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Abstract: River systems face negative impacts from development and removal of riparian vegetation
that provide critical shading in the face of climate change. This study used supervised deep learning
to accurately classify the land cover, including shading, of the Chauga River watershed, located in
Oconee County, South Carolina, for 2011 and 2019. The study examined the land cover differences
along the Chauga River and its tributaries, inside and outside the Sumter National Forest. LiDAR
data were incorporated in solar radiation calculations for the Chauga River inside and outside the
National Forest. The deep learning classifications produced land cover maps with high overall
accuracy (97.09% for 2011; 97.58% for 2019). The most significant difference in land cover was in
tree cover in the 50 m buffer of the tributaries inside the National Forest compared to the tributaries
outside the National Forest (2011: 95.39% vs. 81.84%, 2019: 92.86% vs. 82.06%). The solar radiation
calculations also confirmed a difference between the area inside and outside the National Forest, with
the mean temperature being greater outside the protected area (outside: 455.845 WH/m2; inside:
416,770 WH/m2). This study suggests that anthropogenic influence in the Chauga River watershed
is greater in the areas outside the Sumter National Forest, which could cause damage to the river
ecosystem if left unchecked in the future as development pressures increase. This study demonstrates
the accurate application of deep learning for high-resolution classification of river shading combined
with the use of LiDAR data to estimate solar radiation reaching the Chauga River. Techniques to
monitor riparian zones and shading at high spatial resolutions are critical for the mitigation of the
negative impacts of warming climates on aquatic ecosystems.

Keywords: geographic information systems (GIS); machine learning; national forest; protected area;
solar radiation; urbanization

1. Introduction

In riparian areas, tree canopy shade management is becoming a more frequent tech-
nique as climate change puts increased stressors, such as increased temperatures, tree
disease, and extreme storm events on riverine systems [1–3]. River temperatures have
been increasing across the United States [4], and climate change is predicted to exacerbate
negative impacts on rivers by altering temperature and rainfall regimes [5]. Riparian
forests have been shown to combat the rise in temperatures by bolstering rivers against the
pressures of climate change and improving water quality [6–8]. A recent study found that
the addition of riparian tree cover within 5 m of the riverbank had a significant positive
effect on the water temperature and water quality, while the removal of trees had negative
effects within 10 m or more of the riverbank [8].
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Examining land cover over time is necessary for monitoring changes to the landscape
and can provide information about the environmental protection requirements for an
area. The use of deep learning to classify land cover has become increasingly popular in
recent years and can evaluate landcover change over time [9,10]. Deep learning employs
supervised neural networks to extract information from multiple GIS data layers, such as
hyperspectral remotely sensed images [11]. In recent studies, combining high-resolution
imagery with deep learning techniques has led to over 90% land cover classifications
accuracies [12,13]. Previous land cover classification research has relied on the use of
medium spatial resolution images with pixel sizes ranging from 10–50 m because this
data were more widely available and accessible [14,15]. At this coarse scale, more subtle
changes in land cover are more difficult to capture as each pixel often contains more than
one land cover class [16]. Since the pixel can only be given one land cover classification,
this leads to over and under-representation of certain land cover classes. However, with
the recent advent of high-resolution imagery, such as 1 m pixel imagery from the National
Agriculture Imagery Program (NAIP) and the implementation of deep learning classifiers,
land cover change can be monitored more accurately over time.

The high resolution of LiDAR data enables an accurate examination of the tree canopy
shading of rivers, and therefore the solar radiation reaching the rivers, without the need
for field sampling [1,17]. Seixas et al. (2018) [18] used LiDAR data to calculate canopy
opening as an influence on water temperature and found that trees reduced maximum
river temperatures in small channel widths. A meta-analysis of solar radiation calculations
found that using 3D data ensures more accurate solar radiation calculations because it can
incorporate the impact of vegetation structure on light filtration through the canopy [19].
LiDAR has been widely adopted because it allows for the examination of the Earth’s
surface, including its vegetative structure. The data are becoming more widely available
and will continue to be used more frequently to accurately model the landscapes being
studied [19].

The Upstate of South Carolina has seen significant development over the past few
decades and is projected to have a growth rate of 1.12% until 2025 (compared to the U.S.
growth rate of 0.72%) [20]. The Chauga River flows through this Upstate area in Oconee
County, which had a 7.1% population increase from 2010–2019 [20], meaning the river could
be under stress due to land cover changes from development. Anthropogenic changes
from development pressures have been repeatedly shown to negatively influence river
water quality [21,22].

