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Abstract: The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads
which dominate the vertical exchange of energy, especially in cold seasons, despite covering only
a small fraction of the surface. Motivated by the need of a spatiotemporal analysis of sea ice lead
distribution, a practical workflow was developed to classify the high spatial resolution aerial images
DMS (Digital Mapping System) along the Laxon Line in the NASA IceBridge Mission. Four sea
ice types (thick ice, thin ice, open water, and shadow) were identified, and relevant sea ice lead
parameters were derived for the period of 2012–2018. The spatiotemporal variations of lead fraction
along the Laxon Line were verified by ATM (Airborne Topographic Mapper) surface height data
and correlated with coarse spatial resolution sea ice motion, air temperature, and wind data through
multiple regression models. We found that the freeboard data derived from sea ice leads were
compatible with other products. The temperature and ice motion vorticity were the leading factors of
the formation of sea ice leads, followed by wind vorticity and kinetic moments of ice motion.

Keywords: sea ice classification; ice motion vorticity; multiple linear regression; wind; temperature

1. Introduction

Arctic sea ice functions as a sensitive indicator of global warming because sea ice
responds to even a small increase in temperature [1–3]. On the other hand, Arctic sea
ice is also an important driver of climate change, and it plays an important role in the
Earth’s solar radiation budget. This is due to how sea ice has a significantly higher albedo
compared to that of the water surface. Therefore, when the Arctic sea ice starts to melt, the
oceans absorb more solar radiation and warm up, accelerating the melting of sea ice in a
positive feedback [4].

Among all types of sea ice features, leads have unique characteristics. A lead is an
elongated crack in the sea ice developed by the divergence or shear of floating ice floes
when moving with currents and winds [5]. Leads vary in width from meters to hundreds
of meters depending on their development and the directions of surrounding pressure and
tension. Since a lead is physically an open water body, thin ice, or mixed open water and
thin ice within (thicker) sea ice floe or between sea ice floes, it allows the direct interaction
between the atmosphere and the ocean and is the only (or major) channel in the cold Arctic.
Thus, leads play an important role in the local radiation energy budget, ship navigation,
and the Arctic sea ice ecosystem [6]. In particular, they dominate the vertical exchange of
energy during winter when turbulent heat fluxes over leads can be orders of magnitude
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larger than that over thick ice. The width of leads and their orientation markedly influence
associated vertical sensible and latent heat fluxes and associated cloud formation [7,8].
Recent studies suggest that these fluxes could influence the atmospheric properties tens
to hundreds of kilometers downstream [9–11]. Even a small fraction of thin ice and open
water within the sea ice pack can significantly modify the total energy transfer between the
ocean and the atmosphere [12]. Furthermore, leads are elusive and inconsistent features. If
sea water temperature drops below around −1.8 ◦C, the open water within a lead quickly
refreezes (in a few hours), and leads will be partly or entirely covered by a thin layer of
new ice [13–15]. Therefore, leads are an important component of the Arctic surface energy
budget, and more quantitative studies are needed to explore and model their impact on
the Arctic climate system.

Arctic climate models require a detailed spatial distribution of leads to simulate
interactions between the ocean and the atmosphere. Remote sensing techniques can be
used to extract sea ice physical features and parameters and calibrate or validate climate
models [16]. However, most of the sea ice leads studies focus on low-moderate resolution
(~1 km) imagery such as Moderate Resolution Imaging Spectroradiometer (MODIS) or
Advanced Very High-Resolution Radiometer (AVHRR) [17–20], which cannot detect small
leads, such as those smaller than 100 m. On the other hand, high spatial resolution (HSR)
images such as aerial photos are discrete and heterogeneous in space and time, i.e., images
usually cover only a small and discontinuous area with time intervals between images
varying from a few seconds to several months [21,22]. Therefore, it is difficult to weave
these small pieces into a coherent large-scale picture, which is important for coupled sea ice
and climate modeling and verification. Onana et al. used operational IceBridge airborne
visible DMS (Digital Mapping System) imagery and laser altimetry measurements to detect
sea ice leads and classify open water, thin ice (new ice, grease ice, frazil ice, and nilas),
and gray ice [23]. Miao et al. utilized an object-based image classification scheme to
classify water, ice/snow, melt ponds, and shadow [24]. However, the workflow used in
Miao et al. was based on some independent proprietary software, which is not suitable
for batch processing in an operational environment. In contrast, Wright and Polashenski
developed an Open Source Sea Ice Processing (OSSP) package for detecting sea ice surface
features in high-resolution optical imagery [25,26]. Based on the OSSP package, Wright
et al. investigated the behavior of meltwater on first-year and multiyear ice during summer
melting seasons [26]. Following this approach, Sha et al. further improved and integrated
the OSSP modules into an on-demand service in cloud computing-based infrastructure for
operational usage [22].

