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Abstract: Typhoons strongly impact the structure and functioning of the forests, especially in the
coastal areas in which typhoon-induced flooding imposes additional stress on the ecosystem via
physical destruction and rising soil salinity. The impact of typhoons on forest ecosystems is becoming
even more significant in the changing climate, which triggers atmospheric mechanisms that increase
their frequency and intensity. This study investigates the resiliency of the Philippines’ forest areas
(i.e., two selected forestry areas in Tacloban and Guiuan) in the aftermath of Super Typhoon Haiyan,
which was followed by coastal flooding, as well as changes in ecosystem and biomass content using
remote sensing. For this, we first evaluated the sensitivity of the normalized difference vegetation
index (NDVI), green normalized difference vegetation index (GNDVI), and enhanced vegetation
index (EVI) in detecting temporal changes in biomass content using very high-resolution satellite
images. Then, employing three resilience concepts: amplitude, malleability, and elasticity, the most
sensitive biomass index (i.e., NDVI) and digital elevation model (DEM) data were used to measure
the resiliency of the Guiuan and Tacloban sites. We also applied a mean-variance analysis to extract
and illustrate the shifts in the ecosystem status. The results show that despite a considerable biomass
loss (57% in Guiuan and 46% in Tacloban), the Guiuan and Tacloban sites regained 80% and 70% of
their initial biomass content within a year after the typhoon, respectively. However, the presence of
canopy gaps in the Tacloban site makes it vulnerable to external stressors. Furthermore, the findings
demonstrate that the study areas return to their initial states within two years. This indicates the high
resiliency of those areas according to elasticity results. Moreover, the evaluation of typhoon impacts
according to the elevation demonstrates that the elevation had a substantial impact on both damage
severity and biomass recovery.

Keywords: resilience assessment; forest degradation; remote sensing; forest recovery; Typhoon
Haiyan; multi-hazard disaster

1. Introduction

Natural hazards such as cyclones and typhoons cause massive damages to built-up
and natural areas including agriculture and forests [1–5]. Typhoons not only limit tree
growth and change the canopy structure of the forest, but also alter the biochemical cycles
and ecological characteristics of the area. Extensive typhoon-induced defoliation and
canopy gaps reduce the net primary production (NPP) of the ecosystem and consequently
reduce the biomass accumulation [3]. It increases nutrient export through the streams.
The change in the nutrient composition of streams causes negative effects on the aquatic
environment and species, in turn. All of these factors alter the ecosystem functioning and
directly impact the species diversity of the ecosystem [6–8]. This has economic impacts, for
example on food production [9,10] and forest industry [11] which are the economic pillars of
most of the communities, in particular in tropical countries [12,13]. Accordingly, assessing
their resilience can provide critical information regarding the impact of a disaster. This is
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even vital for the areas such as the Philippines, where typhoons may occur periodically and
consistently. Typhoons, due to their high-speed winds can cause damages by uprooting
trees, plucking tree fronds, and breaking branches that may also relocate them during the
event. In addition, in a coastal area, it may lead to a multi-hazard event causing storm
surges. A multi-hazard disaster is a situation in which more than one disturbance may
occur simultaneously, cascadingly, or cumulatively [14]. This increases the ecological
impacts, and thus, increases the significance of resilience.

Remote sensing as an essential and rapid tool to provide geospatial data has been
used to address different disaster risk management components [15] including disaster
recovery [16,17] and resilience assessments [18,19] as well as monitoring agricultural and
forest areas [5,7,20,21]. Initially, researchers used remote sensing mostly to assess the
damages caused by cyclones including hurricanes and typhoons in forests. For example,
Ramsey et al. (1997) [22] employed AVHRR imagery to detect hurricane damages in the
forested wetland of Louisiana by computing and comparing the normalized difference
vegetation index (NDVI) index in different sites. Ramsey et al. (1998) [23] further combined
Landsat TM and NOAA AVHRR data to monitor hurricane impact and recovery for re-
source management in forest areas. They showed the potential of using NDVI and remote
sensing for such applications. In addition, remote sensing was used to estimate the vege-
tation cover resilience including forest to different risk sources including climate-related
ones using multi-temporal satellite images [24]. Verrelst et al. (2008) [25] demonstrated the
value of remote sensing images and the importance of NDVI index to evaluate the stress
to vegetation and trees (forest). Forest damages caused by typhoon Herb in 1996 were
assessed with remote sensing [21]. Landsat images were used to quantify the ecological
resilience using remote sensing-based proxies [26]. Wang et al. (2010) [5] assessed the forest
damage due to hurricanes with satellite images and using different vegetation indices.
They also evaluated the performance of the widely used vegetation indices in detecting
damages and revealed that those are reliable sources for rapid forest damage identification.
In a post-typhoon damage and recovery evaluation study [5], researchers analyzed the
important factors in making the forest resilient by comparing the resistance of different
areas to typhoon disasters. They showed that heavy defoliation and slow decomposition
are the important factors for the high resilience of their study area (in Taiwan) to typhoon
hazards. However, they only used leaf area index produced by remote sensing in coarse
resolution in combination with several field data. Moreover, LiDAR [2] and UAV data [27]
were employed to detect and track the impact of the disturbances on forests. However,
LiDAR data are too expensive and UAVs have limited view and data acquisition capability
that makes them inappropriate for large-scale forest monitoring applications. In a recent
study, Abbas et al. (2020) [1] assessed the impact of the Magkhut Typhoon, which is
categorized as a super typhoon, on forestry areas in Hong Kong using Landsat 8 satellite
images with 30 m spatial resolution. They further provided recommendations to enhance
resilience using the NDVI-derived loss or gain approach.