However, the Chauga River also flows through the Sumter National Forest, which
protects a portion of the Chauga River from negative development pressures. In addition,
the Chauga River was designated a Scenic Area under the Wild and Scenic River Act [23],
which protects the river and bank from major alterations, such as damming and oil and
gas extraction [24]. While the Chauga River does receive some protections, a large portion
of the watershed is susceptible to the increasing development pressure, and therefore, a
decrease in riparian vegetation. This decrease in vegetation could expose the Chauga River
and its tributaries to more solar radiation, leading to the negative impacts of unshaded
rivers that have been observed in other parts of the world (Table 1).

Table 1. Examples of common water quality parameters compared between shaded and unshaded. Tributaries based on
previously published studies.

Water Quality Parameters Shaded Non-Shaded Location Source

Temperature Cooler Warmer Scotland Dugdale et al., 2020 [8]
Dissolved oxygen Higher Lower Poland Bartnik et al., 2011 [25]

Algae Lower Higher Illinois Morgan et al., 2006 [26]

Deep learning land cover classifications and solar radiation calculations have been
employed in other studies [1,12,13,17] to separately examine the land cover surrounding
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rivers and the river temperatures. The use of these techniques allows for the examination
of the entire watershed without the need for field sampling events that are limited to
smaller areas. By employing GIS and remote sensing techniques using freely available
high-resolution aerial photos and LiDAR data, watersheds can be efficiently monitored
over time to understand changes and pressures threatening the natural resources within
them [27]. This need for efficient monitoring has become increasingly important in the face
of climate change because land managers and local agencies need to be able to understand
the changes occurring in their areas to protect land and water resources [28]. Field-based
land cover studies cannot be done retroactively for sites, whereas remote sensing allows
for retrospection to help understand current conditions. That way, if there are significant
changes in land cover or solar radiation values, agencies can act quickly to adjust to
those changes.

Using these remote sensing techniques at high resolutions to evaluate the shade and
protection of the Chauga River, when broken down into main stem and tributary riparian
areas, will allow for effective management in the face of climate change by ensuring
adequate shading of the Chauga River. It is important to examine the land cover in
the riparian areas because of the direct impact land cover type has on the river [29].
Additionally, comparing the riparian land cover along the main stem to the tributaries is
important to inform future management; there are few existing protections for tributaries,
so they may be disproportionately impacted compared to the main stem of the Chauga
River. As a whole, few studies have examined the Chauga River watershed since the
nearby Chattooga River, which runs between the state line of Georgia and South Carolina,
garners more attention [30–32]. Accordingly, there is a need for baseline information for
this watershed to guide management decisions. The hypothesis of this study is that the
combination of remote sensing data and techniques, land cover classifications, and solar
radiation calculations with high-resolution data can be used to efficiently evaluate the
shade and protected areas of the Chauga River and its tributaries.

The objectives of this study were to (1) classify land cover and shaded areas using
high-resolution aerial photos for the Chauga River watershed with deep learning, (2) use
LiDAR to incorporate vegetation structure into the calculation of solar radiation on the
Chauga River to determine river shading, and (3) integrate land cover and solar radiation
to determine the differences in shading along the main stem and tributaries of the Chauga
River to create baseline data for long-term monitoring.

2. Materials and Methods
2.1. Study Area

The Chauga River watershed (10-digit HUC code: 0306010203) is located in Oconee
County, SC, and is approximately 286 km2 (Figure 1). The Chauga River is close to 50 km
in length, beginning south of Mountain Rest and flowing into the Tugaloo River and
eventually the Savannah River at Lake Hartwell [33]. Approximately 28 km of the upper
section of the river are inside the protected area of the Sumter National Forest (SNF), with
the lower reaches of the river flowing through unprotected land. The watershed varies
from steep mountainous terrain in the northwest to low rolling hills in the southeast and
has an average gradient of 8.7 m per km [34]. The river is classified as a freestone river
at the upper reaches and is characterized by steep gradients and fast currents for about
16 km [34–36]. The most common soils for the area are acidic colluvial soils often found on
steep slopes (50–80%) [33].
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Figure 1. Location of the study area, the Chauga River watershed, in Oconee County, SC, USA.

2.2. Stream Data

A stream width polygon for the Chauga River was obtained from SC Department
of Natural Resources (SCDNR) (Table 2) and buffered by 50 m to capture the adjacent
riparian area. The single line stream data representing the tributaries were combined with
the stream connector polylines and the stream centerline data where the streamlines were
disconnected to create a continuous streamline for the tributaries of the Chauga River. The
resulting tributary streamlines were buffered by 50 m because previous studies have found
this buffer width captures shading of the river [1]. The overlapping area of the tributary
buffer and the Chauga River buffer was removed from the tributary buffer so that the area
would not be captured twice.

Table 2. Data sources used in the study.