Following the previous studies, this paper focuses on the spatiotemporal analysis
of sea ice lead distribution through NASA’s Operation IceBridge images, which used a
systematic sampling scheme to collect high spatial resolution DMS aerial photos along
critical flight lines in the Arctic. A practical workflow was developed to classify the
DMS images along the Laxon Line into four classes, i.e., thick ice, thin ice, water, and
shadow, and to extract sea ice lead and thin ice during the missions 2012–2018. Finally,
the spatiotemporal variations of lead fraction along the Laxon Line were verified by ATM
surface height data (freeboard), and correlated with sea ice motion, air temperature, and
wind data. The paper is organized as follows: Section 2 provides a background description
of DMS imagery, the Laxon Line collection, and auxiliary sea ice data. Section 3 describes
the methodology and workflow. Section 4 presents and discusses the spatiotemporal
variations of leads. The summary and conclusions are provided in Section 5.

2. Dataset
2.1. IceBridge DMS Images and Study Area

This study uses IceBridge DMS images to detect Arctic sea ice leads along the Laxon
Line one day over the course of 7 years in 2012–2018, since these are the longest continuous
yearly data available in this Arctic region. The DMS images were collected during the
IceBridge sea ice flights using an airborne digital camera. DMS has a high spatial resolution
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0.1–2.5 m [27], depending on the aircraft flight height. It has three natural color (red, green,
and blue) bands, and each image has a field of view of approximately 400 m by 600 m. The
IceBridge campaigns had been designed to survey the Arctic region in March and April
since 2009 to partially fill the temporal gap between the ICESat (2003–2009) and ICESat-2
(2018–present) missions.

DMS images are collected, processed, and maintained by the Airborne Sensor Facility
located at the NASA AMES Research Center. We downloaded the Level 1B geolocated
and orthorectified images for the Arctic Laxon Line in spring from 2012 to 2018 from the
NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC
DAAC) (https://nsidc.org/data/iodms1b) (accessed on 6 August 2021). The Laxon Line
starts from the Thule Air Base, Greenland to Fairbanks, AK, USA, transiting across the
Arctic Ocean (Figure 1). It passes through both multiyear ice (MYI) regions in the north of
the Canadian Archipelago and the first-year ice (FYI) regions in northern Alaska. Thus, sea
ice data along this line provides useful insights on the transition of sea ice conditions over
the Central Arctic in the spring. Furthermore, the IceBridge mission collected data along
this track repeatedly every year from 2012 to 2018, which is appropriate for spatiotemporal
analysis of sea ice leads. The overall DMS image collection along the Laxon Line is
106,674 aerial photos (1.54 TB) with an overlap of 60–90% along the track. The photo
distribution from 2012–2018 is summarized in Table 1. The overall distance of the Laxon
Line is around 3398 km, and the distance for the overlapped track through the years is
around 2437 km.
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Figure 1. Spatial distribution of the seven tracks along the Laxon Line from 2012 to 2018. The tracks
are highly overlapped.

Table 1. The DMS images selected for lead detection along the Laxon Line from 2012 to 2018.

Name Date Image # # Image with Sea Ice Leads Selected/Original Image Size (GB) Lighting Condition

Flight 12-426-04 14 March 2012 16,544 1066 14.8/260 Cloudy
Flight 13-426-05 21 March 2013 18,480 993 13.8/290 Normal
Flight 14-426-14 14 March 2014 14,322 492 5.2/150 Cloudy
Flight 15-439-08 26 March 2015 20,038 816 9.3/250 Normal
Flight 16-043-08 20 April 2016 15,205 1069 18.4/270 Normal
Flight 17-426-05 10 March 2017 10,939 659 8.67/93 Cloudy
Flight 18-426-38 6 April 2018 11,146 1040 22.2/240 Normal

https://nsidc.org/data/iodms1b
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2.2. Auxiliary Sea Ice Data
2.2.1. AMSR Data

AMSR (Advanced Microwave Scanning Radiometer) is a passive microwave satellite
sensor developed by the Japan Aerospace Exploration Agency. Due to its low spatial
resolution, the AMSR data can only be used to examine sea ice concentrations at the regional
scale. We collected the AMSR-E/AMSR-2 Unified Level 3 daily brightness temperature
and sea ice concentration data which has a spatial resolution of 25 km through NSIDC
(Table 2) [28]. The data contain vertically polarized and horizontally polarized brightness
temperatures at four frequency channels: 18.7, 23.8, 36.5, and 89.0 GHz. The Arctic sea ice
concentration (SIC) was calculated by the NASA Team 2 (NT2) algorithm, which provides
<2% of error compared with the high-resolution optical data [29–31]. The collected AMSR
data coincides with the days of the IceBridge mission from 2012 to 2018, so that the SIC
can be compared with that retrieved from the DMS images. Furthermore, the passive
microwave data can be used to calculate thin ice concentration (TIC). Röhrs and Kaleschke
used brightness temperatures at the vertically polarized 18.7 and 89.0 GHz to identify
water and thin ice (i.e., new ice, nilas, and pancake ice) from thick ice, and the sea ice
leads and TIC showed a good agreement with the MODIS, Envisat ASAR, and CryoSat-2
data [14]. In this study, we calculated TIC following the Röhrs and Kaleschke’s algorithm.
The coarser spatial resolution of 25 km of TIC were compared with our lead and thin ice
fractions retrieved from the DMS images.

