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Abstract: Object detection has made great progress. However, due to the unique imaging method of
optical satellite remote sensing, the detection of slender targets is still insufficient. Specifically, the
perspective of optical satellites is small, and the characteristics of slender targets are severely lost
during imaging, resulting in insufficient detection task information; at the same time, the appearance
of slender targets in the image is greatly affected by the satellite perspective, which is likely to
cause insufficient generalization capabilities of conventional detection models. In response to these
two points, we have made some improvements. First, in this paper, we introduce the shadow as
auxiliary information to complement the trunk features of the target lost in imaging. Second, to
reduce the impact of satellite perspective on imaging, in this paper, we use the characteristic that
shadow information is not affected by satellite perspective to design STC-Det. STC-Det treats the
shadow and the target as two different types of targets and uses the shadow information to assist
the detection, reducing the impact of the satellite perspective on detection. Among them, in order
to improve the performance of STC-Det, we propose an automatic matching method (AMM) of
shadow and target and a feature fusion method (FFM). Finally, this paper proposes a new method to
calculate the heatmaps of detectors, which verifies the effectiveness of the proposed network in a
visual way. Experiments show that when the satellite perspective is variable, the precision of STC-Det
is increased by 1.7%, and when the satellite perspective is small, the precision of STC-Det is increased
by 5.2%.

Keywords: optical satellite image; shadow; slender targets; object detection

1. Introduction

In recent years, object detection has made great progress [1–5]. Slender target detection
is also an important part of object detection. As a typical slender target, a high-voltage
transmission tower is one of the most important objects of infrastructure of the power
transmission system. Its operating state determines the operation of entire power grid
and the safety of people [6,7]. The detection of high-voltage transmission towers is helpful
for monitoring the operation status of high-voltage transmission towers. The early detec-
tion of transmission towers was mainly based on manual inspections. The whole work
was time-consuming and laborious. Later, UAV were introduced to increase detection
efficiency [8–14]. However, due to the sparse distribution of high-voltage transmission
towers and the small coverage of UAV single-view images, it is still difficult to achieve
large-scale inspections of transmission towers. Recently, with the development of satellite
remote sensing, aerospace monitoring methods have become more and more mature, and
a single scene of aerospace imagery covers a wider range, which can achieve large-scale
sparse target detection.
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A great amount of research has been conducted on the detection of high-voltage
transmission towers in remote sensing images at home and abroad. Parkpoom et al. [15]
used Canny and Hough to detect targets, and then classified them to detect power
transmission towers in aerial images. Wang et al. [16] established an aerial data set and
compared the performance of Faster R-CNN [17] and YOLO-v3 [18]. These studies are all
based on aerial images. The single scene coverage of aerial images is small. High-voltage
power transmission towers are a special type of target, and their distribution is generally
sparse. It is difficult to quickly complete large-scale inspections using aerial images.
The existing researches on the detection of transmission towers in satellite remote sensing
are mainly based on SAR images. Zhou et al. [19] used machine learning methods to
detect power transmission towers in SAR images. Wenhao et al. [20] built a two-stage
detector combining YOLO v2 and VGG to improve the accuracy and efficiency of the
transmission tower detection in SAR images. Tian et al. [21] proposed an improved
rotating box detector (DRBox) and satellite remote sensing wire consumables estimation
model based on high-resolution optical satellite remote sensing images to detect the
number of transmission towers and estimate related consumables. The current research
effect based on optical satellite remote sensing is similar to SAR. They are only limited
to the image level and do not use external information such as target characteristics and
observation conditions. The advantages of optical satellite remote sensing cannot be
fully utilized.

