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Abstract: Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy
clustering algorithms for extracting land use land cover (LULC) information from satellite images.
However, these algorithms use only spectral or grey-level information of pixels for clustering and
ignore their spatial correlation. Different variants of the FCM algorithm have emerged recently that
utilize local spatial information in addition to spectral information for clustering. Such algorithms
are seen to generate clustering outputs that are more enhanced than the classical spectral-based FCM
algorithm. Nonetheless, the scope of integrating spatial contextual information with the conventional
PCM algorithm, which has several advantages over the FCM algorithm for supervised classification,
has not been explored much. This study proposed integrating local spatial information with the PCM
algorithm using simpler but proven approaches from available FCM-based local spatial information
algorithms. The three new PCM-based local spatial information algorithms: Possibilistic c-means
with spatial constraints (PCM-S), possibilistic local information c-means (PLICM), and adaptive
possibilistic local information c-means (ADPLICM) algorithms, were developed corresponding to the
available fuzzy c-means with spatial constraints (FCM-S), fuzzy local information c-means (FLICM),
and adaptive fuzzy local information c-means (ADFLICM) algorithms. Experiments were conducted
to analyze and compare the FCM and PCM classifier variants for supervised LULC classifications
in soft (fuzzy) mode. The quantitative assessment of the soft classification results from fuzzy error
matrix (FERM) and root mean square error (RMSE) suggested that the new PCM-based local spatial
information classifiers produced higher accuracies than the PCM, FCM, or its local spatial variants,
in the presence of untrained classes and noise. The promising results from PCM-based local spatial
information classifiers suggest that the PCM algorithm, which is known to be naturally robust to
noise, when integrated with local spatial information, has the potential to result in more efficient
classifiers capable of better handling ambiguities caused by spectral confusions in landscapes.

Keywords: fuzzy classification; sub-pixel; fuzzy c-means (FCM); possibilistic c-means (PCM); local
spatial information; spatial context; local information; remote sensing; image classification; spectral-
spatial; neighborhood

1. Introduction

Land use/land cover (LULC) maps are the most useful product derived from remote
sensing, as this information is vital for other applications, such as assessment and moni-
toring of vegetation types, crop and yield estimation, environmental impact assessment,
natural resource management and monitoring, urban planning. Scientists are continually
coming up with advanced classification techniques with improved classification accuracy
to generate precise LULC maps. A particular classifier may not work best for all situations,
as the characteristics of each image and the circumstances of each study vary greatly. For
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that reason, an appropriate classifier should be selected by the analyst for the task at
hand [1].

Most classifiers used for satellite image analysis are based on the per-pixel approach.
With conventional per-pixel classifiers or hard classifiers, the study area is assumed to
consist of distinct and discrete LULC classes, which are internally homogenous [2]. The
image pixels that represent geographic information on the ground are associated with a
single land use or land cover class. However, a single pixel may correspond to more than
one land cover in reality, such as a soil pixel with sparse grassland, which can be classified
as either “grassland” or “soil” [3]. Such mixed pixels, which show affinity to more than
one information class, may also occur at the indistinct class boundaries. Furthermore,
ambiguities may arise due to variability within land cover classes and variation in spectral
responses recorded by the sensors with corresponding ground situations. The uncertainty
or fuzziness in geographic representation due to class mixtures, intermediate conditions,
or within-class variability is better represented by soft classification or sub-pixel methods.

Sub-pixel scale analysis assumes an individual pixel’s spectral value to be a com-
bination of spectral values of pure pixels from classes, i.e., the pixels are assumed to be
mixed pixels. The sub-pixel scale thematic information is usually represented by soft
classification outputs where the areal class proportion of each pixel is displayed, and hence
a set of output fraction images is generated, one per class [4]. Such methods provide
more accurate geographic representation and more truthful results, especially in the case
of coarser datasets [5]. Various methods have been explored to derive soft classification
outputs, a few of which are the approaches based on fuzzy-set theory, Dempster–Shafer
theory, certainty factor, the softening of hard classifier outputs, neural networks, regression
modeling, etc. [5,6]. Fuzzy-set-based approaches and spectral mixture analysis are the
popular, simpler techniques for dealing with the mixed-pixel problem in remote sensing
image classification [5]. Fuzzy set theory [7] introduced the idea of partial membership of
data points in multiple clusters characterized by membership functions. The class member-
ship values of a pixel in fuzzy-based classifiers indicate the sub-pixel scale fractional class
compositions of that pixel.

One common issue in the standard unmixing or fuzzy-based soft classification meth-
ods is the requirement of defining all the classes (endmembers) [8]. As a result of this,
the soft classification outputs generated from these methods depict relative measures
of class membership of pixels as opposed to the absolute strength of class membership.
Fuzzy c-means (FCM) [9,10], originally an unsupervised fuzzy clustering algorithm, has
been successfully implemented and widely used in the field of remote sensing, both for
unsupervised and supervised classifications [2,11–16]. However, FCM generates relative
class membership of pixels, which means the membership of a pixel (or a data point) in a
cluster is dependent on its membership in all remaining clusters [17]. Krishnapuram and
Keller [18] observed the performance of FCM and its derivatives to be compromised in
noisy environments because of the probabilistic constraint, which forces the membership
values in FCM to be relative, and hence presented a possibilistic approach to clustering
in the possibilistic c-means (PCM) algorithm. PCM is an iterative clustering algorithm
similar to the FCM, but the membership of a data point (pixel) in a cluster is independent
of its membership in other clusters. The membership in the PCM algorithm, therefore,
represents the “degree of belonging or compatibility” as opposed to the “degree of sharing”
in FCM [18]. PCM is naturally immune to noise and outliers because the noise pixels
will have a low degree of compatibility in all clusters. Foody [17] suggested that PCM is
more appropriate for supervised LULC classification, as untrained classes are generally
encountered during supervised classification. While FCM generates the most accurate class
compositions when all the classes are defined, its performance degrades in the presence
of untrained classes. PCM is not affected by the presence of untrained classes and thus
outperforms FCM in such scenarios [17]. Ibrahim et al. [16], on evaluating the performance
of the maximum likelihood classifier (MLC), FCM, and PCM for supervised classification,



Remote Sens. 2021, 13, 4163 3 of 31

found PCM to produce the highest accurate land cover maps when uncertainty existed in
the dataset.