Table 2. Auxiliary sea ice datasets.

Product Name Type Source Spatial Resolution Category

AMSR-E/AMSR2 Unified L3
Daily Brightness Temperatures

& Sea Ice Concentration
Passive microwave NSIDC 25 km Sea Ice

IceBridge Airborne Topographic
Mapper (ATM) Laser altimeter NSIDC ~1 m footprint

(resampled to 2 m grid) Sea Ice

Global sea ice type Sea ice type EUMETSAT OSI SAF 10 km Sea Ice

Polar Pathfinder Daily EASE-Grid
Sea Ice Motion Vectors Sea ice motion NSIDC 25 km Dynamic

ERA5 (air temperature
and wind velocity) Climate reanalysis

European Centre for
Medium-Range Weather

Forecasts (ECMWF)
0.25◦ Dynamic and

thermodynamic

2.2.2. ATM Surface Height Data (DMS Level)

Our DMS-based lead detection results can be used to cross-validate sea ice freeboard
products derived from IceBridge Airborne Topographic Mapper (ATM) Level 1B data [23].
The ATM is an airborne conically scanning laser altimeter with a wavelength of 532 nm.
A laser pulse is emitted from the ATM at a rate of 5 kHz, and it has ~1 m of footprint at a
typical 500 m altitude above the surface. Since ATM covers exactly the same location and
time with the DMS images with a smaller cross-track width (~400 m), DMS images are
usually used as good reference for extracting the ATM-based freeboard data [32,33]. In this
study, the ATM data are resampled in a 2 m grid and projected to the same projection system
as DMS (NSIDC sea ice polar stereographic North) to match the geographical location.
After retrieving thin ice and leads through DMS images, we geographically linked the
leads with the ATM data to extract freeboard variations along the Laxon Line, and compare
with freeboard data derived from SILDAMS (Sea Ice Lead Detection Algorithm) [23,32].

2.3. Oceanic and Atmospheric Geophysical Parameters

NSIDC provides sea ice motion data (nsidc.org/data/NSIDC-0116) with a spatial
resolution of 25 km on the Equal-Area Scalable Earth grid [34]. This sea ice motion vec-
tor is derived from multiple data sources, including AVHRR, AMSR-E, SMMR, SSMI,
SSMI/S satellite sensors, International Arctic Buoy Program (IABP) buoys, and the Na-
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tional Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis.

We also acquired a global sea ice type product provided by the European Organization
for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite
Application Facility (OSI SAF, www.osi-saf.org) (6 August 2021) [35]. This product assigns
different sea ice types, such as multiyear ice (MYI), first-year ice (FYI), and open water,
from various satellite data. This is a daily product and has 10 km of spatial resolution.

Other data we used included air temperature (2 m above sea level) and wind velocity
data coincident with the DMS images acquired from the European Centre for Medium-
Range Weather Forecasts ERA-5 reanalysis. The ERA-5 product has 0.25◦ spatial resolution
and consists of hourly variables, and we integrated this hourly data into daily products and
resampled them to 25 km resolution to match the ice motion data. This ERA-5 product was
downloaded from the Climate Data Store (cds.climate.copernicus.eu) of the Copernicus
Climate Change Service.

In this study, the high spatial resolution lead fractions derived from DMS along the
Laxon Line were linearly regressed with the coarse spatial resolution sea ice motion, air
temperature, and wind velocity products to identify potential significant drivers.

3. Methods
3.1. Batch Classification Processing Workflow

Since the IceBridge DMS images are highly overlapped along the track (60–90%), we
selected one image from every three consecutive images along the Laxon Line to reduce
the computation burden. All images in continental land masses and poor-quality images
due to overwhelming cloud coverage and low lighting conditions were manually removed,
finally generating a collection of sea ice lead images (Figure 2).
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The object-based classification scheme was designed based on the color and texture
of sea ice features on DMS images. Four sea ice classes were defined: (1) thick ice is
usually thick ice or snow-covered ice with a high albedo; (2) thin ice is usually fresh and
newly formed ice, which has a smooth surface with a low albedo, since solar radiation
is partially absorbed by the water beneath it; (3) open water is dark and smooth due to
its strong absorbance of solar radiation; and (4) shadow is within a thick-ice area and is a
relative dark feature projecting on the ice surface by surrounding ridges or snow dunes.
DMS images collected in different years have different lighting conditions, which affects
the image quality (Table 1). Furthermore, even in the same year, the quality of images
was quite distinctive due to the local cloud coverage and lighting conditions, as shown
in Figure 3. For example, three subgroups were identified in 2012 DMS images: normal