Huang et al. [22] proposed SI-STD. The network introduces shadow information to
compensate for the characteristics of target lost during imaging. In the case of sufficient
illumination, the problem of information loss is basically solved. It is just a preliminary
attempt to use external information such as shadows for detection. It does not fully
consider the impact of imaging conditions on the presentation of features, and still
strongly depends on the features presented by the training data set. When the view
angle changes, the generality of the algorithm model is insufficient, and the performance
of the model decreases. SI-STD introduces shadow information to complement the
features lost during imaging, but the generation of shadows is completely dependent on
the solar elevation angle, and its performance in the image has nothing to do with the
satellite perspective, while the target’s performance in the image basically depends on
the satellite perspective, the roots of the shadow and the target are completely different,
but SI-STD merges the shadow and the target together and treats them as a big target for
detection. This approach is obviously affected by the satellite perspective. Any changes
in these parameters will affect the results. As shown in Figure 1, when the satellite
perspective is relatively small, the imaging information of the target in the image is
not obvious. At this time, the recognition is basically based on shadow information,
and when the satellite perspective is larger, the imaging information of the target in
the image becomes gradually obvious. At this time, the characteristics of the shadow
and the target can be considered comprehensively in the recognition. However, SI-STD
merges the shadow and the target together and obviously cannot automatically assign
the weight of the shadow and the target. As shown in Figure 2b, this figure is the result
of the heatmap of SI-STD. The darker the color in the figure, the higher the attention
of detection. It can be seen that most of the attention of SI-STD is on the target itself;
there is little attention to the shadow, but the information contained in the shadow of the
image is obviously greater than the target itself. This also confirms that although SI-STD
can solve the problem of feature loss, there are still shortcomings when the satellite
perspective changes.
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Figure 1. Images of different types of targets in different satellite perspectives. (a) is the image of
slender target in a small satellite perspective. (b) is the image of slender target in a big satellite
perspective. (c) is the image of stumpy targets such as buildings.

In summary, the detection of high-voltage transmission towers based on optical
satellite images still has the following problems:

• During imaging, a large number of features of slender targets are lost. As shown in
Figure 1, for traditional object detection methods, the main features of some stumpy
targets such as houses are concentrated on the top. The information will not be lost
during imaging and has little effect on object detection. However, the main charac-
teristics of slender targets such as high-voltage transmission towers are concentrated
on the vertical trunk. During imaging, they will be greatly compressed in the vertical
direction, and many features will be lost, which is not conducive to object detection.

• According to the imaging geometry model of the optical satellite remote sensing,
the imaging results are greatly affected by the satellite perspective. The same target
has different image under different satellite perspective. As shown in Figure 1a,b,
high-voltage power transmission towers behave differently under different satel-
lite perspective. In different situations, target information and shadow information
contribute differently to detection.

Figure 2. Visualization of heatmaps of SI-STD and STC-Det. (a) is the original image. (b) is the
heatmap of SI-STD. (c) is the headmap of STC-Det.

Through the above analysis, we cannot combine the shadow with the target together.
For this reason, we propose STC-Det, which treats the shadow and the tower as two types
of targets to detect separately, and realize the automatic distribution of the weights of
shadow information and tower information. In summary, the overall contribution of this
paper is as follows:

• STC-Det is proposed, which broadens the application range of slender target detection
and expands the application range of satellite perspective.
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• Using deformable convolution for reference, an automatic shadow and target match-
ing method is designed. This method achieves fast shadow and target matching with
only a small increase in network complexity, improves network efficiency, and reduces
computational complexity.

• A new feature fusion method is designed, which realizes the fusion of shadow features
and target features, and can also realize automatic weighting of features, which further
improves the utilization efficiency of shadow and target feature information.

• In order to intuitively see the influence of shadow information and target informa-
tion on detection when the satellite perspective changes, we have improved Group-
CAM [23] so that it can be used for the visualization of the heatmap of object detection,
and thereby verify the effectiveness of STC-Det.

2. Materials and Methods

In this part, we first analyze the imaging geometry model of optical satellite images,
then introduce the overall architecture of STC-Det, and the two main innovative modules
AMM and FFM, and finally introduce our method for heatmap calculation.

2.1. The Imaging Geometry Model of Optical Satellite Images

Figure 3 shows the imaging geometry model of slender targets in optical satellite
images. Different from stumpy targets, the characteristics of slender targets are often
distributed on the trunk located on the side elevation of the target. The optical satellite
utilizes side-view imaging. When the satellite perspective is small, most of its trunk features
are compressed during imaging. When the satellite perspective is not too small, some of its
trunk features will inevitably be compressed. This provides different imaging results for
the same slender target under a different satellite perspective. The shadow of the slender
target is produced by the sun, which reflects the trunk characteristics of the target and
has nothing to do with the satellite perspective. Shadows are flat features. According
to the imaging model, it can be seen that the image of shadow is basically not affected
by the satellite perspective. Therefore, in the case of a small satellite perspective, we can
use shadow information to supplement the trunk information lost in imaging of slender
targets; when the satellite perspective changes, the shadow imaging results are basically
unchanged, and we can use constant shadows to assist in the detection of changing targets,
thereby reducing the impact of the satellite perspective on the detection of slender targets.
Based on this feature, we proposed STC-Det.