Data Layer Source Spatial Resolution (m) Year

Chauga polygon SCDNR - 2011
Single line stream SCDNR - 2011
Stream connector SCDNR - 2011

LiDAR SCDNR 1 point per m 2011
Sumter National Forest USDA - 2020

NAIP 2011 USGS 1 April 2011
NAIP 2019 USGS 0.6 September–October 2019
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2.3. Image Classification

Figure 2 illustrates the workflow of the imagery classification. First, 2011 and 2019
imagery were obtained from the National Agriculture Imagery Program (NAIP) through
the United States Geological Survey (USGS) EarthExplorer website. NAIP aerial imagery
is taken during agricultural growing seasons to capture “leaf-on” conditions. The NAIP
imagery contained four bands (red, green, blue, and near-infrared) and had a pixel size of
1 m for 2011 and a pixel size of 0.6 m for 2019 [37]. The study area consisted of 18 image
tiles from April 2011 and 18 image tiles from September and October 2019. Each image tile
for both years was 3.75 × 3.75-min quarter quadrangle plus a 300 meter buffer on all four
sides. The 18 images for each year were mosaicked together to create a 2011 image and a
2019 image covering the study area using the NAD1983 UTM Zone 17M projection.
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Figure 2. Workflow of the creation of the land cover maps using deep learning. This process was conducted twice, once
with 2011 NAIP imagery and once with 2019 NAIP imagery.

Next, the desired land cover classes in the final land cover maps were defined using
recent classification work from Haq et al. (2021) [13] as a reference. A classification was
created containing nine land cover classes: water, deciduous trees, evergreen trees, open
land, riverbed, developed, roads, shadow (tree), and shadow (riverbed) (Table 3) [13].
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Table 3. Description of land cover classes in the Chauga River watershed and the number of training polygons in each land
cover class for 2011 and 2019.

Land Cover Class Description
Number of Polygon Samples

2011 2019

Water (W) Rivers, streams, lakes, and ponds 328 243
Deciduous trees (DT) Deciduous tree cover 296 333
Evergreen trees (ET) Evergreen tree cover, pine plantations 225 201

Open land (OL) Grass, fields, bare soil 401 379
Riverbed (RB) Sand, bare earth, rock inside or alongside water 240 265
Developed (D) Man-made structures, houses, buildings 252 245

Roads (R) Paved roads, paved driveways and parking lots, dirt roads 278 292
Shadows from trees (ST) Shadows cast by trees over grass, roads, or in forest 252 356

Shadows over riverbed (SR) Shadows cast over water 228 186

A total of 2500 polygon samples were created to represent these land cover classes
throughout the study area for the 2011 imagery, and a separate set of 2500 polygon samples
were created for the 2019 imagery. The area of these polygon samples varied from 1 to
43,000 m2 to capture areas that were distinctly representative of the assigned land cover
class without including parts of other land cover types. For instance, a training polygon
would only contain pixels for one land cover class, such as water. Many sample polygons
were very small to capture the fine level of detail over the landscape, such as shaded
areas over the river or small areas of exposed riverbed. The very large training polygons
often represented large areas of water or open land that had no land cover variation. The
distribution of training samples by land cover class for 2011 and 2019 are seen in Table 3.
The total number of samples for both years were split into training and testing data with a
0.7/0.3 split, creating 1750 training samples and 750 test samples for 2011 and a separate
set of 1750 training samples and 750 test samples for 2019.

The NAIP imagery and land cover training polygons were then used to train a Deep
Learning pixel classification model using a Deep Learning algorithm in ArcGIS Pro [38].
These deep learning models used the trained polygon samples to identify patterns in the
spectral signature of the image’s pixels to then assign each pixel to the corresponding land
cover classes.

The 2011 NAIP imagery and the 2011 training polygon land cover samples were
exported as 256 × 256-pixel image chips (see examples of these image chips in Figure 2)
to begin the deep learning model process. Each image chip had a 50% overlap with the
previous chip. This was determined by the stride size, which was set to half the size of the
tile. These image chips containing the training data were exported into a folder as classified
tiles and used to train the deep learning model [39]. The same process was repeated for the
2019 NAIP imagery and corresponding training polygons.

A U-Net deep learning model was used because it has been shown to effectively
classify pixels [40,41]. The max epochs were set to 20, meaning the training data were
passed through the neural network a maximum of 20 times to reduce the error rate.
However, the model was set to stop training when the model was no longer improving,
despite the max epoch number. The batch size was set to 8, meaning the model processed
eight training samples at a time. The validation percentage was set to 10, so 10% of the
training samples were used to validate the deep learning model. A certain learning rate
was not specified, but rather the best learning rate was determined by the model during
the training process. The GPU processor was used.