www.osi-saf.org
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images contained regular sea ice scenes with an appropriate exposure and contrast, and all
sea ice classes were recognizable by color and texture; gray images were partially cloudy
images with a poor lighting condition, so they were relatively dark, and shadows were
difficult to detect; and poor images were under extremely poor lighting conditions, and the
boundaries between water, thick ice, and thin ice were blurred due to low contrast.
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lighting conditions.

Therefore, training samples were selected using a divide-and-conquer strategy based
on image quality. All DMS images taken in 2013, 2015, 2016, and 2018 were under good
lighting conditions, and training samples were selected for all four sea ice features. How-
ever, the images taken for the other three years were processed in different ways. The
training samples for all images taken in 2012, 2014, and 2017 were only selected for thin
ice, open water, and thick ice, without considering shadow due to low lighting conditions.
Furthermore, the 2012 images were manually classified into three subgroups, i.e., normal,
medium, and poor. The 2014 images were manually classified into two subgroups, i.e., nor-
mal and medium, and all poor images were abandoned due to serious vignetting, caused by
light hitting the lens aperture at a large angle, and significantly reduced brightness values
on the four corners of the image. The 2017 images were all classified into the medium
subgroup only. In summary, the independent training samples were collected for each
subgroup and year for supervised classification.

The OSSP package uses an object-based classification scheme. For each image, the
watershed segmentation method is used to convert pixels into objects. Therefore, training
samples are labelled at the object level. Only distinctive and typical sea ice objects are
selected across the whole scene, and each sea ice class has around 120–250 objects. The
attributes of objects such as color values, band ratios, textures, and shape indexes are
calculated and served as supervised classification features. Based on these training datasets,
the OSSP package uses the random forest classification method to label all unknown objects
in DMS images [24,25].

To evaluate the accuracy of classification results, the independent test object samples
were also collected. Table 3 lists the selected image and object numbers for the training and
testing process of each classification group. Finally, the confusion matrix was generated at
the pixel level and was used for calculating the overall accuracy, user’s accuracy, producer’s
accuracy, and Kappa coefficient.



Remote Sens. 2021, 13, 4177 7 of 18

Table 3. The DMS images selected for lead detection in the Laxon Line from 2012 to 2018.

Testing Group # Training Image # Training Object # Test Image # Test object

DMS2012_normal 6 50 5 114
DMS2012_medium 7 90 5 94

DMS2012_ poor 7 65 5 124
DMS2013 13 196 7 221

DMS2014_normal 8 106 6 178
DMS2014_medium 6 66 6 119

DMS2015 11 150 9 254
DMS2016 8 144 12 444
DMS2017 12 140 6 150
DMS2018 13 135 9 319

3.2. Sea Ice Leads Parameters Definitions

Based on the classified result in each surface type, we derived the sea ice leads by
combining thin ice and open water. Then, the sea ice lead fraction, open water fraction,
thin ice fraction, and sea ice concentration were calculated on a per-scene basis. The sea ice
lead fraction for each DMS image can be calculated using the following equations:

Sea Ice Lead Fraction (SILF):

SILF = (ThinIce + OpenWater)/(ThickIce + ThinIce + OpenWater + Shadow) ∗ 100, (1)

where ThinIce, OpenWater, ThickIce, and Shadow are pixel numbers of classified thin ice
area, open water, thick ice, and shadow for a DMS image, respectively.

3.3. Spatiotemporal Analysis with Auxiliary Sea Ice Data

The auxiliary sea ice datasets can be used to assess the DMS-based lead detection
results to deepen the understanding of the formation mechanism of leads. In this research,
first, our lead detection result was used to determine local sea reference height and calculate
the sea ice freeboard. This retrieved freeboard was compared with the existing NSIDC
freeboard data at the scale of 400 m [36]. Furthermore, the coincident AMSR thin ice concen-
tration (TIC) data, and the geophysical atmosphere and ocean data, such as air temperature,
wind velocity, and sea ice motion, were compared with the lead fraction results.

Based on our DMS lead detection algorithm, sea ice freeboards were retrieved from
the ATM lidar data using the same method as in [32]. Specifically, we removed variations
in the instantaneous sea surface height by subtracting geoid and ocean tide height. Then,
we calculated the freeboard by subtracting locally determined leads surface height (zshh)
from the corrected height (Hcorr).