2.2. STC-Det

As shown in Figure 4, STC-Det still uses the structure of Faster R-CNN [17], but it
improved the region proposal network (RPN) and Head in Faster R-CNN, and named
them DBBoxRPN and DBBoxHead, respectively. In DBBoxRPN, the candidate regions
of the shadow and the target are extracted separately, and the automatic matching mod-
ule (AMM) module is used to realize the automatic matching of the shadow with the
target. In DBBoxHead, the FFM module is used to realize the information fusion and
automatic weighting of shadow features and target features, which solves the problem of
information fusion.

In Figure 4, BackBone is mainly used to extract features of different scales of data.
This part is mainly composed of ResNet [24] and FPN [25]. ResNet is a deep convolu-
tional network, which mainly includes a convolutional layer, pooling layer, and activation
layer. ResNet is used to extract features of different depths. FPN is a feature combina-
tion network that combines features extracted by ResNet into feature groups of different
scales and depths. The input data of the BackBone part is the original image (ximg) after
normalization and other preprocessing, ximg ∈ <3×H0×W0 , finally output a five-layer feature

f = { f1 ∈ <256× H0
4 ×

W0
4 , f2 ∈ <256× H0

8 ×
W0
8 , f3 ∈ <256× H0

16 ×
W0
16 , f4 ∈ <256× H0

32 ×
W0
32 ,

f5 ∈ <256× H0
64 ×

W0
64 }.
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Figure 3. The imaging geometry model of slender targets in optical satellite images.

The role of DBBoxRPN is similar to that of RPN in Faster R-CNN, except that it
not only needs to extract the candidate regions of the target but also needs to extract
the candidate regions of the shadow corresponding to the target, as shown in Figure 4a.
DBBoxRPN consists of a shared convolution layer and five convolution channels. The five
layers of features extracted by BackBone are input into DBBoxRPN for calculation in turn,
and all feature layers share the same set of convolution operations. The specific formula is
as follows:

psi = C1(C0( fi)), i = 1, 2, 3, 4, 5 (1)

pti = C2(C0( fi)), i = 1, 2, 3, 4, 5 (2)

bsi = C3(C0( fi)), i = 1, 2, 3, 4, 5 (3)

bti = C4(C0( fi)), i = 1, 2, 3, 4, 5 (4)

di = C5(C0( fi)), i = 1, 2, 3, 4, 5 (5)

where C0(·), C1(·), C2(·), C3(·), C4(·), and C5(·) are six convolutional layers of different
sizes, ps, pt, bs, bt, and d are respectively the confidence of the shadow candidate regions
predicted by the network, the confidence of the target candidate regions, the regression
of the shadow candidate regions, the regression of the target candidate regions, and the
offset of the shadow relative to the target (the offset is used to realize the automatic
matching of shadow and target; it will be described in detail in the following Section 2.3).
bs = (xs, ys, ws, hs), bt = (xt, yt, wt, ht), (x, y) is the regressor at the center of the prediction
box, w and h are the regressions of the predicted regions width and height, respectively.
d = (dx, dy), dx and dy are the offset of the shadow center of the same target relative to the
x and y coordinates of the target center, respectively.
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Figure 4. The overall structure of STC-Det. (a) Generate candidate regions, including shadow
candidate regions and target candidate regions. (b) Automatically matching module (AMM) matches
the shadow with the target. (c) Feature fusion module (FFM) fusion shadow and target feature
for classification.