Finally, the trained deep learning models were used to classify the 2011 and 2019 NAIP
imagery into two separate land cover maps. These final land cover maps had the same
resolution as the NAIP imagery (1 m for 2011 and 0.6 m for 2019). The model assigned
each individual pixel to the corresponding land cover class it most closely matched as
determined by the trained model, thereby producing high-resolution land cover maps. An
accuracy assessment for each classification was calculated to understand the performance
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of the deep learning models. Overall accuracy, Kappa coefficient, consumer’s accuracy,
and producer’s accuracy were calculated as part of the accuracy assessment.

Overall accuracy illustrates a total accuracy measurement for land cover classification
by dividing the total number of correct pixel predictions by the total number of pixels. The
Kappa coefficient is another common measurement of land cover classification accuracy
and illustrates the difference between the classified image from the model’s predictions and
the true land cover in reality [42]. Higher values for both statistics indicate that the land
cover maps represent a more accurate classification of the image [42]. Consumer’s accuracy
divides the number of correctly classified pixels in a particular land cover class with the
total number of pixels in that land cover class [43]. Producer’s accuracy divides the number
of correctly classified pixels for a land cover class by the total number of reference pixels
for that land cover class [43].

The land cover in 2011 and 2019 was extracted for the 50 m buffers along the Chauga
River and its tributaries to examine if there were any differences over the eight-year period.
The land cover within these buffers was further divided into areas that fell inside and
outside the Sumter National Forest to examine the land cover differences.

2.4. LiDAR Classification

LiDAR data were downloaded for Oconee County from SCDNR for 2011. To cover
the study area, 44 .las files were downloaded, and all files were combined into a single
dataset for the extent of the watershed. A digital surface model (DSM) was created by
selecting first return LAS points. These first return points represent the first object hit by the
LiDAR laser pulse, or the tallest feature in the landscape, such as the tops of vegetation and
buildings [44]. The height measurements for these first return points were then rasterized
into a DSM surface with 10 m resolution to represent the elevation of the study area,
including the tops of vegetation and buildings.

2.5. Solar Radiation

Global solar radiation for the Chauga River was calculated with the Area Solar Radia-
tion tool in ArcGIS Pro, which sums direct and diffuse radiation together [38]. This tool
uses a hemispherical viewshed algorithm to calculate the amount of sun rays, or insolation,
reaching a particular area and creates a surface raster of this information [45,46]. The
Chauga stream polygon from SCDNR was buffered by 50 m to capture most of the shading
in the riparian zone. The DSM described above was used as the input to calculate global
solar radiation within the Chauga River riparian area. Using the DSM rather than the DEM
in this calculation captured the influence vegetation has on solar radiation. Solar radiation
was not calculated for the tributaries because there was very little exposed open water and
most of the tributaries were completely covered in vegetation. The ‘Start day’ was set to
171 (20 June) and ‘End day’ to 265 (22 September) to capture the hottest summer months
when insolation is greatest. The default settings were retained for all other fields (‘Sky
size/Resolution’ = 200, ‘Time configuration’ = Multiple days, ‘Day interval’ = 14, ‘Hour
interval’ = 0.5).

3. Results
3.1. Land Cover and Shading Distribution in the Chauga River Watershed Using Deep Learning
Classification of High-Resolution Imagery

The land cover classifications for 2011 and 2019, shown in Figure 3 were produced
using deep learning models specific for each year. The 2011 deep learning classification
produced higher overall accuracy than 2019, with overall accuracy assessments of 94.43%
(2011), and 85.70% (2019), and the Kappa accuracies were 0.92 (2011) and 0.81 (2019). When
the deciduous tree and evergreen tree land cover classes were combined into a single tree
cover class, the overall accuracies increased to 96.7% (2011) and 95.3% (2019), with Kappa
accuracies of 0.951 (2011) and 0.935 (2019) (Table 4). The 2019 classification was likely less
accurate in separating deciduous and evergreen trees because the NAIP source imagery
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came from fall, when there is a less distinguishable difference between the two tree types,
while the source imagery from 2011 came from spring.
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Table 4. Accuracy assessment of 2011 and 2019 land cover maps with tree cover types combined.

Land Cover Class
Consumer’s Accuracy Producer’s Accuracy

2011 2019 2011 2019

Water 0.993 0.997 0.982 0.997
Trees 0.980 0.988 0.955 0.943

Open Land 0.982 0.937 0.979 0.973
Riverbed 0.465 0.738 0.855 0.567

Developed 0.922 0.823 0.781 0.885
Roads 0.738 0.842 0.956 0.934

Shadow (trees) 0.678 0.674 0.821 0.867
Shadow (river) 0.901 0.970 0.737 0.852

Note: Kappa coefficient (2011: 0.951; 2019: 0.935), Overall validation (2011: 0.967; 2019: 0.953).