The fuzzy clustering algorithms FCM and PCM do not accommodate the spatial
dependence of pixels in the input satellite image for classification [19]. The use of spectral
information alone for classification often generates classification outputs that look noisy
(salt and pepper effect) [20]. This is caused due to the diversity of spectral variability,
inherent ground complexities, or inadequate spatial resolution [21]. Medium resolution
satellite sensors, such as Landsat Thematic Mapper, cover a large area and produce images
in which “the pixel size is smaller than the general extent of landscape objects” [22]. Thus,
pixels within images “exhibit a high degree of spatial autocorrelation” [22], which means
the pixels that are close together or that are within the local neighborhood are likely to
belong to the same information class. The suitable use of this spatial information along with
spectral information could help to eliminate ambiguities caused due to spectral confusions
in LULC classes (intra-class spectral variation and inter-class spectral similarity), to recover
the missing information, and to correct erroneous pixel classifications [5,23].

Spatial context in remote sensing image analysis can be characterized by texture extrac-
tion, filtering methods, mathematical morphology, spatial statistics, contextual techniques
(segmentation and object-based image analysis), Markov random fields (MRF), relaxation
labeling, the fusion of multisource data/techniques, etc. [5,6,22,24–27]. Numerous mod-
els have come up, which fuses multiple data/methods for taking full advantage of the
spatial knowledge in the images for improvising the classification efficiency. Pixel-level
image fusion approaches, generally categorized into multi-scale decomposition and sparse
representations, are widely applied fusion approaches in remote sensing [28,29]. Anand
et al. [30] used a 3D-DWT (discrete wavelet transform) for feature extraction from hyper-
spectral data and fed the extracted features to three machine learning (ML) algorithms,
Random Forest (RF), Support Vector Machine (SVM), and K-Nearest neighbor (KNN),
for classification. 3D-DWT, a multi-scale decomposition approach, incorporates the as-
sociation of neighboring pixels for extracting discriminatory features while minimizing
the noise in the input hyperspectral image (HSI) data. The three ML algorithms with the
added 3D-DWT features performed better than the corresponding traditional version of
the algorithms. Miao and Shi [20] proposed a multistep spectral-spatial method for HSI
and multispectral image classification. This classification method utilized the fusion of
statistical region merging (SRM) outputs and pixel-based SVM outputs using majority
voting to obtain the spectral-spatial classifications.

Spatial contextual information is commonly incorporated in the spectral-based classi-
fication as pre-classification/post-classification steps or as additional feature bands during
classification without modifying the classifiers. The per-pixel classifiers (SVM, RF) and
subpixel classifiers (FCM) are also seen to be integrated with approaches, such as MRF
and relaxation labeling, and others to simultaneously exploit the spatial and spectral
information during classification [31–34]. The concept of local (neighborhood) spatial
autocorrelation has emerged recently to integrate spatial information with conventional
spectral-based per-pixel or sub-pixel classifiers [6,35,36]. Zhang et al. [35] modified and
integrated the k-means algorithm with a neighborhood constrained index to generate a
neighborhood-constrained k-means (NC-k-means) algorithm. Deng and Wu [36] came up
with a spatially adaptive spectral mixture analysis (SASMA), which involved the integra-
tion of spatial and spectral information, unlike the conventional spectral mixture analysis
(SMA). All the above spectral classifiers showed improved classification performance when
integrated with spatial contextual information.

Deep learning approaches, especially the convolutional neural networks (CNN),
have recently gained popularity because of their ability to exploit spatial data through
convolution operation for feature extraction, segmentation, object detection, classification,
etc. However, the 3D CNN that extracts both spectral and spatial information has high
computational complexity. Hence, 2D CNNs are generally widely employed to extract
spatial features (e.g., textures) from images [37]. Several studies have combined the
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benefits of fuzzy classification approaches with that of CNN. Balakrishnan et al. [38]
proposed a meticulous fuzzy convolution c-means (MFCCM) algorithm that integrated
a fuzzy clustering algorithm with CNN. Although the MFCCM algorithm utilized the
significant features extracted from convolutional filtering to generate promising fuzzy
clustering results in noisy environments, the algorithm exhibited limitations in terms of
time complexity. Wang et al. [39] proposed a semi-supervised approach combining an
improved FCM algorithm (IFCM), which effectively utilized labeled data integrated into
traditional FCM for clustering, and CNN for fault detection in the sparsity of labeled
data. The CNN model in this method, trained using the original data corresponding to
the output labeled data from IFCM, was further used for fault detection. Although deep
learning models are effective in handling complex classification scenarios by incorporating
advanced learning mechanisms, large training data is required to train them to produce
generalized outcomes.