In the current study, we assess the resilience of the forest areas in a tropical region, the
Philippines, which was hit by super Typhoon Haiyan (also locally known as Yolanda) in
2013 using very high-resolution satellite images, which have not yet been used for forest
resilience assessment. Furthermore, the impact of Typhoon Haiyan on the Philippines’
mangroves has been studied in the literature [28–32], however; the impact and resilience
assessment of Typhoon Haiyan on the exposed forest areas has not yet been investigated.
Evaluation of resilience dynamics, in particular in a multi-hazard disaster case, contributes
to better understanding the short- and long-term impacts of such events. Using amplitude,
malleability, and elasticity concepts, we assess the resilience of study areas from the
intensity of damage, rate of recovery, and recovery time perspectives. Moreover, we
applied the mean-variance analysis to extract changes in the status of the forest ecosystem.
In the current study, the term “forest ecosystem” refers to the forest’s canopy structure and
biomass content.



Remote Sens. 2021, 13, 4176 3 of 19

The basic definitions and theory of the employed methods are described in detail
in Sections 1.1 and 1.2. The rest of the paper is organized as follows. Section 2 presents
the materials and methods used in this study. The results are presented and discussed in
Sections 3 and 4. Finally, Section 5 concludes the study.

1.1. Resilience Concepts

The term “resilience” was introduced to the literature in the 1970s [33]. Thereafter, dif-
ferent conceptual definitions of resilience have been proposed, depending on the different
points of view. Westman and O’Leary (1986) [34] proposed four characteristics of resilience
to measure the response of an ecosystem to a disturbance: (1) amplitude, (2) elasticity,
(3) malleability, and (4) damping. Moreover, some other concepts have been introduced in
the literature as the measures of resilience [35,36]. Cutter (2016) [7] discussed 27 different
resilience concepts and indices in different science branches. Such diversity in definitions
and indices emanates from the complexity and diverse scale of systems. We employed
amplitude, elasticity, and malleability as three well-known and widely used measurements
to evaluate the resilience of the selected study sites against the super typhoon Haiyan.
Amplitude refers to the magnitude of change in an ecosystem following a disturbance. The
change can be measured by comparing pre- and post-disturbance states of the relevant
indicator. High amplitude values illustrate the high intensity of the disturbance and/or
high vulnerability of the ecosystem to the disturbance, resulting in low ecosystem resilience.
Elasticity, which is also known as engineering resilience, is defined as the time required
for recovery after a disturbance [37]. The faster return to the pre-disturbance condition,
the more resilient and stable is the ecosystem. However, the extent and effects of the
disturbance, in some cases, are so drastic that the ecosystem is not able to fully recover.
Hence, some threshold levels should be defined to standardize the concept of recovery.
Westman (1986) [38] proposed using the needed time for half recovery as a measure of
elasticity. Although, the author restates that considering half recovery as the elasticity
measure cannot guarantee that the recovery will proceed beyond 50%. In addition, re-
searchers also consider the time that it takes to achieve a steady-state as the measure of
elasticity [39,40]. Another resilience concept that we used in this study is malleability,
which is defined as the degree of the difference between the pre- and post-disturbance
stable states of an ecosystem. The magnitude of the malleability determines the rate of
change in the ecosystem state, in which a large malleability could lead to a dramatic shift
in the initial state of the ecosystem. In addition, damping refers to the recovery rate and/or
the extent of the affected landscape from disturbance [26]. Since the recovery rate and the
extent of the affected area are evaluated by elasticity and gain or loss measures (explained
in Section 2.4), we excluded the damping measure in our study. A schematic illustration of
the mentioned resilience concepts is shown in Figure 1.
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Figure 1. Resilience concepts of an ecosystem.
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Figure 2 represents the impact of the resilience concepts’ magnitude on the resilience
status of the ecosystem. Lower values of amplitude, malleability, and elasticity indicate
high ecosystem resilience.
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Figure 2. Interpretation of resilience status of an ecosystem from the resilience concepts.