Freeboard = Hcorr − zshh, (2)

where zshh is determined from the sets of individual lead elevation estimates through
ordinary kriging. We calculated the mean freeboard for each DMS image (around 400 m by
600 m) and resampled the value to 400 m resolution. On the other hand, Kurtz et al. used
an automated lead detection algorithm through the minimal signal transform [23,32] and
then retrieved the freeboard at the resolution of 400 m. Therefore, the two products can be
compared and cross-verified at this scale.

TIC could be calculated from the AMSR as described in Röhrs and Kaleschke [14] with
a rather coarse spatial resolution of 25 km. This AMSR-based TIC represents the existence
of open water and thin ice on sea ice leads. This TIC is conceptually equivalent to our
SILF. Since the AMSR and DMS have different resolutions and geographical coverage, they
cannot be compared directly. Therefore, we resampled and averaged the DMS-based ice
lead fractions for every 25 km grid cell to match the spatial resolution of AMSR data, as
shown in Figure 4. Then, the mean of sea ice lead fractions within the range of each 25 km
block was calculated.
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Furthermore, the 25 km resampled lead fractions were also correlated with other 25
km resolution sea ice and atmospheric data including NSIDC sea ice motion, ERA5 air
temperature, and wind velocity. Since kinetic moments of sea ice movement can play an
important role in formations of leads, four kinetic moments or tensions were calculated
from the NSIDC sea ice motion data by the following equations [37]:

divergence =
∂Fx

∂x
+

∂Fy

∂y
(3)

vorticity =
∂Fy

∂x
− ∂Fx

∂y
(4)

shearing de f ormation =
∂Fy

∂x
+

∂Fx

∂y
(5)

stretching de f ormation =
∂Fx

∂x
−

∂Fy

∂y
(6)

where Fx and Fy refer to the velocity of sea ice along the x and y axes, respectively. Diver-
gence is a measure of parcel area change without the change of orientation or shape, and
vorticity is a measure of orientation change without area or shape change. Shearing and
stretching deformation are measures of shape change produced by differential motions
parallel and normal to the boundary, respectively [37].

Finally, based on the assumption that these atmosphere and sea ice variables for a
series of the previous days would contribute to the formation of sea ice leads, the average
of these dynamic and thermodynamic variables up to 30 successive days before the DMS
acquisition day were calculated (Table 4). By comparing these variables and the lead
fractions, we hoped to identify the potential contribution of these explanatory variables to
lead formation.

Multiple linear regression (MLR) was used for modelling the mean lead fractions in
terms of large-scale sea ice dynamic–thermodynamic variables, including the NSIDC sea
ice motion data with four kinetic moments, ERA-5 air temperature, and wind velocity
data. The forward and backward stepwise regression methods were used to identify the
most important explanatory variables. This strategy refers to the process of building a
regression model by adding or removing explanatory variables in a stepwise manner until
the predicted variable does not change significantly [38].
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Table 4. Variables for the multiple linear regression models.

Department Factors Description

Sea Ice Leads mean_leads Mean lead fraction for 25 km segment

Temperature tmpXX Averaged air temperature for last XX days (e.g., tmp03 means average temperature of last 1, 2, 3 days)

Wind
U10_XX Averaged u-component of wind velocity for last XX days
V10_XX Averaged v-component of wind velocity for last XX days

wind_XX Averaged wind velocity for last XX days (e.g., wind_10 means wind velocity for last 10 days)

Sea Ice Motion

u_ice_XX Averaged u-component of ice velocity for last XX days (e.g., u_ice_10 means u-velocity for last 10 days)
v_ice_XX Averaged v-component of ice velocity for last XX days (e.g., v_ice_10 means v-velocity for last 10 days)

vel_ice_XX Averaged ice velocity for last XX days (e.g., v_ice_10 means ice velocity for last 10 days)
divXX Averaged divergence of sea ice motion for last XX days (e.g., div10 means divergence for last 10 days)
vorXX Averaged vorticity of sea ice motion for last XX days (e.g., vor10 means vorticity for last 10 days)

shrXX Averaged shearing deformation of sea ice motion for last XX days (e.g., shr10 means shearing
deformation for last 10 days)

stcXX Averaged stretching deformation of sea ice motion for last XX days (e.g., stc10 means stretching
deformation for last 10 days)

4. Result and Discussion
4.1. Classification Result

A total of 106,674 DSM images along the Laxon Line from 2012–2018 were processed,
and a total of 6135 images with sea ice leads were visually selected (Table 1). All images
were classified through the OSSP package integrated in the ArcCI online service [22].

Six classified images in 2012 are shown in Table 5. The first row shows the classification
results for the subgroup of normal images, the second row for the medium images, and
the third row for the poor images. All six images were selected to show a variety of sea
ice features under different lighting conditions. The classified results illustrate four sea ice
classes: open water, shadow, thin ice, and thick ice.

Table 5. Comparison of original 2012 DMS images and classified results for three subgroups. Two samples were selected for
each subgroup.