The most common and simplest approach to integrating local spatial information
into conventional FCM is by modifying the FCM objective function to include spatial
information from the neighboring pixels within a local window. The advantage of such
a method is that the spatial information can be straightforwardly incorporated into the
FCM with minimum changes in the resulting implementation [19]. Integrating spatial-
contextual information with spectral information in FCM has been seen to improve its
robustness and classification accuracy [19,21,40–46]. Pham and Prince [45] came up with
an iterative adaptive FCM (AFCM) algorithm that included a multiplier field term to model
the brightness variations caused due to intensity inhomogeneities in magnetic resonance
images. Liew et al. [46] experimented with modifying the FCM objective function with a
new adaptive dissimilarity index that takes into account the influence of neighboring pixels
on the central pixel within the 3× 3 window around the pixel. Another study by Pham [19]
introduced a spatial penalty term in the objective function of FCM to constrain the behavior
of membership functions, keeping the centroid computations of FCM unchanged in this
approach. Ahmed et al. [42], in the FCM-S algorithm, introduced a spatial neighborhood
term into the conventional FCM algorithm that forced the labeling of the neighboring
pixels to influence the labeling of each pixel. One limitation of this algorithm, an increase
in computation time, was overcome in FCM_S1 and FCM_S2 proposed by S. Chen and
Zhang [43]. FCM_S1 and FCM_S2 used a mean filter and a median filter, respectively,
to simplify the computation complexity. However, the output performances of FCM-S,
FCM-S1, and FCM-S2 algorithms depended on an empirically selected parameter, which
controlled the robustness to noise and the effectiveness of preserving the image details.
Krinidis and Chatzis [44] proposed a fuzzy local information c-means (FLICM) algorithm
in which a new fuzzy factor, independent of any empirically selected parameter, was
introduced into the FCM objective function. The FLICM algorithm was observed to be weak
in identifying class boundary pixels and edge pixels as a result of over-smoothing [21,47].
H. Zhang et al. [21] introduced a fuzzy similarity measure based on a spatial attraction
model in their adaptive fuzzy local information c-means algorithm (ADFLICM). The
fuzzy similarity measure allowed each pixel during classification to be influenced by its
neighboring pixels as well as its own features, thereby ensuring edge retention and noise
insensitivity simultaneously. Mishra et al. [48] applied an improved FLICM algorithm
as a segmentation method to extract features that were subsequently fed into the local
linear wavelet neural network (LLWNN-SCA) model for breast cancer detection and
classification. Suman et al. [49] performed a comparative analysis of fuzzy local spatial
information algorithms, FCM-S, FLICM, and ADFLICM, with different distance measures
and weighing factors.

Although the PCM algorithm is not as researched as FCM, numerous modified ver-
sions of PCM have come up recently to improve the clustering/classification performance
of the conventional PCM algorithm to suit different applications [50–56]. In separate stud-
ies carried out by Ravindraiah and Chandra Mohan Reddy [55] and Chawla [56], the PCM
algorithm was adapted to include spatial contextual information with spectral information
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for clustering/classification. Ravindraiah and Chandra Mohan Reddy [55] modified the
PCM algorithm with induced spatial constraint to develop a spatial possibilistic c-means
clustering algorithm (SPCM) for fundus image classification for diabetic retinopathy (DR)
lesions. Chawla [56] developed contextual fuzzy classification algorithms using MRF
with PCM as the base classifier. While the contextual PCM classifier with MRF standard
regularization and the contextual PCM classifier with MRF discontinuity adaptive (DA)
prior outperformed the conventional PCM classifier in terms of accuracy, the contextual
PCM with DA prior preserved edges better.

The promising results of the local spatial information algorithms, FCM-S, FLICM,
and ADFLICM, and the advantages of PCM over FCM in the presence of untrained
classes [17], encouraged us to integrate local spatial information with the standard PCM
algorithm and to investigate these algorithms for supervised LULC classification in soft
(fuzzy) mode. The possibilistic c-means with spatial constraints (PCM-S), possibilistic
local information c-means (PLICM), and adaptive possibilistic local information c-means
(ADPLICM) algorithms are proposed, exploiting the methods used for incorporating local
spatial information into the FCM-S, FLICM, and ADFLICM algorithms, respectively. The
realization of the above-mentioned approaches involves simple modifications to the PCM
objective function to integrate spatial data straightforwardly. With appropriate parameter
values, the PCM algorithm has been proven to improve the results of FCM [57] and is
recommended. Thus, we incorporate local spatial information into PCM with a view of
generating better classifiers that could be used instead of, or in addition to, the FCM-based
local spatial information classifiers, FCM, or PCM classifiers. The study aims not only to
incorporate local spatial information into the PCM algorithm but to evaluate and compare
the performance of available FCM-based local spatial information algorithms and the
new PCM-based local spatial information algorithms. The contribution of our study lies
in (1) understanding the potential of integrating the PCM algorithm with local spatial
information for better handling of isolated pixels (noise) and other ambiguities caused
by spectral confusions and (2) understanding the relevance of the choice of the fuzzy
local spatial information classifiers and their parameter values, in managing outliners and
generating accurate classification outputs, based on the number and nature of land cover
classes for classification.

2. Materials and Methods
2.1. Study Area and Datasets

A multispectral satellite image acquired by Landsat-8 on 12 February 2015, with
a spatial resolution of 30 m, was used for image classification (Figure 1b). The image
covers an area located in Haridwar district of Uttarakhand state, India, extending from
latitudes 29◦48′48′′N to 29◦53′14′′N and longitudes 78◦9′56′′E to 78◦14′43′′E (Figure 1a).
A finer resolution Formosat-2 image of the same area with a spatial resolution of 8 m,
acquired on 21 February 2015, was used for generating reference membership fraction
images (Figure 1c). The area is diverse in terms of LULC classes present. Six land cover
classes, namely, Dense Forest, Eucalyptus, Grassland, Riverine Sand, Wheat, and Water,
were selected for our study. A training and test dataset consisting of random pixels from
the Landsat-8 image was generated with the help of available field data.
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Figure 1. (a) The study area, located in the Haridwar district of Indian state Uttarakhand. (b) False-color composite of
Landsat-8 image of the study area. (c) False-color composite of Formosat-2 images with the identified LULC classes in the
study area.

2.2. Classification Algorithms

Theoretical explanations of the conventional fuzzy clustering algorithms FCM, and
PCM, along with the details of FCM-based local spatial information algorithms (FCM-S,
FLICM, and ADFLICM), and the proposed adaptations of these algorithms with PCM viz
PCM-S, PLICM, and ADPLICM, respectively, are provided in the subsequent sub-sections.
The algorithm descriptions are limited to an estimation of class membership values from
supervised versions of these algorithms.

2.2.1. Fuzzy c-Means (FCM)

The FCM [9,10] is originally an unsupervised clustering algorithm, which finds fuzzy
partitions and prototypes by minimizing the objective function. The optimal fuzzy clusters
are obtained by minimizing the objective function in Equation (1).

JFCM(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij D
(
xj, vi

)
(1)

The FCM objective function is subjected to the constraints in Equation (2).