1.2. Mean-Variance Analysis

In the case that the magnitude of the disturbance exceeds the ecosystem tolerance
threshold, not only may the full recovery not be possible, but also the new stable state may
likely be far away from the pre-disturbance state. Dakos et al. (2015) [41] mentioned six
mechanisms for change in state (regime) in an ecosystem: (1) slow environmental change
towards a tipping point, (2) slow–fast cyclic transitions, (3) stochastic resonance, (4) noise-
induced transitions, (5) big step-wise changes in external conditions, and (6) transient
upon extreme events. Except for the first two mechanisms, it is not possible to observe
signs prior to the change in the state of the ecosystem. In the case of the first and second
mechanisms, detecting a change in variance of the indicator is suggested as an effective
approach to pre-warn the regime change [42–44]. For the other mechanisms, the existing
methods are applicable to determine the status of the ecosystem, relying on the indicators,
after the change.

The above-mentioned resilience concepts tackle the change detection issue by using
only the mean value of the related indicator, whereas, the importance of the variance in long-
term change detection has been emphasized in the literature [41–43,45,46]. Consequently,
amplitude, malleability, and elasticity are not sufficient to judge the status of an ecosystem.
The mean-variance analysis, suggested by Pickup and Foran (1987) [47], has been widely
used to investigate the regime status after the change. The method analyzes the temporal
change as an indicator to demonstrate the state of the ecosystem and ecological resilience at
each time step. The mean-variance plot consists of four quadrants that represent the status
based on the heterogeneity and biomass amount (Figure 3). The lower left quadrant shows a
low heterogeneity and greenness (biomass) and indicates a degraded landscape. The upper
left quadrant contains high heterogeneity and low greenness and represents a landscape
with bare areas (vegetation gaps). The lower right quadrant displays low heterogeneity and
high greenness and implies a landscape with a homogeneous vegetation cover. The upper
right quadrant indicates a high heterogeneity and greenness that represents a landscape
with bare areas (vegetation gaps) and highly accumulated vegetation covers in between.
For an area with a dominant forest land-cover class, the lower right quadrant is the most
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stable and resilient condition. Moving away from this quadrant indicates degradation in
the landscape.
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Figure 3. Relationship between mean-variance of the vegetation index and the vegetation status [26].

For ecological systems, there are multiple steady states, and the ecosystem could move
among them. For instance, the forest and savanna could represent alternative steady states
for each other. The transition between the states could occur abruptly following an external
disturbance such as wildfires and typhoons or slowly as a response to climate change
and long-term droughts. However, this does not necessarily mean that the new state is
permanent. Figure 4 shows the theoretical representation of the ecosystem response to an
external disturbance.

Transition (tipping) point

Initial 
stable state

New 
stable state

High Resiliency Low Resiliency

Figure 4. The response of a resilient and a non-resilient ecosystem to an external disturbance.

2. Materials and Methods
2.1. Study Area

Eastern Visayas in the Philippines consists of two big islands, i.e., Samar and Leyte.
Tacloban is the biggest city in this region, which is the capital of Leyte island, has ca.
250,000 population (Figure 5). Guiuan is also located in the Eastern Samar province and
has ca. 53,000 population. This region has a tropical climate and rainfall patterns with
maximum precipitations from November to January, and it is consistently exposed and
experienced wind-born hazardous events (e.g., cyclones) in this time frame. Super Ty-
phoon Haiyan hit both islands including Guiuan and Tacloban regions by its full force on
8 November 2013. Typhoon Haiyan made landfall first in Guiuan and then passed from
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the southern part of the Tacloban city. In addition, it was followed by coastal flooding
with a storm surge up to 5 m and led to a declaration of the state of emergency in those
areas. Accordingly, it caused massive damages to urban and rural areas including forests
and agriculture.

Figure 5. Locations of the study areas and the path of Typhoon Haiyan.

