGF) data
replication Center for analysis by the wider climate community and users [20]. Its research
results are a significant part of the Intergovernmental Panel on Climate Change (IPCC)
assessment of future climate change.

The CMIP6 is currently in phase 6, which has evolved over several phases such as
CMIP1, CMIP2, CMIP3 and CMIP5 [21,22]. Compared with the previous stages, the process
involved in the models consideration of CMIP6 is more complex, and the resolution of
atmospheric and ocean models is significantly improved [23]. Compared with CMIP5
models, the most significant feature of CMIP6 is the combination of radiation forcing
levels of the Representative Concentration Pathways (RCPs) in CMIP5 and the Shared
Socioeconomic Pathways (SSPs), and three new emission paths (SSP1-1.9, SSP3-7.0 and
SSP4-3.4) are added to fill the gap between the typical paths of CMIP5 [24]. Based on
the Shared Socioeconomic Pathways (SSPs) and anthropogenic emission trends, CMIP6
put forward new future scenarios, including seven scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5) with each SSP representing a development
model [25]. Driven by IPCC, a lot of achievements in climate change simulation and
prediction by CMIP model data have been made, especially in simulating and predicting
temperature and precipitation [26–28].

Currently, there have been relatively few studies on the future change of surface wind
speed or wind energy resources, partly due to the poor performance of reanalysis datasets
in wind speed and the scarcity of high-quality observation datasets. The existing studies
are mainly concentrated in some European and American countries. Pryor et al. used
the statistical downscaling method to predict wind speed and found that there was no
significant change in wind speed in northern Europe in the middle and late 21st century [29].
Carvalho et al. analyzed the impact of climate change on large-scale wind energy resources
in Europe in the future by CMIP5 [30]. Li et al. obtained the distribution characteristics
of future wind energy changes in China using the statistical downscaling method [31].
Jiang et al. estimated the changes of China’s surface wind speed in the 21st century under
three human emission scenarios, high emission (A2), medium emission (A1B), and low
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emission (B1) [32]. The above studies are all large and medium-sized, ignoring the impact
of local climate characteristics on wind speed. At the same time, due to the limitations of the
model itself, there is uncertainty in the analysis of regional wind speed change. Relevant
studies show that [33–35], CMIP5 and CMIP6 models have achieved good performance in
wind speed simulation and prediction, but there are still apparent deviations, although it is
a macro-scale study like China. Therefore, it is necessary and vital to correct the deviation
to reduce the uncertainty. However, the deviation correction work has seldom been done
in the previous wind speed research in the ARNC, which was further studied in this study.

Table 1. Important nomenclature.

Abbreviations

GCM Global Climate Model
CN05.1 a 0.25◦ × 0.25◦ gridded monthly dataset over China developed by Wu et al. [36]
CMIP6 Coupled Model Intercomparison Project phase 6
ARNC Arid Region of Northwest China

SSP Shared Socioeconomic Pathway
PME preferred-model ensemble
MME multi-model ensemble
CMIP Coupled Model Intercomparison Project
WCRP World Climate Research Programme
WGCM Working Group on Coupled Modelling
ESGF Earth System Grid Federation
IPCC Intergovernmental Panel on Climate Change
RCP Representative Concentration Pathway
BP baseline period
NF near future
MF mid future
FF far future
FP final period

RMSD Root-Mean-Square Difference
r correlation coefficient
S standard deviation ratio

Fully considering the contributions and shortcomings of the above research, this
study focuses on the regional scale (mesoscale) and evaluates the simulation ability of
the newly released 25 CMIP6 GCMs (Table 2) and two model ensembles based on the
observation data. A better model suitable for wind speed simulation in the ARNC is
selected, providing a specific reference for similar regional studies. At the same time,
we corrected the deviation of the model data to improve the research accuracy and then
selected the deviation-corrected PME to predict the temporal and spatial changes of wind
speed under four SSP scenarios. The study provides a scientific basis for the rational
development and utilization of wind energy resources in the ARNC.

Table 2. Information of CMIP6 models used in this study and the correlation between model data and observation data.