µij ∈ [0, 1] for all i and j

∑ N
j=1 µij > 0 for all i

∑C
i=1 µij = 1 for all j

(2)

where, V is the matrix of cluster centres with its elements denoted by vi; vi is the mean
vector for cluster i; U is a C × N fuzzy partition matrix representing the membership
values µij of pixels per cluster; µij is the membership value of jth pixel for cluster i;
N is the total number of pixels; C is the number of clusters; m is the fuzzy weight, which
controls the level of fuzziness and its value lies between 1 and infinity (the m value tending
to infinity produces absolutely fuzzy outputs while m tending to unity produces hard or
crisp outputs); D

(
xj, vi

)
is the Euclidean distance (dij

2) between the jth pixel value xj and
cluster mean vi.

The fuzzy membership, whose value ranges between 0 (low similarity grade) and
1 (high similarity grade), denotes the similarity a data point (pixel) shares with the clus-
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ter/class. The optimization of the FCM objective function yields Equation (3) for determin-
ing the membership function.

µij =
1

∑C
k=1

(
d2

ij

d2
kj

) 1
m−1

(3)

2.2.2. Possibilistic c-Means (PCM)

The PCM algorithm, developed by Krishnapuram and Keller [18], is a modification of
the FCM clustering algorithm. PCM works on the possibilistic theory and thus relaxes the
probabilistic constraint of FCM that forces the class memberships of a pixel to be dependent
on one another. The objective function of the PCM algorithm is given in Equation (4)
subjected to the conditions in Equation (5).

JPCM(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij D
(
xj, vi

)
+

C

∑
i=1

ηi

N

∑
j=1

(
1− µij

)m (4)

µij ∈ [0, 1] for all i and j

∑ N
j=1 µij > 0 for all i

max
i

µij > 0 for all j
(5)

where ηi is the “bandwidth” or “resolution” or “scale” parameter [57] that controls the
shape and size of the cluster/class. Its value is selected depending on the distribution
of pixels in each cluster. The definition of ηi in Equation(6), with the value of K being
generally chosen to be 1, has been found to work well [57].

ηi = K
∑N

j=1 µm
ij d2

ij

∑N
j=1 µm

ij
(6)

The membership function (Equation (7)) is derived by minimizing the objective func-
tion of PCM. Unlike in FCM, the membership value here signifies the pixel’s possibility of
belonging to a cluster or its typicality to a cluster. In other words, the membership value in
PCM is absolute while the membership value in FCM is relative.

µij =
1

1 +
(

d2
ij

ηi

) 1
m−1

(7)

The interpretation of m in PCM is different from that in FCM. Increasing m values
in FCM signifies increased sharing of the pixels among all available clusters, while an
increasing m value in PCM signifies an increased possibility of all pixels belonging to a
given cluster.

2.2.3. Fuzzy c-Means with Spatial Constraint (FCM-S)

The FCM-S proposed by Ahmed et al. [42] includes a spatial constraint term in the
modified FCM objective function that forces the classification of the pixels to be influenced
by the pixel values in the immediate neighborhood. The objective function of FCM-S is
defined by Equation (8).

JFCMS(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij D
(
xj, vi

)
+

a
NR

N

∑
j=1

C

∑
i=1

µm
ij ∑

r∈Nj

D(xr, vi) (8)
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where Nj is the set of neighbor pixels falling into the window around the pixel j; NR is
the cardinality of Nj; a is the parameter that controls the effect from the neighborhood;
D(xr, vi) is the squared distance (dir

2) between the pixel value xr and the cluster mean vi,
where xr represents the rth neighbor in the neighboring window of xj.

2.2.4. Fuzzy Local Information c-Means (FLICM)

In the FLICM algorithm devised by Krinidis and Chatzis [44], a new fuzzy factor is
introduced as a local (spatial and grey level) similarity measure for noise insensitivity and
image detail preservation. The algorithm is free from empirically selected parameters. Its
objective function is given in Equation (9).

JFLICM(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij D
(
xj, vi

)
+ Gij (9)

where Gij is the fuzzy factor (of the jth pixel for the ith class) that uses the spatial distance
between the center pixel and the neighboring pixels in the local window to control the
influence of the pixels in the neighborhood. Gij is calculated using Equation (10).

Gij = ∑
r∈Nj

1
edjr + 1

(1− µir)
mD(xr, vi) (10)

edjr is the spatial Euclidean distance between the centre pixel j and the neighboring pixel r;
µir is the degree of membership of the rth neighbor pixel (of central pixel j) in cluster i.

2.2.5. Adaptive Fuzzy Local Information c-Means (ADFLICM)

The ADFLICM clustering algorithm [21] utilizes a fuzzy similarity measure derived
from the spatial attraction model. Spatial attraction models are used to describe the spatial
correlation between pixels in an image. The spatial attraction (SA) between two pixels j
and r for class i is described by Equation (11).

SAjr = ∑
r∈Nj

µij x µir

ed2
jr

(11)

The similarity measure of ADFLICM is defined by Equation (12), which is based on
the spatial attraction model given in Equation (11).

Sjr =

{
SAjr j 6= r
0 j = r

(12)

The objective function of ADFLICM is described in Equation (13).

JADFLICM(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij

D
(
xj, vi

)
+

1
NR

∑
r∈Nj

(
1− Sjr

)
D(xr, vi)

 (13)

2.2.6. PCM-Based Local Spatial Information Classification Algorithms

The objective function of the standard PCM algorithm was modified to develop PCM-
S, PLICM, and ADPLICM algorithms, similar to the modification of the FCM objective
function in the FCM-S, FLICM, and ADFLICM algorithms, respectively. The objective
functions were formulated and minimized in a fashion similar to the standard FCM/PCM
classification algorithms. The necessary conditions were obtained for the objective functions
of each algorithm to be at their local minimal extreme with respect to µij.
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(1) Possibilistic c-means with spatial constraint (PCM-S)

The objective function of the PCM algorithm was modified with the spatial constraint
term from the FCM-S algorithm to develop the PCM-S algorithm. The PCM-S objective
function is given in Equation (14).