Further examination of the accuracy assessment for the 2011 and 2019 deep learning
classifications indicates that the deep learning models had high accuracy overall. This is
because the overall accuracy exceeds the minimum 85% threshold for acceptance of land
cover maps as set by Anderson [47], although a few land cover classes were not as accurate
as evidenced by lower consumer’s and producer’s accuracy (Table 4). For instance, the
riverbed land cover class had the lowest consumer’s error and a lower producer’s accuracy
compared to other classes. Riverbed was difficult for the model to capture because training
samples for the class included exposed rocks in the middle of the Chauga River and both
sandy and muddy banks along the river. Visual inspection of the final land cover maps
revealed that areas of sandy ground not identified as riverbed was sometimes classified as
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riverbed rather than open land. This was a more common problem with the 2019 model, as
seen in the lower producer’s accuracy for riverbeds. Shadow cast by trees was also low in
consumer’s accuracy because training samples for shadow amongst the trees may have
included parts of tree pixels because the shade was so interspersed with tree vegetation
in the imagery. Predictions for shadows cast over rivers were less accurate from the 2011
model. When excluding the riverbed and shadows cast by trees’ land cover classes, the
accuracy of the 2011 and 2019 models are within a satisfactory range for accepting the final
land cover maps.

There was little difference between 2011 and 2019 land cover when looking at the
entire Chauga River watershed (Table 5). Land cover classes for water, open land, riverbed,
developed, and shadow (riverbed) were all within a 1% difference from 2011 to 2019. The
greatest difference in the two classifications was between the separation of deciduous and
evergreen trees (2011: 66.10% deciduous, 17.68% evergreen) vs (2019: 49.04% deciduous,
33.61% evergreen). However, when the two tree cover classes were combined into a single
tree cover class, there was little difference (2011: 83.78%, 2019: 82.65%). There was a
1.04% decrease in roads and a 2.41% area increase in shadows from trees in 2019.

Table 5. Land cover class areas for the entire Chauga River watershed for 2011 and 2019.

Land Cover Class
2011 Land Cover 2019 Land Cover Land Cover Differences

(%) Area (m2) (%) Area (m2) (%) Area (m2)

Water 0.98 2,817,089 0.64 1,835,553 −0.34 −981,536
Deciduous trees 66.10 189,317,917 49.04 140,478,223 −17.06 −48,839,694
Evergreen trees 17.68 50,645,052 33.61 96,277,891 +15.93 +45,632,839

Open land 8.87 25,408,534 8.72 24,968,595 −0.15 −439,939
Riverbed 0.33 936,175 0.53 1,511,301 +0.20 +575,126

Developed 0.74 2,110,961 0.73 2,098,324 −0.01 −12,637
Roads 1.78 5,111,583 0.74 2,127,878 −1.04 −2,983,705

Shadow (tree) 3.34 9,578,705 5.75 16,472,533 +2.41 +6,893,828
Shadow (riverbed) 0.18 504,060 0.23 659,465 +0.05 +155,405

3.2. Incorporation of Vegetation Structure Using LiDAR to Calcualte Solar Radiation

Table 6 shows the solar radiation values calculated for the main stem of the Chauga
River for the areas inside and outside SNF. The overall mean solar radiation values were
higher in the area outside SNF (inside: 416, 770 WH/m2; outside: 455,845 WH/m2). The mini-
mum and maximum solar radiation values are also higher outside SNF (min: 180,776 WH/m2;
max: 520,230 WH/m2) compared to the values inside the protected area (min: 98,122 WH/m2;
max: 520,093 WH/m2). The range of solar radiation values were greater inside SNF, indicating
more temperature variability in this area (inside: 421,970 WH/m2; outside: 339,453 WH/m2).
Figure 4 further illustrates this pattern of lower solar radiation values inside SNF.

Table 6. Solar radiation values (WH/m2) for the 50 m buffer of the Chauga River main stem inside and outside Sumter
National Forest (SNF). WH/m2 is watt-hour per square meter.

Location Min Max Range Mean Standard Deviation Median

Inside SNF 98,122 520,093 421,970 416,770 67,977 430,976
Outside SNF 180,776 520,230 339,453 455,845 40,977 467,569
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3.3. Land Cover and Shading along the Chauga River Main Stem and Chauga River Tributaries

Changes in land cover from 2011 to 2019 were more visible when the land cover
was analyzed for the 50 m buffer around the main stem of the Chauga River and for the
50 m buffer around its tributaries (Figure 5, Tables 7 and 8). In the Chauga River buffer,
there was a 1.35% decrease in water area. Open land, developed area, and total tree cover
increased by less than 1% from 2011 to 2019. There was a 3.04% decrease in riverbed, a
0.49% decrease in roads, a 1.05% decrease of shadows over riverbed, and 4.37% increase
in shadows amongst tree canopy from 2011 to 2019. In the tributary buffer, there were
less than 1% decreases in water, developed area, roads, and overall tree coverage. There
were also less than 1% increases in riverbed and shadow over riverbed during the time
period. Shadow in tree canopy area increased by 2.96%, and there was a 1.27% decrease in
developed area.