Figure 5 shows the selected forest areas in Tacloban and Guiuan regions for our study.
These selections were based on the presence of specific land cover types (including forest),
availability of suitable (e.g., low cloud coverage rate) very high-resolution remote sensing
images for the selected time-lapse (i.e., pre, just after, and post-disaster times), and their
different exposure rates to the multi-hazard-induced disaster. Guiuan region, due to its
proximity to the sea experienced coastal flooding in addition to strong winds caused by
Typhoon Haiyan while the selected Tacloban region, was mainly exposed to the Typhoon
without a storm surge. The areas of the Guiuan and Tacloban sites are 851 ha and 760 ha,
respectively. In addition, the maximum elevations of the Guiuan and Tacloban sites are 127
and 376 m, respectively.

2.2. Satellite Images and Elevation Data

We employed pre- and post-typhoon very high-resolution satellite images that were
acquired as close as possible to the typhoon’s occurrence date, and the similar period in
2014 and 2015 (Table 1). The images were acquired by the Pleiades satellite with a spatial
resolution of 2 m for multispectral and 0.5 m for panchromatic bands. The Gram–Schmidt
algorithm within the ArcGIS platform was used to produce the final pan-sharpened images
with 0.5 m spatial resolution with red, green, blue, and near-infraredband combinations. In
addition, the DEM data (raster) were extracted for the study areas and downloaded from
the USGS website with 10 m spatial resolution, which is further down-sampled using the
ArcGIS platform to 0.5 m. Selecting images for the area was challenging since the study area
is located in a tropic region that has cloudy weather most of the time making the optical
satellite images useless. We defined a below 15% cloud cover in the selection procedure.
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Furthermore, we removed the clouds from the satellite images using the masking tool
inside the ArcGIS platform, which is based on the threshold technique.

The word “reference” hereafter will be used to denote the pre-typhoon times and
images.

Table 1. The acquired date of satellite images used in this study.

Guiuan Tacloban

Pre-typhoon (Reference) 10.12.2013 10.18.2013

Post-typhoon

11.15.2013 11.15.2013
11.27.2013 11.12.2014
12.15.2013 10.03.2015
12.08.2014

2.3. Biomass Indicators

In this study, the biomass change detection performance of three greenness indices,
including normalized difference vegetation index (NDVI), green normalized difference
vegetation index (GNDVI), and enhanced vegetation index (EVI) were evaluated to select
the best biomass indicator. The most sensitive indicator (i.e., the indicator with the highest
performance) was used in the further analysis (i.e., calculations of the resilience concepts,
gain/loss, and mean-variance analysis). NDVI was proposed by Rouse et al. (1974) [48]
and has been frequently used as an indicator of biomass, canopy structure, primary pro-
ductivity, plant health, and vitality [16,49,50]. Moreover, the effectiveness of NDVI in
the assessment of damage severity, stress, vulnerability, and recovery is approved in the
literature [8,22,51,52]. The absorption of the red light by chlorophyll and reflectance in the
near-infrared band is the basis of NDVI calculation [1,53]. NDVI is especially effective
in areas with moderately dense biomass [54]. Being less affected by illumination and
topographic factors than the other plant indices is considered an important advantage of
NDVI [21]. It is a normalized ratio of the red and near-infrared bands in multi-spectral
images (Equation (1)).

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

where ρNIR and ρred are reflectance of near-infrared and red bands, respectively.
To reduce the sensitivity to background surface and to eliminate the effect of pigments

other than chlorophyll, Gitelson et al. (1998) proposed the GNDVI [55]. They replaced the
red band in NDVI with the green band to increase the impact of chlorophyll (Equation (2)).
However, some studies show that GNDVI is only sensitive to low chlorophyll contents [56].

GNDVI =
ρNIR − ρgreen

ρNIR + ρgreen
(2)

where ρgreen is the reflectance of green band.
To tackle the saturation problem of NDVI in dense biomass areas the EVI was de-

veloped by Huete et al. (1997) [57]. The use of the blue band in the formulation of EVI
(Equation (3)) reduces the atmospheric scattering and background soil effects [58]; however,
it is sensitive to albedo [59]. EVI can be used to calculate the forest canopy health, estimate
vegetation LAI, biomass, water content, and the photosynthetic activity of plants [54,60,61].

EVI = G× (ρNIR − ρred)

(ρNIR + C1 × ρred − C2 × ρblue + L)
(3)

where C1 and C2 are aerosol resistance weights, and ρNIR, ρred, and ρblue are reflectance
in near infrared, red, and blue bands, respectively. Moreover, the soil adjustment factor
and gain factor are denoted as L and G, respectively. The coefficients are C1 = 6, C2 = 7.5,
L = 1, and G = 2.5.