JPCMS(U, V) =
N
∑

j=1

C
∑

i=1
µm

ij D
(
xj, vi

)
+

C
∑

i=1
ηi

N
∑

j=1

(
1− µij

)m

+ a
NR

N
∑

j=1

C
∑

i=1
µm

ij ∑
r∈Nj

D(xr, vi)

(14)

To obtain the membership equation, the objective function had to be minimized with
respect to U. As the rows and columns of U are independent of one another, minimizing
the objective function with respect to U is equivalent to minimizing the individual objective
function in Equation (15) with respect to µij, provided that the resulting membership value
lies in the interval [0,1] [18].

Jij
PCMS

(
µij, vi

)
= µm

ij d2
ij + ηi

(
1− µij

)m
+

a
NR

µm
ij d2

ir (15)

Differentiating Equation (15) with respect to µij and setting it to zero yielded the
equation for the membership function given in Equation (16).

µij =
1

1 +
(

d2
ij+

a
NR

∑r∈Ni
d2

ir
ηi

) 1
m−1

(16)

(2) Possibilistic local information c-means (PLICM)

The PLICM algorithm was formulated by modifying the PCM algorithm with the
fuzzy factor from the FLICM algorithm. The objective function of the PLICM algorithm is
described in Equation (17).

JPLICM(U, V) =
N

∑
j=1

C

∑
i=1

µm
ij
[
D
(
xj, vi

)
+ Gij

]
+

C

∑
i=1

ηi

N

∑
j=1

(
1− µij

)m (17)

The equation for fuzzy factor Gij is similar to the FLICM algorithm, which is de-
scribed by Equation (10). The membership function (Equation (18)) below is obtained for
JPLICM(U, V) at its local minima with respect to µij.

µij =
1

1 +
(

d2
ij+Gij

ηi

) 1
m−1

(18)

(3) Adaptive possibilistic local information c-means (ADPLICM)

An ADPLICM algorithm was formulated using the similarity measure with spatial
attraction model as defined in the case of the ADFLICM algorithm. Spatial attraction
(SAjr ) and similarity measure (Sjr ) equations for ADPLICM are the same as those of the
ADFLICM algorithm, which correspond to Equations (11) and (12). The objective function
for the ADPLICM algorithm is described in Equation (19).

JADPLICM(U, V) =
N
∑

j=1

C
∑

i=1
µm

ij

[
D
(

xj, vi
)
+ 1

NR
∑

r∈Nj

(
1− Sjr

)
D(xr, vi)

]

+
C
∑

i=1
ηi

N
∑

j=1

(
1− µij

)m
(19)
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The membership function of the ADPLICM algorithm obtained is given in Equation (20).

µij =
1

1 +
(

d2
ij+

1
NR

∑r∈Ni (1−Sjr)d2
ir

ηi

) 1
m−1

(20)

2.3. Methodology

The adopted methodology used in this study is shown in Figure 2. The methodology
steps involved pre-processing of satellite images, implementation of classification algo-
rithms, optimization of algorithm parameters, and evaluation of algorithm performances
by experimental analysis. All classification algorithms and accuracy assessment methods
were implemented using Python 3.7 (libraries used: Rasterio, Numpy, Matplotlib, Math).
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The Landsat-8 image used for classification and the Formosat-2 image used for the
creation of reference membership fraction images were initially pre-processed. This in-
cluded geo-referencing of Formosat-2 image and resampling to a 10 m spatial resolution
using the Nearest Neighbor method so that the pixel sizes in the Formosat-2 image and the
Landsat-8 image were in the ratio of 1:3. Image-to-image registration was subsequently
performed using the Formosat-2 image chosen as the master image. The images were then
cropped to the study area for further analysis.

The algorithm parameters, fuzzy factor m, window size, and a (in the case of FCM-S
and PCM-S), were initially optimized for the classifiers to exploit their maximum potential.
Owing to the disparity in the choice of the optimal value of m in the literature [9,28,29],
we followed an experimental strategy to estimate the best possible value of m, in the
interval [1.1,3], for which the highest classification accuracy was obtained. The window
size and parameter a, in FCM-S and PCM-S, were also optimized following a trial-and-error
approach. The estimation of the optimal value of a in the FCM-S algorithm without prior
knowledge of noise was found to be difficult [44]. Larger values of a were seen to generate
more noise resistant outputs, while smaller values of a were seen to generate outputs
where image details were better preserved. Because of this, we followed an empirical
approach to find the optimal value of a as in other studies, where the FCM-S algorithm
was studied [21,42–44]. The value of parameter a was chosen by repeated testing in the
interval of [0.2,8] and fixing the value from which maximum output accuracies from FERM
and RMSE were obtained.



Remote Sens. 2021, 13, 4163 11 of 31

The flowcharts for the execution of the PCM-S, PLICM, and ADPLICM algorithms
are presented in Figure 3. To initialize the PLICM and ADPLICM algorithms, the PCM
algorithm was used. The supervised versions of the FCM, PCM, FCM-S, FLICM, and
ADFLICM algorithms were also implemented for comparative analysis. The modification
of unsupervised to supervised classification involved obtaining class centroids from input
training data and estimating class memberships in a single step [17].
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Figure 3. The flowchart for the design and implementation of PCM-based local spatial information
classification algorithms.

The performances of the local spatial information algorithms were examined for su-
pervised classification in the soft (fuzzy) mode. The input image was separately classified
using the FCM, PCM, FCM-S, FLICM, ADFLICM, PCM-S, PLICM, and ADPLICM clas-
sifiers for the identified six land cover classes. The accuracy matrices of the classifiers
were estimated and compared to analyze the performance of the PCM-based local spatial
information classifiers with the FCM-based local spatial information classifiers. The soft
classification outputs from FCM and PCM were also included in the accuracy assessment
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to better assess the effect of including local spatial data into these standard classifiers.
Furthermore, experiments were performed to evaluate all eight classifiers’ outputs in the
presence of untrained classes and in the presence of isolated noisy pixels (pixels that are
different from their neighboring pixels). The details of these experiments, along with the
results, are explained in the next section.