The ground truth of the shadow and target are bst = (xst, yst, wst, hst) and
btt = (xtt, ytt, wtt, htt), respectively. The ground truth of the categories of shadow and target
are ps and pt, respectively. The anchors of the shadow and target are bsa = (xsa, ysa, wsa, hsa)
and bta = (xta, yta, wta, hta). The predicted proposals for shadow and target are
bsp = (xsp, ysp, wsp, hsp) and btp = (xtp, ytp, wtp, htp), respectively. They have the following
relationships:

xsp = xsa + xswsa, xtp = xta + xtwta (6)

ysp = ysa + yshsa, ytp = yta + ythta (7)

wsp = wsaews , wtp = wtaewt (8)

hsp = hsaehs , htp = htaeht (9)
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The deviations of the ground truth of the shadow and the target from the anchor
are b

′
s = (x

′
s, y

′
s, w

′
s, h

′
s) and b

′
t = (x

′
t, y

′
t, w

′
t, h

′
t), respectively. They can be obtained by the

following equations:

x
′
s = (xst − xsa)/wsa, x

′
t = (xtt − xta)/wta (10)

y
′
s = (yst − ysa)/hsa, y

′
t = (ytt − yta)/hta (11)

w
′
s = log(wst/wsa), w

′
t = log(wtt/wta) (12)

h
′
s = log(hst/hsa), h

′
t = log(htt/hta) (13)

After extracting the shadow and target candidate regions, the shadow and target must
be matched. From the imaging geometry model, the shadow in image is related to the
target. The shadow is the image of the target under the sun, and the two must be connected
in space. The side-view imaging of satellite will not change this. The AMM module
(described in detail in Section 2.3) uses the relationship between the shadow and the target
on the image to match the extracted shadow candidate regions with the target candidate
regions. DBBoxRPN outputs a series of paired proposals P = {(psi, pti), i = 1, 2, 3, . . . , N},
among them, psi and pti are the shadow candidate regions and target candidate regions
of the same target, and N is the maximum number of candidate regions extracted from a
signal image.

The loss of DBBoxRPN is:

Lrpn(bs, bt, ps, pt, d) =
1

Ns
∑

i
Lcls(psi, p

′
si) +

1
Ns

∑
i

p
′
siLreg(bsi, b

′
si)

+
1

Nt
∑

i
Lcls(pti, p

′
ti) +

1
Nt

∑
i

p
′
tiLreg(bti, b

′
ti)

+
1
Nl

∑
i

Lloc(di, d
′
i)

(14)

where Nt represents the total number of extracted target candidate regions, Ns repre-
sents the total number of extracted shadow candidate regions, Nl represents the number
of target candidate regions that can be matched to the shadow candidate regions, and
d
′

represents the ground truth of the offset of the shadow center to the target center. Lcls,
Lreg, and Lloc are the loss of classification, regression, and position shift, respectively. Lcls
uses FocalLoss [26], the gamma and alpha of which are set to 2.0 and 0.25, respectively.
Lreg and Lloc use SmoothL1Loss(as shown in Formula (15)). The weight of each loss in
Formula (14) is 1.

SmoothL1Loss(x, y) =

{
0.5(x− y)2, i f |x− y| < 1
|x− y| − 0.5, otherwise

(15)

The proposals extracted by DBBoxRPN undergo RoIAlign [27] to extract the corre-
sponding features Fs and F

′
t , Fs = B(Ps), where B(·) is an interpolation operation.

Finally, Fs and Ft are input into DBBoxHead for classification and regression. DBBox-
Head contains two channels. One channel is used for classification; it contains a feature
fusion module (FFM) and two fully connected layers. The other channel is used to regress
the target position; it only contains two fully connected layers, specifically:

C = f c2( f c1( f latten(FFM(Fs, Ft)))) (16)

B = f c4( f c3( f latten(Fs))) (17)

Among them, c represents the category results of the network, B represents the
target position regression results of the network, f c(·) represents the fully connected layer,
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f latten(·) represents the tiling operation, and FFM(·) represents the feature fusion module
(described in detail in Section 2.3).

The loss of DBBoxRPN is:

Lhead(C, B) =
1
N ∑

i
Lcls(Ci, p

′
ti) +

1
N ∑

i
p
′
tiLreg(Bi, d

′
si) (18)

where Lcls uses cross-entropy loss, and Lreg uses SmoothL1Loss (as shown in Formula (15)).
The weight of each loss in Formula (18) is 1.