Indicator Model Name Institute (Country) Atmospheric Resolution Correlation Coefficient

A ACCESS-CM2 CSIRO-ARCCSS (Australia) 1.875◦ × 1.25◦ −0.06
B ACCESS-ESM1-5 CSIRO (Australia) 1.875◦ × 1.241◦ 0.41 **
C AWI-CM-1-1-MR AWI (Germany) 0.938◦ × 0.938◦ 0.16
D BCC-CSM2-MR BCC (China) 1.125◦ × 1.125◦ 0.37 *
E CAS-ESM2-0 CAS (China) 1.406◦ × 1.406◦ −0.11
F CESM2-WACCM NCAR (USA) 1.25◦ × 0.938◦ −0.05
G CMCC-CM2-SR5 CMCC (Italy) 1.25◦ × 0.938◦ −0.15
H CMCC-ESM2 CMCC (Italy) 1.25◦ × 0.9375◦ −0.14
I EC-Earth3 EC-Earth-Consortium (Sweden) 0.703◦ × 0.703◦ 0.30 *
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Table 2. Cont.

Indicator Model Name Institute (Country) Atmospheric Resolution Correlation Coefficient

J EC-Earth3-Veg EC-Earth-Consortium (Sweden) 0.703◦ × 0.703◦ 0.18
K EC-Earth3-Veg-LR EC-Earth-Consortium (Sweden) 1.125◦ × 1.125◦ 0.36 *
L FGOALS-f3-L CAS (China) 1.25◦ × 1◦ −0.10
M GFDL-ESM4 NOAA GFDL (USA) 1.25◦ × 1◦ −0.19
N IITM-ESM CCCR-IITM (India) 1.875◦ × 1.915◦ 0.04
O INM-CM4-8 INM (Russia) 2◦ × 1.5◦ 0.07
P INM-CM5-0 INM (Russia) 2◦ × 1.5◦ −0.08
Q IPSL-CM6A-LR IPSL (France) 2.5◦ × 1.259◦ −0.02
R KACE-1-0-G NIMS-KMA (Korea) 1.875◦ × 1.25 −0.07
S MIROC6 MIROC (Japan) 1.406◦ × 1.406 0.08
T MPI-ESM1-2-HR MPI-M (Germany) 0.938◦ × 0.938◦ −0.24
U MPI-ESM1-2-LR MPI-M (Germany) 1.875◦ × 1.875 0.15
V MRI-ESM2-0 MRI (Japan) 1.125◦ × 1.125◦ 0.24
W NorESM2-LM NCC (Norway) 2.5◦ × 1.875 0.38 *
X NorESM2-MM NCC (Norway) 1.25◦ × 0.938◦ 0.17
Y TaiESM1 AS-RCEC (Taiwan, China) 1.25◦ × 0.938◦ −0.25
a MME 0.43 **
b PME 0.62 **

Note: ** indicates significant correlation with p < 0.01, * indicates a significant correlation with p < 0.05.

The main aims of this study include: (i) evaluation of simulation ability of CMIP6
model data; (ii) comparison of the spatiotemporal characteristics of mean wind speed
between PME and revised PME; (iii) future projections of mean wind speed under four
emission scenarios based on deviation-corrected PME.

2. Materials and Methods
2.1. Materials

Model data. The monthly surface 10m mean wind speed data of 25 GCMs outputs
(from https://esgf-node.llnl.gov/search/cmip6/, accessed on 20 June 2021) was provided
by the CMIP6 of the WCRP (Table 2). To ensure the integrity of data and the consistency
of results, the GCMs used in this work are the monthly data under the “r1i1p1f1” oper-
ation results, which means the first realization (r1), first initialization (i1), first physics
(p1) and first forcing (f1) (https://github.com/WCRP-CMIP/CMIP6CVs/, accessed on
20 May 2021). In order to compare with observations, the 25 model data with different
spatial resolutions were interpolated to the same resolution of 0.25◦ × 0.25◦. The historical
simulation data from 1971 to 2014 and the future projection data from 2015 to 2100 were
used for analysis. Four scenarios (Table 3), SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, were
chosen to represent sustainability, middle of the road, regional rivalry, and fossil-fueled
development pathway, respectively [20]. Five periods, 1995–2014, 2021–2040, 2041–2060,
2061–2080, and 2081–2100 were divided, representing the baseline period (BP), near future
(NF), mid future (MF), far future (FF), and final period (FP), respectively.