Examination of the land cover within a 50 m buffer of the Chauga River main stem
and within a 50 m buffer of the tributaries both inside and outside SNF for 2019 revealed
differences in some land cover classes (Figure 6), with the biggest being less total tree
coverage in the tributary buffer outside SNF vs. inside SNF (10.8%). There was also more
open land in the tributary buffer outside SNF when compared to open land in the Chauga
River buffer (6.68%). In addition, there was more open land in the tributary buffers outside
SNF compared to inside the Chauga River buffers outside SNF (5.01%).
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of Sumter National Forest. Deciduous and evergreen tree land cover classes were combined into a
single tree class.

Developed area percentages were higher outside SNF compared to inside SNF when
looking at both the Chauga River (0.36%, 0.1%) and tributary (0.49%, 0.11%) buffers.
Similarly, road area was greater outside than inside SNF for the Chauga River buffer (0.3%,
0.12%) and the tributary buffer (0.6%, 0.09%), with a greater increase in roads seen in
the tributaries. The water area was greater in the Chauga River buffer compared to the
tributary buffer, both inside and outside SNF, because the Chauga River is wider than its
tributaries, which are mostly covered by trees canopies. There was also more overall tree
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coverage in the tributary buffer than the Chauga River buffer because the Chauga River
is wider.

Table 7. Land cover area for 2011 within a 50 m buffer of the Chauga River main stem and within a
50 m buffer of the tributaries, both inside and outside the Sumter National Forest.

Land Cover Class

2011

Chauga River Tributaries

Sumter National Forest

Inside Outside Inside Outside

Land Cover (%)

Water 2.62 5.40 0.15 2.23
Deciduous trees 60.76 64.50 81.91 69.43
Evergreen trees 15.45 10.64 13.48 12.41

Open land 0.66 1.91 1.10 9.65
Riverbed 8.15 6.63 0.10 0.40

Developed 0.11 0.33 0.05 0.56
Roads 0.34 0.79 0.23 1.77

Shadow (tree) 6.34 5.13 2.88 3.39
Shadow (riverbed) 5.57 4.66 0.09 0.15

Table 8. Land cover area for 2019 within a 50 m buffer of the Chauga River main stem and within a
50 m buffer of its tributaries, both inside and outside the Sumter National Forest.

Land Cover Class

2019

Chauga River Tributaries

Sumter National Forest

Inside Outside Inside Outside

Land Cover (%)

Water 1.99 4.05 0.04 1.89
Deciduous trees 43.96 38.01 55.35 44.54
Evergreen trees 33.85 37.91 37.51 37.52

Open land 0.86 2.67 1.00 7.68
Riverbed 3.58 3.59 0.22 0.47

Developed 0.10 0.36 0.11 0.49
Roads 0.12 0.30 0.09 0.60

Shadow (tree) 11.75 9.50 5.59 6.50
Shadow (riverbed) 3.78 3.61 0.08 0.32

4. Discussion
4.1. Importance of Monitoring Riparian Buffers

Riparian buffers are critical to monitor with changing climate in riverine systems
because of the numerous ways these systems can be impacted and the buffer’s protective
function. Development and urbanization of the areas along rivers can degrade river ecosys-
tems [48]. The resulting changes of land cover in riparian buffers can lead to increased water
temperatures if vegetation cover is removed and a decrease in water quality as vegetation
is no longer present to trap pollutants before they enter waterways [5,8]. Additionally,
human disturbance of riparian buffers and removal of native vegetation can introduce
invasive species that can degrade buffer biodiversity and function, altering natural river
ecosystem functions [49]. All of these impacts could affect rivers, leading to degraded
water quality, impaired habitat for aquatic species, and overall, less resilient ecosystems.

Vegetated riparian buffers around rivers protect river systems in various ways (Figure 7).
For instance, riparian buffers protect water quality by preventing excess nutrients such as
nitrate, nitrogen, and phosphorus from running off of neighboring croplands or open areas
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into rivers [50–52]. If excess nutrients are not removed but rather enter rivers, this could
lead to eutrophication, excess plant growth, and fish kill as a result of depleted oxygen [50].
Riparian buffers can decrease erosion of riverbanks and provide stability [53,54]. With
improved bank stability, riparian buffers can also reduce sediment flow into rivers during
rain events, thereby preventing spikes in turbidity that can harm aquatic life [52,55,56]. In
addition, riparian buffers help preserve fish by maintaining food availability and decreasing
the number of times water temperatures are greater than what can be tolerated by fish
populations such as smallmouth bass and trout [57–59]. Riparian buffers can protect against
the increased storm surge flooding that will occur with climate change, by reducing the
velocity of flowing water and by storing water [5,49]. Overall, riparian buffers can be
important management tools for bolstering river systems against climate change.
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4.2. Use of High-Resolution Imagery and LiDAR Data to Evaluate Shading