The total loss of the entire network is:

LOSS = Lrpn + Lhead (19)

2.3. AMM

The automatic matching module (AMM) is located in DBBoxRPN, as shown in
Figure 4b, which is used to match the extracted shadow candidate regions with target
candidate regions. Generally, if you want to match the shadow and target together, you
must use the position information of the two. Although preliminary matching can be
carried out, it needs to be matched and screened one by one. The speed is slow, and the
error of using the position information to match is also relatively large. AMM can easily
and quickly match the shadow candidate regions with target candidate regions.

Figure 5b is a schematic diagram of deformable convolution. Deformable convolution
calculates the position offset of each position to change the receptive field of the convolution
kernel, so as to realize the convolution of any shape. Deformable convolution can be
calculated by the following formula:

F(x0, y0) = ∑
n∈<

W(xn, yn) · f (x0 + xn + ∆xn, y0 + yn + ∆yn) (20)

where f represents the feature before convolution, F represents the feature after convolution,
and (∆x

′
n, ∆y

′
n) represents the offset of each feature point (x0 + x

′
n, y0 + y

′
n), which can be

learned through the network.
Deformable convolution [28] obtains the offset of each feature point through the net-

work, which can realize the convolution of any shape. Deformable convolution learns the
mapping of the convolution kernel to different parts of the target. According to the imag-
ing geometry model of the optical satellite, the same pair of target and shadow should
be connected together. If the target and shadow are regarded as a whole, the target and
shadow will be two parts of the whole. Drawing lessons from the idea of deformable con-
volution, we designed AMM. We can directly learn the mapping from the center of the tar-
get to the center of the shadow, which is equivalent to learning the mapping of two parts.
With this mapping, we can directly map the target candidate regions to the position of
the shadow candidate regions and quickly achieve the matching of the candidate regions.
As shown in Figure 5a, the blue rectangle in the figure represents the candidate regions of the
shadow, the red rectangle represents the candidate regions of the target, the blue dot represents
the center point of the shadow, and the red dot represents the center point of the target. Ac-
cording to the mapping from the target to the shadow, we can directly get the shadow center
point from the target candidate region. If the center point of the shadow candidate region is
consistent with the obtained shadow center point, the corresponding shadow candidate regions
matches the target candidate regions. The specific calculation is shown below.

The calculation of the offset d from the target center to the shadow center is shown in
Section 2.1. The ground truth of the center offset is d

′
= (d

′
x, d

′
y):

d
′
x = (xst − xtt)/λx (21)

d
′
y = (yst − ytt)/λy (22)
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When matching the shadow with target, according to the target candidate region btp,
the matching shadow center bs = (xs, ys) can be obtained by the center offset d = (dx, dy):

xs = xtp + λx · dx (23)

ys = ytp + λy · dy (24)

Through the above calculations, we obtain the shadow center bs and the predicted shadow
candidate region bsp. We only need to find the corresponding shadow prediction regions
according to the calculated shadow center bs. If there is a shadow prediction region b

′
centered

on bs, then b
′

is the shadow prediction region that matches the target prediction region btp.
In training, both the predicted regions of the target and the shadow are different from the

ground truths. To improve robustness, after the shadow center bs is obtained, bs is not directly
compared with the center of the shadow prediction region. We first calculate the center of the
shadow prediction region. If the center of the shadow prediction region falls within a certain
range centered on bs, it can be regarded as a matching candidate region, and then select the one
with greatest confidence from these candidate regions as the final result.

Figure 5. Schematic diagram of AMM matching shadow candidate regions with target candidate
regions. (a) A simple demonstration of the method of AMM matching shadows with targets, where
the red rectangles represent the target candidate regions, the blue rectangles represent the shadow
candidate regions, the red dots represent the center points of the target candidate regions, and the
yellow arrows indicate the mappings from the center of the targets to the center of the shadow. The
blue dot represents the shadow center calculated based on the target center and the offset from
the target center to the shadow center. (b) A simple demonstration of the working principle of
deformable convolution, where the light-colored dots represent the normal rectangular convolution
kernel, and the dark-colored dots represent the shifted convolution kernel.