Table 3. The Shared Socioeconomic Pathways (SSP) of CMIP6 used in this study.

Scenario Name Forcing Category SSP 2100 Forcing/(W·m−2)

SSP1-2.6 Low SSP1(sustainability) 2.6
SSP2-4.5 Medium SSP2(middle of the road) 4.5
SSP3-7.0 Medium to High SSP3(regional rivalry) 7.0
SSP5-8.5 High SSP5(fossil-fueled development) 8.5

Observation data. The CN05.1 gridded monthly observation dataset from 1971 to
2014 was used for assessing the simulation ability of CMIP6 model data. The dataset was
developed by Wu et al. based on the observation data from more than 2400 meteorological
stations in China, using the thin plate spline method, with a resolution of 0.25◦ × 0.25◦ [36].

https://esgf-node.llnl.gov/search/cmip6/
https://github.com/WCRP-CMIP/CMIP6CVs/
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In terms of seasonal division, March to May is spring, June to August summer, September
to November autumn, and December to next February winter.

2.2. Methods
2.2.1. Model Evaluation

The standardized spatial Taylor map was used to quantitatively evaluate the spatial
distribution capacity of CMIP6 models. That is, the three indicators of correlation coefficient
(r), Root-Mean-Square Difference (RMSD), and standard deviation ratio (S) were computed
to evaluate models and the Taylor map was used for concise statistics [37]. The closer to
the observations, the stronger the simulation ability of the model is.

The standard deviation ratio (S) is the ratio of standard deviation STDr of simulation
field to standard deviation STD f of observation field. The closer the data between the
simulation field and the observation field is, the closer S is to 1, and the better the model
simulation ability is.

S =
STDr

STD f
(1)

2.2.2. Deviation Correction

Firstly, a univariate linear regression model between the observed data Zo(i)
(i = 1, 2, 3 . . . , m× n) and the average Zm(i) of the multi-model historical simulation set
is established:

Zo(i) = b0 + b1Zm(i) + ε (2)

where m× n was the total number of the samples, b0 and b1 were the return factors, and ε
was the return residual.

Then, according to the return factors, the above formula was applied to the average
Z̃m(i) of the sets of multiple patterns in the future, and the correct value of the estimated
data was Z̃(i):

Z̃(i) = b0 + b1Z̃m(i) + ε (3)

3. Results
3.1. Evaluation of Simulation Ability of CMIP6 Model Data
3.1.1. Temporal Simulation Ability

In terms of the correlation coefficient of each model from 1971 to 2014 (Table 2),
there are five models (ACCESS-ESM1-5, BCC-CSM2-MR, EC-Earth3, EC-Earth3-Veg-LR,
and NorESM2-LM) exceed 0.3 (p < 0.05). For the MRI-ESM2-0 model, although the time
correlation coefficient is only 0.24, which is second to the above five models, the spatial
correlation coefficient is 0.48 (p < 0.01), indicating that its comprehensive simulation ability
is strong. Therefore, the above six models are selected as the preferred models and formed
the PME. All the models involved are called multi-model ensemble (MME). From the
correlation coefficient alone, PME (r = 0.62, p < 0.01) is closer than MME (r = 0.43, p < 0.01)
to the observed data.