As soft classification outputs represent the proportion of two or more classes in a pixel,
conventional accuracy assessment methods, such as the confusion matrix [58] or kappa
coefficient, could not be applied. Therefore, the overall accuracy of the fuzzy error matrix
(FERM) [59] and RMSE (root mean square error) were used for assessing the accuracy of
soft classified outputs generated by each algorithm with reference to the soft reference
data. FERM has a layout similar to the conventional error matrix with the exception that it
can have non-negative real numbers, which indicate the class proportions in the reference
image and classified image, instead of non-negative integer values. The test dataset was
carefully prepared to include pure pixels from homogenous regions of each class, isolated
pixels, and pixels at the boundaries or edges of the classes.

3. Results

The performances of the PCM-S, PLICM, and ADPLICM classifiers were examined
and compared with FCM-S, FLICM, ADFLICM, and the standard FCM/PCM classifiers
through four experiments. The scenarios executed were the (1) supervised classifica-
tion with all the identified classes, (2) supervised classification with untrained classes,
(3) supervised classification for single class extraction, and (4) supervised classification
in the presence of noise. It was observed that the optimal value of the fuzzy factor m, for
each classifier varied when the number of classes selected for classification varied. Hence
different m values were used for the same classifier in each of the scenarios executed.

3.1. Experiment 1: Supervised Classification with All the Identified Classes

The sub-pixel land cover fraction outputs derived for all the six classes (Dense Forest,
Eucalyptus, Grassland, Riverine Sand, Wheat, and Water) generated by the eight fuzzy
classification algorithms are given in Figures 4–9, respectively. The parameter values of all
the algorithms were initially optimized by repeat testing and after careful examination of
their effect on all the land cover classes (Table 1).

Table 1. The parameter values optimized for the conventional classifiers and the local spatial information classifiers for
supervised classification with all the classes.

FCM PCM FCM-S PCM-S FLICM PLICM ADFLICM ADPLICM

m 1.7 1.8 1.5 2.2 1.7 2.2 1.5 1.8
a - - 2 0.5 - - - -
window size 1 - - 3 3 3 3 3 3

1 Window size = 3 implies a 3 × 3 window around each pixel, making the number of neighboring pixels for each pixel to be 8 (i.e., NR = 8).
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Figure 9. The membership fraction (0–1) for the class ‘Wheat’ in (a) reference, (b) FCM output, (c) FCM-S output, (d) FLICM
output, (e) ADFLICM output, (f) PCM output, (g) PCM-S output, (h) PLICM output, and (i) ADPLICM output.
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The FERM overall accuracy was used to quantitatively analyze the performance of the
algorithms. The overall accuracy was calculated for each algorithm (1) while taking all the
random test samples for accuracy assessment, (2) while taking only the homogenous pixels
for testing, (3) while taking isolated pixels as test samples, and (4) while taking the edges
and boundary pixels as test samples. The overall accuracies for the four different cases
discussed above are denoted by OA, OA1, OA2, and OA3 correspondingly (Table 2 and
Figure 10). The overall accuracies, in general, for all the algorithms were seen to be higher
(OA1) when test data consisted of pure pixels from homogenous regions and lower (OA3)
when test data consisted of mixed pixels, whose exact ground proportion was not known.
While including more pure test pixels from homogenous regions could improve the general
overall accuracy, the purpose of the study was to compare the algorithm performance
for different cases. The overall poor accuracies of algorithms do not have a considerable
impact on the conclusion and inferences of this comparative study.

Table 2. The overall accuracy (in percentage) of FERM obtained from the conventional fuzzy classification algorithms and
fuzzy local spatial information classification algorithms.

FCM FCM-S FLICM ADFLICM PCM PCM-S PLICM ADPLICM

OA 66.63% 68.97% 68.74% 68.71% 63.19% 50.42% 51.02% 43.92%
OA1 83.04% 84.51% 85.31% 84.08% 76.42% 62.88% 66.79% 61.67%
OA2 38.96% 68.25% 71.91% 60.77% 32.01% 33.22% 32.22% 20.81%
OA3 69.82% 56.46% 53.03% 62% 72.71% 49.12% 47.73% 40.09%
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Figure 10. FERM overall accuracy (in percentage) of classification algorithms when tested with
different sample sets.

The FCM classifier variants were seen to produce higher accuracies in this scenario.
The FCM-S, FLICM, and ADFLICM showed greater overall accuracies while all the random
test sample pixels were used for accuracy assessment. Although FLICM and FCM-S were
effective in removing isolated pixels and their classification performances were slightly
higher than that of conventional FCM in homogenous regions (Figures 10 and 11), they
produced smoother outputs, which resulted in the loss of image details, such as edges and
boundaries (Figure 12). As inferred by H. Zhang et al. [21] in their study, the ADFLICM
algorithm showed acceptable performance compared to FCM-S and FLICM in terms of
handling isolated pixels while simultaneously retaining the image details (Figure 12). While
the overall accuracies of PCM and PCM-based local spatial information classifiers were
lower, the PCM classifier was seen to retain the edges and boundary pixels better than the
FCM variants (OA3 in Figure 10).
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The comparison of global RMSE values estimated for fuzzy local spatial information
classifiers also implied the superiority of the FCM-based local spatial classifiers over the
PCM-based local spatial information classifiers (Table 3 and Figure 13). The PCM-S, PLICM,
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Table 3. Global RMSE values for fuzzy local spatial information classifiers.