Remote Sens. 2021, 13, 4176 8 of 19

2.4. Gain or Loss Percentage

The pixel-wise biomass gain or loss/decrease in greenness (stress) is determined
using Equation (4), with positive and negative percentages representing gain and loss,
respectively. Since previous studies on typhoon impact assessment on forest ecosystems
showed that the elevation plays a significant role in damage severity [1], the biomass gain
or loss is calculated considering the elevation. The biomass loss ratios were divided into
four groups including slight loss (0% < loss ≤ 25%), moderate loss (25% < loss ≤ 50%),
severe loss (50% < loss ≤ 75%), and extreme loss (75% < loss ≤ 100%).

Gain or Loss(%) =
NDVIijPost − NDVIijRe f

NDVIijRe f
× 100 (4)

2.5. Resilience Assessment

As previously mentioned, we employed three resilience assessment aspects includ-
ing amplitude, malleability, and elasticity to quantify the forest areas’ response to the
typhoon [26,38]. In theory, malleability and elasticity are measured by comparing the
initial (pre-disaster) and new steady states. Nevertheless, due to the lack of 2015 images of
the Guiuan site, we calculated these concepts for 2014 to have a comparison between the
two sites. The mean-variance analysis is also employed to illustrate the forest ecosystem
status at each time-step [26]. All the calculations are at the pixel level.

2.5.1. Amplitude

Amplitude is computed by comparing the difference between the pixel-wise NDVI
values of the reference and the first post-typhoon images. Since the first post-typhoon
images in both study sites were acquired on the same day (15 November 2013), amplitude
values can be compared.

|∆NDVIijAmp| = NDVIijPost − NDVIijRe f (5)

where |∆NDVIijAmp| is the pixel-wise absolute values of amplitude, and NDVIijPost and
NDVIijRe f are pixel-wise NDVI values of the first post-typhoon and the reference images,
respectively.

2.5.2. Malleability

Malleability is the difference between the amplitude and a value that represents the
change in biomass of each post-typhoon image relative to the reference image.

∆NDVIijMal = |∆NDVIijAmp| − ({NDVIijPostn , ...NDVIijPost1} − NDVIijRe f ) (6)

where ∆NDVIijMal is the pixel-wise malleability of post-typhoon images.

2.5.3. Elasticity

Elasticity is the time to recover from the disturbance to its 70% of initial biomass.
As explained in Section 1.1, instead of the full recovery, a threshold value of recovery
can be used to measure the elasticity. To compensate for the fluctuations in the mean
value of the biomass indicator, we calculated the elasticity considering 70% of the recovery
rather than 50%. The time period which is needed to recover 70% of the initial biomass
(elasticity) is calculated by comparison of the mean NDVI values of the reference and
post-typhoon images.

2.5.4. Mean-Variance Analysis Plots of the Biomass Indicator

The mean-variance analysis is performed on biomass indicator values of each study
site to test if the state of the forest has changed after the typhoon. For this, the mean and
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variance of each indicator image are used to locate its position on the plot, which is then
divided into four quadrants based on the position of the reference image.

3. Results
3.1. Biomass Indicator Selection

To select the best performing indicator in tracking the biomass change, biomass
indicators, including NDVI, GNDVI, and EVI, are applied on reference and post-typhoon
images. Accordingly, the distributions of pixel-wise biomass calculations are plotted to
illustrate the sensitivity of the applied indicators to the change in biomass (Figure 6). Each
plot is associated with an indicator’s distribution in different time steps. The first time
step curve of each plot represents the distribution of the indicator values on the reference
image, and the curves of subsequent time steps denote the distribution of the indicator
values on the post-typhoon images. There is a significant difference between the NDVI
curves of reference and first post-typhoon images at both study sites (Figure 6). Though a
similar trend in GNDVI curves of the Tacloban area is observable, the magnitude of the
difference is slightly lower than that of the NDVI curve. In the case of the Guiuan area, the
change detection performance of GNDVI is much lower than that of NDVI. Moreover, the
NDVI curve covers a broader range than the GNDVI curve, suggesting that NDVI is more
sensitive to biomass change. In addition, the results demonstrate that the EVI is unable to
detect the changes in biomass contents of both areas. Accordingly, while the performances
of GNDVI and EVI are under the detection capacity requirements of this study, NDVI is
quite efficient in the detection of temporal changes in biomass. Hence, NDVI is used in the
calculation of gain or loss percentages, resilience concepts, and mean-variance analysis in
the following sections.

Figure 6. Cont.
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Figure 6. Histogram of biomass indicators for the Guiuan (left) and Tacloban (right) study sites.