The variation in observed and simulated surface wind speed during 1971–2014
(Figure 1a) shows that fifteen models (such as ACCESS-CM2, ACCESS-ESM1-5, AWI-
CM-1-1-MR, CESM2-WACCM and EC-Earth3, etc.) and two ensembles are closer to the
observations, with the wind speed ranging from 2.7 m/s to 4.2 m/s. Three models (BCC-
CSM2-MR, FGOALS-f3-L, MRI-ESM2-0) overestimate wind speed and their average wind
speeds were 5.0 m/s, 5.1 m/s, and 6.1 m/s respectively, which was significantly higher
than the observed wind speed (3.2 m/s). Seven models (CAS-ESM2-0, CMCC-CM2-SR5,
CMCC-CM2-SR5, etc.) underestimate wind speed, and the variation range of wind speed
with time is between 1.7 m/s and 2.5 m/s. In terms of the long-term trends (Figure 1b),
only eight single models (ACCESS-ESM1-5, BCC-CSM2-MR, EC-Earth3, etc.) and two en-
sembles (PME and MME) to capture the downward trend of surface wind speed in the
ARNC during 1972-2014 with the significance test of 10%. Among these models, the largest
is BCC-CSM2-MR (−0.0264 m/s/10a), but its downward rate is far lower than the observed
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data (−0.168 m/s/10a). The mean wind speed simulated by other modes has no obvious
downward trend (−0.005~0.0096 m/s/10a) or upward trend (0.0002~0.0118 m/s/10a).
That is, none of the models can reproduce the same trend as the observation value as
the magnitude.
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Figure 1. Variations (a) and trends (b) of observed (black solid line) and simulated (color dot line,
red and green solid line) surface wind speed in the ARNC from 1971 to 2014.

3.1.2. Spatial Simulation Ability

In order to better evaluate the spatial simulation ability of CMIP6 models on surface
wind speed in the ARNC and evaluate the simulation performance of different models, the
spatial correlation coefficient, RMSD, and standard deviation of multi-year surface wind
speed are calculated and expressed in the form of Taylor chart (Figure 2). The star in the
figure represents the observation results, and the upper and lower case letters represent the
evaluation results of the corresponding model. It can be seen from the figure that the spatial
correlation coefficient between most models (13) and observation data is more prominent
than 0.4, and the RMSD is less than 1, indicating that most models can simulate the
spatial distribution of multi-year average annual wind speed. The correlation coefficients
of MME and PME exceed 0.5, and the RMSD is within 1, but the standard deviation
ratio of PME is closer to 1, so PME has a better ability to simulate spatial distribution.
Comprehensively considering the time and space simulation ability, PME is more stable in
simulation performance, which is better than single models and MME. Therefore, PME is
selected to analyze the future surface wind speed change in the study.
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  Figure 2. Taylor chart of CMIP6 models in simulating wind speed in the ARNC during 1971–2014.

3.2. Deviation Correction of CMIP6 Model Data

Although PME performs well in all single models and model ensembles, it still
overestimates the wind speed (Figure 3), and there is a noticeable deviation in the spatial
distribution. Compared with the spatial distribution of the observation data in the same
period (Figure 3c), the model data (Figure 3d) can simulate the characteristics of large
wind speed in the east and south of the ARNC and small in the west, but cannot simulate
the characteristics of large wind speed in mountains and small in basins. Therefore, it is
necessary to correct the PME data further.

The method of the univariate linear regression model is used to correct the deviation of
PME data. Firstly, a univariate linear regression model between PME and the observation
data from 1961 to 1994 is established, and the obtained linear relationship is used to verify
the monthly scale model data from 1995 to 2014. It can be seen from Figure 3 that the
model data after deviation correction has been significantly improved in time and space.
The corrected surface wind speed (3.41 m/s) is closer to the observed (3.06 m/s) than that
before correction (4.08 m/s), and the monthly surface wind speed is also more consistent
with the observation. From the spatial distribution of observed wind speed (Figure 3c),
the annual wind speed in the ARNC is mainly high in western Inner Mongolia and Hexi
Corridor, low in Southern Xinjiang, high in the mountainous area, and low in the basin.
Compared to uncorrected data (Figure 3d), the corrected PME (Figure 3e) reproduces the
spatial distribution pattern of mean wind speed. Therefore, the above correction method is
used to correct the deviation of PME data under four scenarios in the future 2015–2100.
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  Figure 3. Comparison between revised/unrevised PME and observation in time and space. (a) annual mean surface wind

speed (b) monthly mean surface wind speed (c) observed wind speed (d) simulated wind speed by the unrevised PME
(e) simulated wind speed by the revised PME.