Deep learning land cover classification produced an overall accuracy of 95.3% for 2011
and 96.7% for 2019 when tree cover was generalized. Similar to a recent study [13], this
high accuracy deep learning method for land cover classification enabled the distinction
between shadows cast over the river from shadows cast by trees in forests or over open
land, as well as a detailed and accurate record of riparian tree cover. Given the small pixel
size of the imagery and the high overall accuracies and Kappa coefficients of the final land
cover maps, these land cover maps can be accepted as an accurate representation of the
land cover of the study area. The land cover classes of most importance to this study were
water, trees, open land, development, roads, and shadows over rivers. These land cover
classes had high consumer’s and producer’s accuracies of over 70%, so this methodology
of deep learning models to classify high resolution remotely sensed images is one that can
be applied to other watersheds to establish current baseline conditions and monitor change
over time. With continually improving remote sensing imagery and advancements in deep
learning techniques, higher accuracy land cover classifications at higher spatial resolutions
such as this one can be achieved.

Similar advancements in LiDAR technology are making data more widely available for
landscape-scale analysis. Like in similar research [60,61], this study was able to incorporate
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riparian vegetation into the calculation of solar radiation on the Chauga River, through the
use of LiDAR. When the solar radiation values were mapped, areas of lower solar radiation
aligned with the shaded river land cover class, illustrating the importance of riparian shade
over river channels to protect against increasing temperatures from climate change.

It is important to note that while these remote sensing techniques for land cover classi-
fication are effective and efficient methods for understanding a landscape for management
needs, there are limitations that impact the interpretability of the results. The deep learning
models were trained by drawing sample polygons throughout the landscape, and therefore,
contain a level of training bias. The models also depend on the aerial imagery used, which
in this case were taken at a single snapshot in time. The difference in deciduous and
evergreen tree differentiation by the 2011 and 2019 models was evidenced by the seasonal
difference of the aerial imagery used [62,63]. The aerial imagery in 2011 was taken in April,
while the imagery in 2019 was taken in September and October. This seasonal difference
impacts the spectral signature of the images, as the new leaf growth in deciduous trees
was more distinct from evergreen vegetation in spring compared with the fall. Therefore,
the two tree types were combined into one tree land cover class to produce more accurate
final land cover maps. The seasonal difference between the 2011 and 2019 images also
contributed to the difference in the water land cover class. Less water in 2019 was likely due
to increased evapotranspiration during the summer months, leading to drier river stretches.
This was evidenced in the aerial imagery as several areas covered in water in spring of
2011 were dry sandbars or mud flats in early fall of 2019. Additionally, the time of day
when the NAIP aerial imagery was collected also impacts the amount of shade identified
in the landscape because of the orientation of the sun. The difference in time of day flown
could have contributed to the slight differences in the shade over the riverbed and in the
trees between 2011 and 2019. Ideally, future studies that use deep learning to examine land
cover changes with NAIP imagery should select years that have images flown at the same
time of year to combat the seasonal impact on training the models. Finally, despite using
very high-resolution NAIP imagery with small pixel sizes (2011: 1 m; 2019: 0.6 m), it was
more difficult for the models to differentiate land cover classes for the pixels between two
different land cover classes. For instance, in areas between road and open land, the models
could misclassify these in-between pixels to the wrong land cover class.

While the changes in land cover classes were not very different over this 8-year period
for the Chauga River watershed, the examination of land cover at such a high resolution
enables these differences to still be detectable. Without the use of the NAIP imagery and the
deep learning models, these differences in land cover changes may not have been noticed.
Early detection of these gradual changes can help land managers and local agencies plan
to ensure sustainable growth that does not negatively impact the riparian buffers of the
Chauga River and its tributaries.

4.3. Land Cover and Shading Influence on River Temperature

When examining the land cover results from 2011 and 2019 for the main stem Chauga
River and its tributaries, there were no major changes over the course of the eight years.
This could be because they occur in a more rural area of the county, and the increase in
population has not led to greatly increased development yet. Similarly, the land cover was
examined within the 50 m riparian buffers of the Chauga main stem and its tributaries,
so development pressures may not yet be strong enough to encroach on these riparian
zones. Therefore, the more obvious differences in land cover were seen in the differences
in protected vs. unprotected areas, which illustrated our expected result that there would
be more development, roads, and open land outside of SNF.