Sample Result 1 Sample Result 2

Raw Image Classified Result Raw Image Classified Result

Normal
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The classification accuracies were evaluated at the pixel-level, and all calculated
accuracies are summarized in Table 6. The overall accuracy across the 10 test samples
selected by year and illumination conditions was 90.9 ± 3.5%, where the latter number is
the standard deviation, and the Kappa coefficient was 0.85 ± 0.05. Since sea ice leads were
defined as a combination of thin ice and open water, classification accuracy was determined
by these two classes. The user’s accuracy for thin ice and water were 90.7 ± 5.9% and
92.7 ± 11.0%, respectively. The low accuracy of 61.9% for open water in the 2012 poor
subgroup was due to the confusion between water and thin ice under extremely poor
lighting conditions.

Table 6. Pixel-level classification accuracy for each production group. All values except Kappa coefficient are in percentages.

Testing Group Overall
Accuracy

Kappa
Coef.

UA_
Thick **

UA_
Thin

UA_
Shadow

UA_
Water

PA_
Thick **

PA_
Thin

PA_
Shadow

PA_
Water

DMS2012_normal 88.9 0.83 88.0 91.7 83.8 nan * 98.4 94.2 63.8 nan
DMS2012_medium 93.6 0.85 97.3 85.0 nan 95.5 93.8 93.1 nan 97.5

DMS2012_poor 93.8 0.86 95.0 96.0 nan 61.9 98.9 81.2 nan 94.9
DMS2013 96.4 0.95 92.2 100.0 99.4 95.5 99.7 96.5 88.3 99.9

DMS2014_normal 88.0 0.82 74.7 86.2 93.9 98.0 97.1 81.3 99.7 89.0
DMS2014_medium 93.7 0.89 91.7 96.3 nan 97.1 100.0 75.7 nan 97.1

DMS2015 86.4 0.78 86.6 83.5 98.6 93.4 99.8 80.9 82.2 57.9
DMS2016 87.9 0.83 82.1 89.3 95.0 95.7 99.4 68.8 89.7 90.2
DMS2017 86.7 0.75 87.4 82.8 nan 99.4 97.6 76.5 nan 60.7
DMS2018 93.5 0.88 91.9 96.5 95.2 97.9 98.5 79.1 89.4 98.4

Average Accuracy 90.9 0.84 88.7 90.7 94.3 92.7 98.3 82.7 85.5 87.3

*,** User’s accuracy and producer’s accuracy for each classified ice type represented as UA_XX, and PA_XX, and XX could be thick ice, thin
ice, shadow, or open water.

4.2. Overall Integrated Statistical Analysis and Trend of Sea Ice Leads and Freeboard
4.2.1. Sea Ice Leads Fraction, Area, and Frequency

Figure 5a shows the averaged lead fraction for every 25 km along the Laxon Line.
Relatively large lead fractions (>15%) were only observed near the Beaufort Sea area (track
distance > 1200 km) in 2013, 2014, and 2016, where they were generally located in the FYI
region or transition region between FYI and MYI. However, the smaller lead fraction region
in the central Arctic (track distance < 1200 km) was primarily covered by MYI and thick
ice. Although these observations of one day per year for seven years cannot represent the
overall continuous spatiotemporal variations of lead fraction, this general spatial pattern
agrees with that of previous lead studies [5,18,19,39]. Figure 5b portrays the averaged area
of individual leads for the 25 km track segment, and Figure 5c portrays the ratio of the
number of lead-included images to the total number of images for the 25 km segment. The
lead fraction (Figure 5a) was determined by the individual lead area (Figure 5b) and the
frequency of leads (Figure 5c). For example, although large leads were observed in 2013
for 0–500 km (Figure 5b), lead frequency for this part was low (Figure 5c) due to the small
number of large leads. As a result, the averaged lead fraction for this segment was not high
because of the low lead frequency. In addition, the lead frequency in 2018 for 1000–2500 km
was relatively high, but the averaged lead fraction was not so high due to the large number
of small leads.
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4.2.2. Retrieval of Freeboard

Based on the DMS lead detection result, we calculated the 400 m mean sea ice freeboard
from the ATM surface height data (Figure 6). The MYI area (near central Arctic Ocean)
at track distance <1200 km showed a higher freeboard (i.e., thicker ice) compared to that
of the FYI area (near the Beaufort Sea with a track distance beyond 1200 km). As shown
in Table 7, the FYI area always showed a lower freeboard than the MYI area. In addition,
the freeboard retrieved from our lead detection shows a good correlation with the ATM
freeboard product provided by NSIDC [32]—correlation coefficient (R) was 0.832, and root
mean square difference (RMSD) was 0.105 m (Table 8). It is also noted that 2015, 2016, and
2017 showed relatively lower R and higher root mean square error (RMSE) than the other
years (Table 8 and Figure 7), which might be due to the lower classification accuracy of these
years (Table 6). Some misclassified leads can make substantial differences in estimation of
sea surface height, eventually leading to the differences between our freeboard estimation
and the NSIDC freeboard products. Nevertheless, the freeboard differences between MYI
and FYI and the cross-validation with the NSIDC freeboard product showed that our lead
detection result was reasonable and compatible with other lead detection products.
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Table 7. ATM sea ice freeboard retrieved from the DMS lead detection.