3.3. Projection of Annual Wind Speed in the ARNC
3.3.1. Temporal Trend

Figure 4 displays the prediction results of PME after deviation correction on the
surface wind speed trends in the 21st century under different emission scenarios. The
results show that the mean wind speed is increasing under SSP1-2.6 and decreasing under
SSP2-4.5, SSP3-7.0, and SSP5-8.5, with a downward rate of −0.0007~−0.0072 m/s/10a, and
the annual wind speed changes more significantly under SSP3-7.0 and SSP5-8.5, which is
consistent with the study by Krishnan et al. [38].

In terms of the time period, under SSP1-2.6 and SSP2-4.5, the surface wind speed
in the 21st century shows a fluctuating change, and the trend is the most significant in
NF, which are 0.0174 m/s/10a, and −0.013 m/s/10a, respectively. Under the scenario of
SSP3-7.0, the surface wind speed in the 21st century continuous to decline, NF decreases
the fastest (−0.024 m/s/10a) and MF decreases the slowest (−0.0013 m/s/10a). Under
the SSP5-8.5 scenario, the surface wind speed in the 21st century first decreases and then
increases, with NF, MF, and FF all showing a downward trend. The decline rate of MF is
the fastest (−0.0223 m/s/10a) and FP a slight upward trend (0.0003 m/s/10a).

Overall, the difference of surface wind speed trend under the four emission scenarios
is mild in NF and MF, and it tends to be significant after MF. Among them, the wind speed
decline rate is the fastest under SSP3-7.0, small under SSP2-4.5 and SSP5-8.5, while the
wind speed still shows a weak upward trend under SSP1-2.6.
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Figure 4. Variations in projected annual wind speed in the ARNC from 1995 to 2100 under different
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3.3.2. Spatial Variation

From the spatial difference distribution of NF, MF, FF, and FP relative to BP under
the four emission scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Figure 5), the
surface wind speed in the ARNC will mainly decrease compared with BP as a whole in the
future, and there is an upward trend in some areas. The higher the emission scenario is,
the greater the wind speed decreases.
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Specifically, under SSP1-2.6, compared with BP, the regions with increased wind speed
in the 21st century are mainly observed over the Tianshan Mountains and Eastern Kunlun
Mountains, and the regions with wind speed decrease less than −0.05 m/s are mainly
observed over the Northern Xinjiang. As time goes on, the regions with increased wind
speed gradually increase, and those with wind speed decrease less than−0.05 m/s decrease.
Under the scenarios of SSP2-4.5, SSP3-7.0, and SSP5-8.5, the high-value area (>0.15 m/s)
with increased surface wind speed in the ARNC appears in the western edge and southeast
of Xinjiang. The high-value area with decreased surface wind speed (<−0.15 m/s) is
distributed in the north of Tianshan Mountain and the south of Tarim Basin, which is more
significant in FF and FP.

3.4. Projection of Seasonal Wind Speed in the ARNC
3.4.1. Temporal Trend

Seasonal differences in wind speed exist (Figure 6). Generally speaking, the surface
wind speed increases in winter and decreases in spring, summer and autumn, with the most
apparent decline in summer. SSP5-8.5 scenario has the fastest decline of surface wind speed
in spring, with a decline rate of −0.0094 m/s/10a. The most significant decrease of surface
wind speed in summer and autumn is SSP3-7.0, and the decline rates are −0.0132 m/s/10a
and −0.0135 m/s/10a, respectively. The maximum increase of surface wind speed in
winter is SSP5-8.5, up to 0.0083 m/s/10a.

1 

 

 

Figure 4 

 

Fogure  6 

 

Figure 6. Variations in the seasonal wind speed in the ARNC from 1995 to 2100 under four emission scenarios. The black
bar chart shows the variation trend of surface wind speed in NF, MF, FF and FP.