The NDVI histogram plots show a drastic decrease in biomass content of both areas
just after the typhoon. After a year, a considerable biomass recovery occurred, and two
years after the typhoon a full biomass recovery is captured in the Tacloban area.

3.2. Calculation of the Biomass Gain or Loss

Calculations of biomass gain or loss are conducted considering the elevation of the
exposed forest area (Figure 7). The results illustrate that there is a correlation between the
damage severity and elevation. The proportion of the higher levels of damage rises by an
increase in elevation at both sites (Figure 8). For instance, the first post-typhoon image of
the Tacloban site (15 November 2013) indicates biomass loss percentages of 18.7%, 34.4%,
50.4%, and 64.2% at elevation ranges of 0 to 100, 100 to 200, 200 to 300, and 300 to 400 m,
respectively. Similarly, severe biomass loss percentage at the Guiuan site rises from 30.5%
in areas with elevations below 100 m to 86.1% in areas with elevations between 100 and
200 m.

a b

Elevation (m)

Figure 7. Elevation map of (a) Guiuan and (b) Tacloban.

In the next time steps (i.e., the years 2014 and 2015), there is an increasing trend in
the proportion of the areas with lower damage at all of the elevation intervals, which
indicates a recovery in biomass. The transition rate of the forest areas from severely and
extremely damaged class to slightly damaged class in the Guiuan site is higher than that
of the Tacloban. For example, whereas 86.1% of the areas of the Guiuan site within the
elevations between 100 to 200 m are classified as the severely damaged group in 2013
(just after the typhoon), about 86.4% of the corresponding area is classified as the slightly
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damaged group in 2014. Moreover, there are a few percentages of biomass gain at both
sites in 2014, with a higher gain ratio in the Guiuan. In 2015, the biomass gain rises in the
Tacloban site up to 42.1%, 47.6%, and 28.2% in forest areas with the elevation range of 0 to
100, 100 to 200, and 200 to 300 m, respectively. This demonstrates that elevation has also
an impact on biomass recovery. The Tacloban site reached a relative balance between the
biomass gained and lost in 2015. Since we do not have access to the Guiuan site’s 2015
images, it is not possible to judge the new balance in biomass content of the Guiuan site.

Figure 8. The relationship between elevation and biomass gain/loss of Tacloban (left) and Guiuan (right) study sites, with
the positive and negative percentages indicate a gain and loss in biomass, respectively.
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3.3. Resilience Assessment

Each of the applied resilience concepts focuses on a different aspect of resilience to
evaluate the response of the forest ecosystem to external disturbance. While the amplitude
focuses on the magnitude of the change, elasticity and malleability emphasize the duration
of the recovery phase and the degree of the difference from the initial state, respectively.

Figure 9 represents the pixel-wise amplitude values of the study sites. Eastern parts of
the Guiuan site experienced a higher biomass loss following the typhoon than the western
part. Moreover, the statistical summary of the amplitude values shows a higher average
and maximum amplitude of the Guiuan site than the Tacloban (Table 2). The difference
in damage severity distribution is also obvious on the amplitude histogram (Figure 10).
Unlike the Tacloban amplitude curve, which is very similar to the Gaussian distribution,
there is an abrupt change in the Guiuan site’s curve slope at values above 0.4. This change
is associated with the higher amplitude values at the eastern part of the Guiuan site. Since
typhoon directly hit the ridge placed in the eastern coastal line of the study site, as well as
the post-typhoon coastal flooding, a higher biomass loss occurred in this part. However,
the eastern ridge provides a degree of protection for inland areas against coastal flooding,
though the amount of protection is not measurable. Since the Tacloban site is not exactly
located at the seaside, it is protected from the devastating power of coastal flooding. This
shows that the shorter distance from the seaside and higher elevation causes an increase in
amplitude and consequently a decrease in resilience.

a b

Figure 9. Amplitude of (a) Guiuan and (b) Tacloban.

Figure 10. Amplitude histogram of the Guiuan and Tacloban areas.
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Table 2. Statistical summary of pixel-wise amplitude and malleability.