Year FYI MYI Total

2013 0.263 0.519 0.409
2014 0.277 0.339 0.320
2015 0.275 0.470 0.407
2016 0.335 0.398 0.354
2017 0.211 0.467 0.366
2018 0.320 0.505 0.414

Table 8. R and RMSE between our freeboard estimation and NSIDC freeboard estimation.

Year R RMSD (m)

2013 0.928 0.089
2014 0.907 0.063
2015 0.755 0.140
2016 0.784 0.114
2017 0.742 0.119
2018 0.869 0.082
Total 0.832 0.105
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4.3. Sea Ice Lead Fraction Modelling with Auxiliary Sea Ice Product

In general, March and April have the lowest lead fraction and lead frequency in a
year because of the highly packed sea ice conditions [5,23]. Since the OIB missions were
conducted during these months of packed sea ice, the widths of individual observed leads
were usually less than 1 km. Indeed, as shown in Figure 5b, most leads had less than
0.1 km2 of area, which accounts for a tiny portion of the entire 25 × 25 km grid cells.
Hence, it is reasonable that the DMS-based lead detection and AMSR-based TIC were not
highly correlated (R~0.21, Figure 8), because narrow leads are hardly detected by the coarse
resolution satellite data [14,40]. For example, we found that most of AMSR-based TIC
along the track was zero and AMSR-based SIC was 100% even though the DMS images
clearly showed leads in that area.
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Figure 9 shows the lead fractions and related dynamic and thermodynamic variables
at the scale of 25 km on the same days that DMS images were taken from 2012 to 2018. In
general, the lead fractions did not show significant correlation with any single auxiliary
variable or kinetic property from sea ice motion data. This is reasonable because (1) these
ancillary data have 25 km spatial resolution, which is much coarser than the spatial
resolution of the DMS image; (2) the DMS images have only ~500 m of width, representing
only a small portion along the Laxon Line; and (3) the formation of sea ice leads results from
the accumulative and complex effects of multiple dynamic and thermodynamic variables,
rather than just one variable.

Although the DMS images have different spatial scale with the ancillary datasets, we
attempted to explore the potential relationship the DMS-based lead fractions and sea ice
dynamic and thermodynamic variables from the ancillary datasets. Assuming that (1) these
variables are the results of the large-scale atmosphere and ocean circulation and (2) the
combination of these variables somehow affects the formation of leads, we normalized
all explanatory variables and constructed a series of multiple-variables linear regression
models, as shown in Equation (7).

SILF =

n

∑
k=0

akxk (7)

where xk is one of the normalized dynamics-thermodynamic variables, and ak are corre-
sponding coefficients.
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The lead fraction variable is the mean of all DMS image-based lead fractions within
a 25 km block. On the other hand, all dynamic-thermodynamic variables, including four
kinetic moments from the NSIDC sea ice motion data, ERA5 air temperature, and wind
velocity data, were averaged by 1, 2, 5, 10, 20, and 30 days prior to the date when the DMS
image was taken, considering the accumulative effects of these explanatory variables.

After exploring all possible multiple linear regression models, we found that dynamic-
thermodynamic variables integrated by 10 days showed the highest correlation coefficient.
Therefore, these explanatory variables were used to reconstruct the linear regression mod-
els using the forward and backward stepwise regression approach. The coefficients of
all normalized explanatory variables for all models are illustrated in Table 9. There were
11 thermodynamic-dynamic variables, including one thermodynamic variable (tempera-
ture), six dynamic variables (velocity of wind and ice motion), and four kinetic moments
caused by ice motion.

Table 9. Selected variables and coefficients in 14 stepwise linear regressions.