In terms of periods, the seasonal surface wind speed in the ARNC changes slightly
differently in the four periods of the 21st century under the four scenarios. In NF, the
surface wind speed decreases obviously in spring, summer and autumn, and increases in
winter. In MF, the change of surface wind speed in four seasons is not obvious under each
scenario, and the change range is concentrated between −0.02~0.02 m/s/10a. In FF, the
surface wind speed is projected to increase significantly in spring and autumn but decrease
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significantly in summer and autumn. In FP, the wind speed in four seasons is projected to
decrease significantly.

3.4.2. Spatial Variation

Figure 7 shows the spatial distribution of seasonal mean wind speed relative to BP in
NF, MF, FF, and FP under four emission scenarios. The results show that in spring, under
SSP1-2.6 and SSP2-4.5, the mean wind speed is projected to increase in the central, south
of Xinjiang and Inner Mongolia, decrease in Northern Xinjiang, with the overall variation
ranging −0.1~0.1 m/s and some areas more than 0.1 m/s. Under SSP3-7.0 and SSP5-8.5,
the spatial distribution of surface wind speed changes similarly in the four periods; that
is, there is a significant decline (<−0.1 m/s) in a large area of Northern Xinjiang and
Southeastern Tarim Basin. In summer, the change in the spatial distribution of wind speed
under four SSP scenarios is relatively consistent. The whole study area generally shows a
downward trend with high values in the north of Xinjiang, while an increase in some areas
on the edge of the west and south of Xinjiang.

 

4 

 

  
Figure 7. Cont.
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5 

 
Figure 7. Spatial difference distribution of seasonal mean wind speed relative to BP in NF (row 1),
MF (row 2), FF (row 3), and FP (row 4) under four emission scenarios.

The spatial variation of wind speed in autumn is similar to that in spring. Under the
SSP1-2.6 scenario, the area where the wind speed increases are mainly in the middle of
Xinjiang and extend to the whole of northern Xinjiang at the end of the period. Under
SSP2-4.5, SSP3-7.0, and SSP5-8.5, the wind speed increases in the Tianshan Mountains
and decreases in the north and southeast of Xinjiang and Inner Mongolia. The change of
wind speed in winter is opposite to that in summer. The wind speed increases obviously
under each scenario, and the high-value area is mainly in Tianshan Mountains in Northern
Xinjiang. By the end of the 21st century, the high-value area extends to large areas north to
40◦ N in the study area.

Generally speaking, the surface wind speed in spring, summer, and autumn in the
21st century mainly decreases in different scenarios and periods and increases in some
parts of the Tianshan Mountains. In winter, the whole study area has a significant upward
wind speed, and the decreasing area is only in Southern Xinjiang and Hexi Corridor. As
time goes by, the higher the emission scenario, the more significant the trend of surface
wind speed decreasing (or increasing).
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4. Discussion

GCM is an essential means to estimate future wind energy resources, which have
higher reliability for projecting future trends and large-scale average conditions. However,
the regional wind speed is not only affected by the atmospheric circulation, but also the
local climate characteristics, especially in the ARNC, where the natural environment is
complex and the terrain fluctuates greatly. Therefore, there is still great uncertainty in
a single climate model simulation of surface wind speed in the ARNC. In this study,
the simulation performance of multi-model ensemble tends to be more stable and closer
to the observations with a higher simulation accuracy than the single climate model.
Therefore, adopting the multi-model ensemble is one way to increase model simulation
reliability [39,40].

The current research results show that the surface wind speed in China and even
the world will still decrease in the 21st century under the background of continuous
global warming, and the decline of annual mean wind speed in our study area is very
similar to that in China [34,35,41]. The difference is that China′s mean wind speed is
projected to increase in summer (the largest trend 0.004 m/s/10a) and decrease in winter
(the largest trend −0.012 m/s/10a) during 2015–2100 under various scenarios, and the
magnitude of decrease in winter is more significant than that in annual (the largest trend
−0.008 m/s/10a) [34]. While in this study, the surface wind speed in the ARNC in the
21st century is decreasing in summer (the largest trend −0.0132 m/s/10a) and increasing
in winter (the largest trend 0.0083 m/s/10a).