While the results of this study did not illustrate an increase in development pressure
to the Chauga River, they illustrate an appropriate methodology that can be applied to
other watersheds. Furthermore, the land cover maps provide baseline data for the Chauga
watershed that can equip land managers and local agencies to make decisions about
protecting the overlooked tributaries of the Chauga River. That way, if development does
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accelerate in the unprotected areas outside of SNF along the tributaries, the riparian canopy
cover will decrease, allowing direct solar radiation to increase the water temperatures.
Water temperatures of the tributaries play a contributing role in the overall main stem
temperature [2], with any increased temperatures of the tributaries flowing into and
impacting the main stem of the Chauga River. Although the Chauga River’s banks are
protected from major disturbance through designation as a Scenic Area under the Wild
and Scenic River Act [23], development in its unprotected tributaries can negatively impact
the overall quality of the Chauga River.

Recent research on the impact of riparian vegetation on water temperature [64] found
that even sparse vegetation can protect water temperatures from spiking. Another study
on land cover types on water temperature showed that tree cover is negatively correlated
with water temperature, and development has a positive correlation with water temper-
ature [65]. These results give further interpretability to what was found in the Chauga
River watershed as there were higher solar radiation values outside the protected area,
where there was less tree cover and greater development. While riparian shading does
help prevent water temperature increases, studies have also found shading to limit aquatic
plant biodiversity [66], so management strategies should also consider the shading needs
of the aquatic vegetation rivers before planting vegetation in riparian zones to prevent
water temperature increases.

4.4. Protected Area Impact on Land Cover Change in the Chauga River Watershed

Protected area has limited development and decreased tree cover loss along the
Chauga River. In 2011, there was 1.25% more open land in the Chauga River riparian
area outside of the SNF, and in 2019, there was 1.81% more open land outside the SNF.
This difference in greater open land outside SNF is even more evident when examining
the riparian area of the tributaries. In 2011, there was 8.55% more open land outside the
protected area, and in 2019, there was 6.68% more. The preservation of tree cover due
to the SNF is also evident when examining the difference in tree cover for the tributary
riparian areas. There was 13.55% less tree cover along the tributaries outside SNF in 2011,
and the area difference for 2019 was 10.81%. The effect of these land cover changes is
then demonstrated by the greater solar radiation values for the Chauga River outside
the protected area. This pattern will be exacerbated if development is left unchecked in
this area.

With low levels of governmental protection for the tributaries of the Chauga River,
these riparian areas are critical to monitor. Despite the lack of protection, these tributaries
are important aspects of the river system because they flow into the main stem, carrying
sediment, pollutants, organic matter, and potentially different water temperatures [67]. If
these elements greatly differ from conditions in the main stem of the river, then the flow
from tributaries could degrade the quality of the main river. This study illustrates the
difference in land cover change around the tributaries compared to the main stem of the
Chauga River. With more open land and development in the tributary buffers, this could
lead to more nutrient and pollutant runoff into the tributaries themselves, which would
then flow into the main stem of the Chauga River. Thus, it is critical to monitor and protect
the riparian buffers around a river’s tributaries.

5. Conclusions

This study illustrates the importance of high-resolution data to monitor these riparian
areas by using remotely sensed imagery with 0.6–1 m resolution and LiDAR data with
a point density of 1 point per square meter. Until recently, satellite images with low
resolutions, such as 30 m, were used to examine landscapes. At this coarse scale, details
such as shading over a narrow river such as the Chauga were impossible to distinguish, and
accurate information could not be derived for very small tributaries. A recent study that
compared land cover classifications and water quality modeling results for 1 m and 30 m
resolution images found the higher resolution imagery produced more accurate results [68].
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In previous studies using 30 m pixels, the land cover maps are not as accurate because
the pixels are so large that they contain multiple land cover classes, but the model must
only assign one land cover class to that pixel, leading to over and under-representation of
the area’s land cover. However, with the use of 0.6 m and 1 m pixels, each pixel typically
represents only one land cover class. Therefore, the advancements in available data at high
resolutions have made a detailed investigation of riparian areas and river shading in both
protected and developing areas, possible with remarkable accuracy.

This study demonstrates a successful framework of deep learning land classification
and solar radiation calculations to evaluate the shading of the Chauga river system over
time that, when combined, can be used to monitor the influences on water temperature
and can inform management strategies needed to prevent increased temperatures in the
rivers. This methodology can be applied to other systems to understand the protection
and shading of rivers, along with changes over time, and can determine management
needs, such as riparian plantings, necessary to ensure long-term protection of rivers as
the climate continues to change. In addition, deep learning land cover classification can
be used to carefully monitoring changes in tree cover caused by development or natural
causes such as disease. Likewise, LiDAR-based tree shading modeling can provide a
detailed evaluation of shading of these important water resources. Such studies about river
systems provide important baseline information for local governments and protected area
managers to collectively balance increased development with the continued preservation
of natural resources as the climate continues to change.
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