Amplitude Malleability

Guiuan Tacloban Guiuan Tacloban

Year 2014 2014 2014 2014 2015

Maximum 1.457 0.690 1.451 2.265 0.935
Minimum 0.000 0.000 −0.529 −0.461 −0.436

Mean 0.344 0.308 0.458 0.502 0.314
Median 0.338 0.314 0.465 0.497 0.322

Figure 11a shows that, similar to amplitude, the eastern part of Guiuan has higher
malleability and accordingly is less resilient. As expected, there is a decreasing trend in the
malleability of the Tacloban site from 2014 to 2015, which indicates an ongoing recovery
of the biomass (Table 2). Figure 12 represents the pixel-wise malleability and illustrates a
similar pattern of malleability in 2014 at both locations, with a slight enhancement in the
Guiuan site. In 2015, the malleability of the Tacloban area is considerably lower than in 2014.
The presence of high elevated areas in the Tacloban site, which extend the recovery period,
and the possible human-assisted recovery in the Guiuan site could cause such difference
in the malleability. There are a few pixels with negative malleability, indicating that the
biomass content of the corresponding areas after recovery exceeds the initial conditions.

a

b c

Figure 11. Malleability of the (a) Guiuan 2014, (b) Tacloban 2014, and (c) Tacloban 2015.

The statistical summary presented in Table 2 illustrates that the Guiuan site has
a higher maximum, median, and average amplitude, indicating greater damage than
Tacloban. The higher amplitude of the Guiuan site is associated with higher biomass
loss, as the Guiuan site experienced a multi-hazard disaster (i.e., devastating wind power,
coastal flooding, and salinity). However, the maximum, median, and average malleability
of Tacloban in 2014 is higher than the Guiuan. Accordingly, even though the Guiuan
experienced coastal flooding following the typhoon and had a higher biomass loss, a
slightly higher degree of biomass recovery is visible in Guiuan than the Tacloban one year
after the typhoon.
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Figure 12. Malleability histogram of the Guiuan and Tacloban areas.

Temporal change in the average NDVI values of the study sites is presented in Figure 13.
There is an abrupt reduction in the average NDVI of both areas just after the typhoon. The
results reveal that the Guiuan site reached about 80% of its initial (reference) NDVI value
one year after the typhoon, while the Tacloban area gained 70% of its initial NDVI value
after a year and reached about 99% of the initial NDVI value after two years. Based on our
definition of recovery (70% threshold) a single year was enough to recover the biomass at
both sites while the Guiuan site has a higher recovery ratio. It should be noted that this is
only the gain of the biomass, the distribution of the gained biomass is another important
aspect of resilience that the elasticity cannot account for.

The topographical characteristics of the areas and the possible human-assisted recov-
ery in the Guiuan site explains the differences in biomass recovery rates between the study
sites. Since the Guiuan site is adjacent to residential areas, a degree of human-assisted
recovery may be expected. Moreover, as noted in Section 2.4, the elevation of the area has
an important impact on the severity of typhoon-induced damage and the rate of subsequent
recovery. In the case of our study, a combination of the results presented in Figures 8 and 13
reveals the role of elevation in forest area resilience. Only 13.3% of the Guiuan site has
elevations greater than 100 m (up to a maximum of 127 m), while 70.8% of the Tacloban
site has elevations higher than 100 m (up to a maximum of 376 m).

To illustrate the temporal change in biomass distribution patterns (i.e., homogeneous
or heterogeneous distribution), a mean-variance analysis is performed. The analysis also
indicates any possible change in the state of the ecosystem (Figure 14). The intersection
point of horizontal and vertical dashed lines within the plots represents the reference
(initial) point. At the reference conditions, the Guiuan site has a higher biomass content
and is more heterogeneous than the Tacloban. The higher biomass content improves the
resilience of the area, while an increased heterogeneity shows the presence of gaps in
the canopy, which is not favored in terms of resilience. Higher human activity in the
Guiuan site contributes to the area’s initial heterogeneity. The greenness of both forest areas
decreases just after the typhoon; however, the magnitude of the reduction is greater in the
Guiuan site than Tacloban, as a result of the multi-hazard disaster. There is a limited change
in the variance of the NDVI values in the Guiuan site, while the change in variance is high
in the Tacloban. The higher degrees of biomass loss at high elevations of the Tacloban
site is the source of such an increase in variance following the typhoon. However, the
Tacloban gained considerable biomass until 2014, but the increased variance value indicates
the presence of some gaps within the forest, which decrease the resilience by increasing
the soil erosion. The placement of Tacloban’s mean-variance NDVI ratio at the upper left
quadrant of the plot in 2014 implies the vulnerability of the forest at that time step. Two
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years after the typhoon the biomass loss is completely compensated and the NDVI variance
decreased even further below the initial point. These findings show that two years after the
disturbance, not only did the biomass recovered completely, but also the mean-variance
plot moved toward the lower right quadrant, which is favorable for a forest ecosystem.
However, it did not reach the lower right quadrant till October 2015. In 2014, the Guiuan
site regained a big portion of its initial biomass content, and there is not a substantial
change in the variance. Considering the intense biomass loss in 2013 and based on 2014
results, the site area is making great progress in terms of biomass recovery.
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Figure 13. Change in mean NDVI value of the Guiuan and Tacloban areas.
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Figure 14. Mean-variance analysis of the Guiuan and Tacloban study sites.