The possible reason is that the decreasing surface wind speed in China is related to the
weakening trend of the monsoon in East Asia and South Asia [42,43]. Besides, some related
studies [44–46] predict that the Asian summer monsoon index will increase significantly,
and the winter monsoon index will weaken significantly in the future. However, the
ARNC is deeply inland and weakly affected by the monsoon, so the variation trends of the
surface wind speed in summer and winter are different from those in China. Such a similar
situation also occurred in India [47], in the summer of the 21st century, the surface wind
speed will increase by 1~15% on both the eastern coast (Eastern Ghats) and the western
coast (Western Ghats) of India, while in the Indo-Gangetic Basin, Gangetic West Bengal, and
adjoining Bangladesh wind shows a decreasing trend by 1~5%. The decrease of wind speed
is attributed to the decrease of atmospheric instability, such as convective activity related
to surface wind speed and the increase of potential temperature. The cause of wind speed
reduction is complex. In addition to monsoon factors, it is also affected by many factors
such as dust storms, cold waves, extratropical cyclone reduction, and underlying surface
anomaly. In-depth research is needed to reveal the interaction and feedback mechanism
and quantitatively evaluate the contribution of each factor.

Although the climate models participating in CMIP6 have higher simulation accuracy
than CMIP5, the horizontal resolution is still more than 100 km, suitable for large-scale
research. When simulating in the ARNC, there is still a specific deviation in the long-term
change in historical surface wind speed when simulated by each single model or model
mean. After deviation correction, the model can greatly improve the simulation accuracy
and reduce the uncertainty of simulation results. Therefore, more attention should be paid
to the comparison and application of various deviation correction methods in regional
research in subsequent research. At the same time, the use of high-resolution Regional
Climate Models (RCMs) and downscaling methods are still of great significance in the
study of regional scale simulation and prediction, which is also a problem that needs to be
solved in the field of current and future climate change [48,49]. This will play an important
role in promoting future research on the change of regional wind energy resources and
their climate impact, the exploitable amount of wind energy resources, strong winds and,
other extreme weather and climate events.
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5. Conclusions

This study evaluated the performance of 25 CMIP6 models and 2 model ensembles
(MME and PME) in simulating the surface wind speed in the ARNC based on the CN05.1
observation data. Then we used the PME with better simulation ability to project the
change in wind speed under the four SSP scenarios after deviation correction. The research
conclusions are as follows.

(1) PME outperforms the 25 single model and MME in simulating the temporal and
spatial distribution of surface wind speed. The temporal and spatial correlation coefficients
of PME are 0.62 and 0.5, respectively, which is more stable and reliable in the simulation
and projection.

(2) The surface wind speed (3.41 m/s) by the deviation-corrected PME is closer to
the observation (3.06 m/s), and the monthly change is also consistent with the observed
data. Spatially, the PME can better reproduce the spatial distribution characteristics of the
mean wind speed in the ARNC; that is, the wind speed is high in Inner Mongolia and Hexi
Corridor and low in Southern Xinjiang and high in mountainous areas, and low in basins.

(3) Under the four SSP scenarios, the emission scenarios except for SSP1-2.6 show a
decreasing trend in wind speed, while SSP1-2.6 shows a slightly increasing trend. The
higher the radiation force is, the more significant the annual mean wind speed decreases.
The difference in wind speed under each scenario tends to be significant after the middle
period of the 21st century (MF). Spatially, the significant increase (>0.15 m/s) of wind
speed appears in the western edge and southeast of Xinjiang, and the significant decrease
(<−0.15 m/s) shows in the north of Xinjiang and the south of Tarim Basin.

(4) Under the four scenarios, the surface wind speed in the ARNC is projected to
decline in spring, summer, and autumn, and the most apparent decreasing trend occurs
in summer. While in winter, it increases in apparent fluctuations. Spatially, the wind
speed decreases significantly over Northern Xinjiang and the southern edge of Tarim
Basin in spring and autumn, with the most significant decline in the north of the Tianshan
Mountains. The wind speed in winter increases significantly in Tianshan Mountains.
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