Year Approach R2 Tmp10 U10_10 V10 _10 Wind_10 U_Ice_10 V_Ice_10 Vel_Ice_10 Div10 Vor10 Shr10 Stc10 Constant

2012
Forward 0.26 / / / / −0.39 −0.38 0.16 −0.10 −0.08 / / 0.41

Backward 0.26 0.10 / / / −0.34 −0.19 / −0.12 / / / 0.31

2013
Forward 0.48 −1.19 / / 0.35 −6.46 −2.78 9.51 / −0.01 −0.14 / 0.60

Backward 0.48 −1.18 / / 0.35 −6.44 −2.75 9.45 / / −0.15 / 0.08

2014
Forward 0.87 4.61 −5.60 −0.97 1.09 1.24 15.31 −12.98 / 0.89 −0.55 / −2.08

Backward 0.87 4.64 −5.37 / / 1.16 13.34 −11.25 −0.16 0.87 −0.59 / −1.94

2015
Forward 0.34 / / −0.53 / −1.35 / 1.19 0.15 0.14 0.28 −0.33 0.40

Backward 0.34 / / −0.53 / −1.35 / 1.19 0.15 0.14 0.28 −0.33 0.40

2016
Forward 0.29 / −0.79 / / / / 0.29 0.30 −0.39 0.57 0.15 0.21

Backward 0.34 0.67 −4.62 −0.53 4.09 / / / / −0.36 0.46 / 0.22

2017
Forward 0.66 −1.17 −6.54 −3.08 6.77 2.98 −0.09 −2.01 −0.19 / / / 1.50

Backward 0.66 −1.15 −6.57 −3.11 6.86 3.02 / −2.09 −0.19 / / / 1.45

2018
Forward 0.30 0.34 −1.40 −1.40 1.83 / / / / −0.03 / −0.31 0.45

Backward 0.30 0.34 −1.31 −1.33 1.72 / / / / / / −0.32 0.42

The forward and backward stepwise regression models for each year identified dif-
ferent sets of explanatory variables. Both 2012 models identified ice motion velocity and
divergence as the significant explanatory variables. The 2013 models mainly identified
the ice motion velocity and temperature variables. Other than ice motion velocity and
temperature, the 2014 models included wind velocity at u-direction, and the correlation
coefficient was significantly higher than that of other models. The 2015 models emphasized
the functions of wind and ice motion velocity. The 2016 forward model identified more
kinetic moments, but the backward model emphasized wind velocity, which represents
the possible correlation among these variables. Finally, the 2017 and 2018 models showed
significant influence of wind velocity and temperature.

Except for that of 2014, all other models had only moderate correlation, and R2 ranged
from 0.26 to 0.66. This was because (1) the sea ice fractions were derived from high spatial
resolution DMS images, and the dynamic-thermodynamic variables had a much coarser
resolution of 25 km; (2) the atmospheric and oceanic dynamics that contribute to lead
formation can occur in a much smaller scale (<25 km scale), which cannot be captured
by coarse resolution products; and (3) the uncertainty of the DMS-based lead detection
(accuracy of 90%) can be carried and exaggerated in the data fusion and resampling process.

Based on all stepwise regression results, the relative explanatory variable importance
could be ranked based on their frequencies in a total of 14 regression models (Table 9), as
summarized in Figure 10. It showed that temperature and ice motion vorticity were the
leading factors of the formation of sea ice leads, followed by wind vorticity and kinetic
moments or tensions of ice motion. However, since this result is only based on stepwise
regression of several available variables, it cannot clearly explain the detailed mechanism
of lead formation that is a complex combination of multiple ocean and atmospheric param-
eters. In addition, it is noted that the spatial resolution of the variables can be too coarse to
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represent the formation of leads in the DMS image scale. Therefore, more comprehensive
studies are needed to clearly understand small-scale lead formations in the future.
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5. Conclusions

This research demonstrates a scientific case study for sea ice lead detection during
2012–2018 along the IceBridge Laxon Line. To address the lack of standard image processing
workflow for sea ice parameter extraction from massive and long-term HSR imagery,
a practical object-based image classification workflow was implemented based on the
OSSP package to extract multiscale multitype sea ice features and to calculate sea ice
lead fractions and freeboard parameters. These sea ice products could be directly used to
validate other coarse resolution remote sensing images/products. Furthermore, the high-
spatial-resolution sea ice fractions were statistically modeled using large scale dynamic-
thermodynamic models.

We found that thick ice, thin ice, water, and shadow could be successfully classified
using an object-based classification algorithm or the OSSP package with reasonable overall
accuracies of 86.4–96.4%. The sea ice lead fractions along the Laxon Line could be calculated
for each DMS image accordingly. The temporal and spatial distribution of leads were
verified by ATM surface height data and an independent freeboard product. Finally,
the lead fractions were aggregated and modelled with 25 km resolution dynamic and
thermodynamic variables including sea ice motion, air temperature, and wind data. All
stepwise linear regression models had medium to high correlation coefficients. It seems
that temperature and ice motion vorticity were the leading factors of the formation of
sea ice leads, and each year could have different dominant factors. The results could
provide insightful understanding of the mechanism of sea ice leads, which is useful for
climate modelling.

In the future, novel image classification algorithms such as deep learning could be
used to improve the traditional machine learning methods. The methods can be extended
to other sea ice regions and data types. The results and parameters derived from this
study can help the sea ice community to better understand the mechanisms driving sea ice
variability so that they can be better represented in climate models.
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