4. Discussion

A combination of resilience aspects with a mean-variance analysis and biomass loss
and gain calculation is applied to get a better view of the resiliency of the studied areas
and post-typhoon recovery. The findings indicate that after the typhoon, 98% and 93% of
respectively the Guiuan and Tacloban forest area lost their biomass content from moderate
to extreme degrees (25% < loss ≤ 100%). The landscape elevation and proximity to
the coastal line are important factors in the severity of the damage, where an increase in
elevation increases the wind power and the proximity to the coastal line increases the
exposure to coastal flooding. The results show that as the elevation increases, the severity
of the damage increases. Abbas et al. [1] reported similar findings in their study on
typhoon impact assessment. Moreover, the existence of a ridge on the eastern fringe of the
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Guiuan site provides partial protection for the inland area not only from the destructive
power of the coastal flooding but also from the intense salinity induced by the coastal
flooding. Middleton (2016) indicated that even a very low level of typhoon-induced salinity
reduces the regeneration potential of the coastal vegetation [62]. However, the Guiuan
site is expected to be exposed to higher salinity contamination and storm surge-related
damages than the Tacloban site. A higher amplitude of the Guiuan shows the vulnerability
of the coastline against such disturbances.

From the malleability and elasticity perspectives, although the Guiuan area exposed
higher damage than the Tacloban, its recovery performance is higher until 2014. Even
though both areas gained a large portion of their initial biomass contents during one year
after the typhoon, the Tacloban area shows a fragmented recovery, which indicates the
presence of canopy gaps. It must be noted that during the recovery phase, the system is
far from stable and is highly vulnerable to external conditions [35]. Moreover, as forest
degradation raises the risk of landslides and soil erosion in mountainous areas like the
Tacloban site, recovery becomes even more important in such areas. On the contrary, there
is not a considerable difference between the variances of the post-typhoon and reference
NDVIs of the Guiuan site, which denotes a more homogeneous rise in the biomass content
of the area. A full biomass recovery was achieved in the Tacloban site two years after the
typhoon, with canopy gaps disappearing and a more homogeneous structure forming.
Although we have not accessed Guiuan’s 2015 images, we can expect similar conditions as
in the Tacloban, as biomass recovery followed a similar trend in 2014.

According to the findings, the typhoon-exposed areas almost return to the initial state
within two years in terms of physical canopy structure. This indicates the high resiliency
of the studied forest areas against the super typhoon Haiyan. However, we have not
accessed the map of the areas under reforestation projects from the open-source data, and
thus, we cannot judge if the recovery proceeds as a result of natural processes or was
human-assisted.

5. Conclusions

This study assesses the magnitude of Typhoon Haiyan’s damage that followed coastal
flooding in the coastline of the Philippines’ forested areas, as well as the recovery of
the exposed areas and resiliency to the disturbance. A combination of resilience aspects,
including amplitude, malleability, and elasticity, is used with mean-variance analysis to
evaluate the forest resiliency to provide a better understanding of forest resilience dynamics,
in addition to measuring biomass loss and gain to assess multi-hazard-induced damage and
recovery. Very high-resolution satellite images are employed for the first time (to the best of
authors’ knowledge) to assess the forest resilience to disturbances. The results demonstrate
that, in our study area, the NDVI has a better performance in detecting biomass loss and
subsequent recovery (gain) than the GNDVI and EVI.

Despite the difference in topographical characteristics of the selected study sites, there
are similar trends of biomass loss, just after the typhoon, and biomass recovery, although
the magnitude of the changes differs. The results show that high-elevation areas were
more vulnerable to typhoons and had lower resilience given that higher wind speed at
higher elevations has a more destructive effect on the area. However, slight changes in the
topography and the passive sensor geometry may affect the pixel brightness values of the
images acquired by satellites, which was not taken into account in this study. Hence, it
needs further investigations to explore the effects of such factors.

In terms of elasticity, a single year was enough to regain a large portion of the lost
biomass. However, the existence of canopy gaps (in the Tacloban site) indicates the
vulnerability of the ecosystem. In the long-term, this condition could even shift the state of
the forest to an alternative savanna state. Nonetheless, the mean-variance plot shows that
the canopy gaps disappeared in the subsequent year (2015). A full recovery in the biomass
content and distribution within two years demonstrates the high resiliency of the area.
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