2.4. FFM

The feature fusion module (FFM) is located in DBBoxHead (as shown in Figure 4c),
and its main function is to fuse the features of classification. DBBoxRPN not only extracts
the candidate regions of the target but also extracts the shadow candidate regions corre-
sponding to the target. When classifying, we can use only the shadow feature, or only the
target feature, or even use the combined features of the two at the same time and automati-
cally set the weight of the difference, as shown in Figure 6. From the analysis of satellite
imaging geometric model, when satellite perspective are small, the characteristics of the
target are not too obvious, and the shadow information is more obvious, so the shadow
information can be used for classification. Theoretically, as long as the fusion weights of
the two types of features are reasonably allocated for classification, the combined use of
the features of the target and the shadow for classification will have a better effect. For this
reason, we designed the FFM module to perform feature selection and fusion.

Figure 6 shows six feature fusion methods, of which (a) and (b) use only one feature
of the shadow and the target, (c) and (d) directly add the shadow and the target feature
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together, and (e) and (f) combine the features of the shadows and the target. The three
fusion methods on the left in Figure 6 do not use 1*1 convolution after fusion, while the
three methods on the right use 1*1 convolution after fusion. 1*1 convolution is a point-by-
point channel convolution, where it acts as a weighted average and can dynamically learn
weighting coefficients.

Shadow 

Features

Tower 

Features

+ 1*1 Conv

Shadow 

Features

Tower 

Features

+

Shadow 

Features

Tower 

Features

concat 1*1 Conv

Shadow 

Features

Tower 

Features

concat

Shadow 

Features

Tower 

Features

or 1*1 Conv

Shadow 

Features

Tower 

Features

or

(a) (b)

(c) (d)

(e) (f)

Figure 6. Several feature fusion methods considered in FFM. (a,b) use only one of the shadow feature
and the target feature. (c,d) The shadow feature and the target feature are used together. (e,f) combine
shadow features and target features together. The three methods on the left in this figure do not
perform postoperation after selecting the features to be used, and the three methods on the right
perform a 1*1 convolution operation after selecting the features.

After the above theoretical analysis and comparative experiments (Table 1), we choose
Figure 6f as the FFM module, which is specifically:

Fcls(Fs, Ft) = Conv(concat(Fs, Ft)) (25)

Among them, Fs, Ft, and Fcls represent the extracted shadow features, target features,
and the output of FFM, respectively. concat(·) stands for feature stacking operation, and
Conv(·) stands for 1*1 convolution operation.

Table 1. Experiment results of using different feature fusion methods. This table shows the exper-
imental results of the multiple fusion methods shown in Figure 6. All results are obtained on the
TowerM data set. Among them, “Feature selection” means to select different information, such as
“shadow” means to use only shadow information, “tower” means to use only tower information,
“add” means to add shadow information and tower information together, and “concat” means to
combine shadow information and tower information. “Postoperation” refers to the operation after
information is selected, where “none” means no operation, and “1*1 conv” means that a convolution
operation is performed with a 1× 1 convolution kernel after information is selected. The last two
columns represent the changes in AP and AR when the IoU threshold is 0.5 for different operations.

Feature Selection Postoperation
AP50 AR50

Shadow Tower Add Concat None 1*1 Conv
√ √

0.077 0.921√ √
0.068 0.881√ √
0.802 0.901√ √
0.821 0.893√ √
0.834 0.907√ √
0.842 0.913√ √
0.816 0.901√ √
0.853 0.919
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2.5. Heatmap Visualization Algorithm

Group-CAM is a heatmap visualization algorithm for image classification. We have
improved Group-CAM to enable it to be used for object detection. The calculation of
Group-CAM is divided into four steps:

1. Input the original image I0 into the network F and extract the characteristic layer A
and the corresponding gradient value W to be viewed.

2. Use filter to filter the original image I0 to get I1, use the extracted gradient value W to
weight the feature layer A and group to get the feature mask M = [M1, M2, M3, · · · , ML],
L is to be divided into a number of groups.

I1 = Blur2d(I0) (26)

M = Chunk(WA) (27)

3. The feature mask M is respectively weighted and merged with the original image I1
after the illusion, and the masked image I is obtained. Input I into the network to
obtain the weight of the corresponding feature layer.