FCM-S FLICM ADFLICM PCM-S PLICM ADPLICM

RMSE 0.230 0.239 0.230 0.254 0.297 0.281
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3.2. Experiment 2: Supervised Classification with Untrained Classes

To understand the performance of the fuzzy local spatial information algorithms in the
presence of untrained classes, training pixels from a few information classes were excluded from
the training data. Three classes ‘Riverine Sand’, ‘Water’, and ‘Wheat’ were defined, and the
training pixels for the remaining classes were removed from the training data before classification.
This meant that the pixels in the study area from the omitted classes from training data ideally
should be considered as noisy pixels by the classifiers. The output fraction images for the three
classes mentioned above were generated by each of the eight classifiers FCM, FCM-S, PCM,
PCM-S, PLICM, and ADPLICM separately (Figures 14–16). The values chosen for m were 1.5, 1.2,
1.5, and 1.4, respectively, for PCM, PCM-S, PLICM, and ADPLICM algorithms. The remaining
parameter values were the same as those given in Table 1.
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The global and class-wise RMSE values were estimated for outputs from each classifier
(Table 4 and Figure 17). The PCM-based local spatial information classifiers, PCM-S,
PLICM, and ADPLICM, exhibited lower RMSE values, which meant that there was less
disparity between the output fraction images generated from these classifiers and the
corresponding reference fraction images. Although the PLICM classifier was seen to be
slightly advantageous over the other two algorithms in terms of global RMSE value, the
class-wise RMSE for the Water class and visual interpretation suggested a significant loss



Remote Sens. 2021, 13, 4163 24 of 31

in membership values for Water pixels with the PLICM classifier. To better analyze the
performance of PCM-based local spatial information classifiers, RMSE calculation was
repeated with test pixels from homogenous regions, noisy test pixels, and test pixels from
borders and edges of the LULC classes (Figure 18). The RMSE values obtained in this case
affirmed that the loss of image details was maximal in the PLICM classifier among the
PCM-based local spatial information classifiers and minimal in the ADPLICM classifier.
The RMSE values with noisy test pixels were, in general, lower for the PCM-based local
spatial information classifiers, with PLICM producing the lowest value. The ADPLICM
classifier was seen to perform better in retaining the image details among the PCM-based
local information classifiers.

Table 4. RMSE values estimated on the outputs of different classifiers when supervised classification was applied in the
presence of untrained classes.

FCM FCM-S FLICM ADFLICM PCM PCM-S PLICM ADPLICM

Riverine Sand 0.262 0.227 0.220 0.249 0.203 0.050 0.010 0.016
Water 0.356 0.336 0.338 0.358 0.358 0.216 0.276 0.243
Wheat 0.412 0.459 0.486 0.472 0.382 0.293 0.205 0.240
Overall RMSE 0.349 0.354 0.365 0.371 0.324 0.212 0.199 0.197
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3.3. Experiment 3: Supervised Classification for Single Class Extraction

Extracting a single land cover class might often be required in remote sensing appli-
cations. The FCM algorithm and its variants cannot be used to extract a single class from
satellite images because of the probabilistic membership constraint in Equation (2), which
forces the membership values of the pixels in the single output fraction image generated
to be one. In contrast, the PCM algorithm proved viable for one-class classification [60].
For the extraction of a single LULC class from the input dataset, PCM, PCM-S, PLICM,
and ADPLICM were used in this study. The training data for the ‘Wheat’ class alone was
given as an input to the classifiers, and output fraction images for the standard PCM and
the three PCM-based local spatial information classification algorithms were generated
(Figure 19). The RMSE values obtained for outputs of the classifiers are given in the table
below (Table 5). Based on the RMSE value, PLICM/ADPLICM was observed to be the
better performing classifier in extracting the ‘Wheat’ class.
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Table 5. RMSE values of PCM-based classifiers for single class (‘Wheat’) extraction.

PCM PCM-S PLICM ADPLICM

RMSE 0.515 0.379 0.270 0.279

3.4. Experiment 4: Supervised Classification in the Presence of Noise

The local spatial information algorithms were investigated with a noisy image to
evaluate their noise tolerance ability. The Formosat-2 image was corrupted with noisy
pixels or isolated pixels whose DN values differed substantially from the surrounding
pixels. This was accomplished by setting the DN values of random pixels in the image to
“255” in all bands, thereby resulting in random noise pixels appearing as ‘white dots’ in the
image (Figure 20). The noisy image was then separately classified using FCM, FCM-S, PCM,
and PCM-S classifiers with the training data of three classes (‘Riverine Sand’, ‘Water’, and
‘Wheat’). FCM-S and PCM-S were chosen among the local spatial information classifiers
since the effect from the neighboring pixels for classification could be controlled using
the parameter a, unlike the other local spatial information classifiers. The value for the
parameter a was set to 2 in FCM-S and 0.2 in PCM-S. The m value of 1.6 was used in all
four classifiers.

The noisy pixels in the input image appeared as isolated pixels in the classification
outputs, predominantly in the class proportion images generated for ‘Riverine Sand’. The
membership fraction images of the class ‘Riverine Sand’ generated by FCM, FCM-S, PCM,
and PCM-S classifiers are shown below (Figure 21). The isolated pixels were most evident
in the FCM output, owing to their high membership values in the class ‘Riverine Sand’
relative to other defined classes. The noise was seen to be less noticeable in the FCM-S
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classifier output as compared to the FCM output, very minimal in the PCM output, and
negligible in the PCM-S output.
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4. Discussion

While the choice of reference data and accuracy assessment methods hugely influence
the analysis and conclusions drawn from a study, a few specific observations of the results
and the accuracy matrices obtained during the scenarios executed in our study are described
below. The overall accuracy of FERM and the visual interpretation demonstrated that
the three FCM-based local spatial information classifiers (FCM-S, FLICM, and ADFLICM)
produced more accurate results, followed by the FCM classifier for classifications with
all the six LULC classes. On the contrary, the output quality of the FCM spatial variants
degraded significantly in the presence of untrained classes. However, the land cover
compositions obtained from the PCM-based local spatial information classifiers were in
close agreement with the reality/reference image when a few classes were excluded from
training. The three PCM-based local spatial information classifiers (PCM-S, PLICM, and
ADPLICM) produced similar RMSE values, which were lower than those of the standard
PCM classifier. In other words, the effectiveness of the PCM algorithm in the presence of
untrained classes and in handling isolated pixels (noise) was seen to have further improved
by incorporating it with local spatial information. While PLICM and ADPLICM were
seen to be slightly advantageous in creating accurate land cover class compositions, the
empirically set parameter in PCM-S allowed control of the neighborhood effect, depending
on the noise intensity in the input image. Among the PCM-based local spatial information
classifiers, ADPLICM was seen to preserve maximum image details, such as the ADFLICM
of the FCM-based local spatial information classifier.

It was not possible to make a general comparison of the performance of the FCM-
based local spatial information classifiers with those of PCM-based local spatial information
classifiers since the fundamental behaviors of their corresponding base classifiers were
different. The fraction outputs in the FCM classifier illustrated how well every image pixel
was accommodated among the existing classes, while the fraction images of the classes
in the PCM classifier focused on allocating every image pixel to that class. Due to this,
the FCM variants performed well when all the classes were defined, but the performance
degraded when a few classes were excluded from training. As Foody [44] concluded in his
study, the PCM classifier sometimes is more appropriate than the FCM classifier, although
the PCM produces less accurate land cover estimates when all classes are defined. Similar
results were observed in our study, in which the PCM and the PCM-based local spatial
information classifiers produced lower accuracies than the FCM classifier variants when
all classes were defined (Experiment 1). However, the performance of the PCM classifier
variants was seen to improve in the presence of untrained classes, as the membership
values in these classifiers are calculated using the absolute measure instead of the relative
measures [17]. The typical membership of the PCM makes it naturally immune to noise,
and hence it results in a more accurate representation of reality in ambiguous environments,
regardless of the number of training classes available [16,18]. Further, the typicality of
PCM membership values was seen to be enhanced when integrated with local spatial
information. In other words, the PCM-based local spatial information classifiers were
observed to be even more advantageous in cases where generally the conventional PCM
classifier performed better than the FCM variants. To summarize, the FCM-based local
spatial information classifiers and PCM-based local spatial information classifiers worked
well in situations where their respective base classifier performed better, disregarding the
obvious smoothing that resulted from integration with spatial contextual information.

The fuzzy local spatial information classifiers investigated in this study were observed
to have obvious advantages over the conventional fuzzy classifiers in handling the noisy
pixels and isolated pixels that occurred due to spectral confusions. Nevertheless, there
was a loss of image details in these local spatial information classifier outputs due to
smoothing in the classes with lesser spatial extent, such as the ‘Water’ class, and also at the
edges and boundaries of classes. The new PCM-based local spatial information classifiers
showed extreme loss of image details and poor performance among all the classifiers
during supervised classifications with training pixels from all the available landcover
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classes. However, these classifiers were found to be more efficient than the other fuzzy
classifiers at handling noise and producing accurate fuzzy classification outputs during
supervised classifications in the presence of untrained classes. Overall, the new PCM-based
local spatial information classifiers might be the right choice over existing PCM, FCM, or
the FCM-based local spatial variants in the presence of untrained classes and for single
class extraction.

While this study elucidates the performance of PCM-based local spatial information
algorithms and a few of their advantages, some major limitations of the study need to be
acknowledged. First, the PCM performance greatly depends on its initialization. FCM,
which is said to provide sensible initialization and scale estimate in less contaminated
data [57], was used for initializing the PCM algorithm and hence the outputs of PCM and
its variants were seen to produce different class proportion images on inclusion/exclusion
of training classes for classification. Second, limited approaches have been explored for
incorporating local spatial information in the PCM algorithm with measures that use the
spatial Euclidean distance between the center pixel and neighboring pixels. This study
could be extended to exploit measures such as the correlation among the pixels to control
the effect of neighboring pixels on the center pixel. Third, a small study area in India
was chosen for investigating the new algorithms, as the area is well-known and hence
suitable for making a relative analysis of results from the existing and new algorithms.
The evaluation could be extended to other areas with a wider set of LULC classes. Fourth,
there is no standard process for accuracy assessment for soft classification. Methods for the
creation of the soft reference data and accuracy assessment of the soft classified outputs are
still open research areas. We mainly used RMSE for obtaining a comparative judgment and
have not performed any statistical analysis tests on the data or results obtained. Performing
appropriate statistical significance tests correctly and drawing inferences cautiously using
such tests could provide validity of the results [61].

5. Conclusions

Relevant information processing depends on good representation methods for infor-
mation and efficient processing algorithms. Over decades, classifiers have been developed
to improve the extraction of useful information from remote sensing imagery. In addition
to spectral information, ancillary data, such as spatial-contextual information, has been
seen to greatly enhance the classifier’s performance. The primary aim of this study was
to investigate the effect of incorporating local spatial information into the PCM algorithm
using simpler methods and to evaluate the benefits of the new PCM-based local spatial
information classifiers over the existing FCM-based local spatial information classifiers.
The algorithms PCM-S, PLICM, and ADPLICM, were developed for the classification
and compared with the existing FCM-S, FLICM, and ADFLICM classifier outputs. To
substantiate the advantages of integrating local spatial information for classification, the
conventional FCM and PCM classifiers were also included in the assessment. Trials were
performed to evaluate and compare the output of all the eight classifiers with all the classes,
in the presence of untrained classes, and upon the introduction of isolated pixels. While
it was not possible to comment on which classifier consistently gave better classification
results, PCM-based local spatial information classifiers were observed to produce higher
accuracies in the presence of untrained classes and in the presence of noise. The PLICM and
ADPLICM classifiers producing lower global RMSE values, with ADPLICM being better at
image detail preservation and PLICM being efficient at handling isolated pixels, generated
more accurate class proportions for classifications in the presence of untrained classes
and for extracting a single land cover class. At the same time, the adjustable parameter
in the PCM-S classifier allowed the control of the classifier’s tolerance to input noise. In
general, the performance of the PCM classifier was demonstrably improved as the overall
RMSE value was seen to have reduced by more than 0.1 by integrating it with spatial
information. Likewise, the RMSE values obtained for the three PCM-based local spatial
information classifiers in the presence of untrained classes measured around 0.20, whereas
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for FCM-based local spatial information classifiers, the RMSE values obtained were in the
range of 0.35–0.37. Therefore, there is a huge potential for the PCM classifier integrated
with local spatial information to generate land cover compositions that are closer to reality
and with much clearer management of outliers. In other words, PCM spatial information
classifiers could produce better classification results than conventional PCM, FCM, or FCM
variants, especially in the absence of an exhaustive set of information classes for training.
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