I = I0 ·M + I1 · (1−M) (28)

α = F(I)− F(I1) (29)

4. Use the obtained feature layer weights to weight the corresponding feature layers to
obtain the final heat map.

CAM = αM (30)

In image classification, the confidence score of the corresponding category of the data
can be obtained by inputting the data into network, and the score can be directly used as
the weight. In object detection, the data input into network can obtain a series of prediction
regions and confidence. The result cannot be used directly as a weight.

In order to make Group-CAM suitable for object detection tasks, we made adjustments
in the third step of the original Group-CAM. When calculating the weight in the third
step, we do not directly use the final result but use the loss of the corresponding data as
the weight, and the loss is just the opposite of the original confidence. The greater the
confidence of the original Group-CAM, the greater the weight. Here, the greater the loss,
the smaller the weight, specifically:

α
′
= Loss(F(I))− Loss(F(I1)) (31)

α = So f tmax(MAX(α
′
)− α

′
) (32)

3. Experiment
3.1. Data Set

The data used in the experiment includes three types of transmission towers with
heights between 15 m and 70 m, namely the wine-glass tower, the dry-type tower and
cat-head tower, the same as SI-STD [22]. In order to verify the effectiveness of the methods
proposed in this paper, we made two data sets. To make it easier to distinguish, we
named the first data set “TowerS” and the second data set “TowerM”, as shown in Figure 7.
The satellite perspective of TowerS is relatively small, and the satellite perspective of
TowerM is variable. Both of these data sets are intercepted from BJ-2, WV-2 and Google
Earth, and the size of a single data is 600*600. TowerS contains 1574 training data and 686
test data, while TowerM contains 2575 training data and 904 test data. The data volume of
the three towers in all data sets is approximately 1:1:1.

3.2. Training Configurations

All experiments in this paper are carried out in the PyTorch environment. The experi-
mental platform is two RTX 2080 Ti graphics cards, and the batch size is set to 4. The size
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of the experimental optical images is 600*600. In order to facilitate subsequent operations,
it is filled with 0 to 608*608. There are a total of 20 epochs in the experiment. The initial
stage learning rate is set to 0.001667. In the following 3600 steps, the learning rate increases
by 9.44× 10−7 at each step until it increases to 0.005. From the seventh to the twelfth
epoch, the learning rate drops to 0.0005, and from the thirteenth to the twentieth epoch, the
learning rate drops to 0.00005. In the DBBoxRPN part, the network uses an anchor-based
method to extract the shadow and target candidate regions. There are 16 shadow anchors,
the aspect ratio is [1.0,2.0,3.0,4.0], and the scale size is [4,8,16,32], 12 anchors of the target
are set, the aspect ratio is [0.5,1.0,2.0,3.0], and the scale size is [4,8,16,32]. Shadow and target
are in progress. When matching, the λx and λy in Equations (21)–(24) are 50. In order to
improve the robustness of matching, after calculating the center position of the predicted
shadow regions, we will perform matching within a radius of 50 (This value is determined
through experiments, as shown in Figure 8.).

Figure 7. Partial sampling data of TowerS and TowerM. The satellite perspective of all data in TowerS
is relatively single, and the satellite perspective are extremely small. TowerM expands the range of
satellite perspective on the basis of TowerS.

3.3. Parameter Selection and Ablation Experiment

In AMM of the DBBoxRPN part, when matching the shadow with the target, we
use the tower as the target to find the corresponding shadow. According to the center of
the target candidate region and the offset from the target to the shadow, we can get the
position of the shadow center bs. At this time, the shadow candidate region with bs as the
center can be directly selected as the shadow to be matched, but there are some deviations.
The shadow candidate regions and target candidate regions predicted by the network have
a certain deviation from the ground truth, and there will be a certain error in directly using
the shadow candidate regions. In order to reduce errors and improve the robustness of the
network, we do not directly use bs as the shadow center but regard the shadow candidate
regions within a certain range of the bs circle center as the possible range of the shadow
to be matched and then select the shadow candidate with the highest confidence in this
range as the matching shadow. The search range is a hyperparameter. In order to find
the optimal range, we have conducted a series of experiments for different search ranges,
as shown in Figure 8. Through experiments, it is found that the precision of the result is
highest when bs is the center of the circle and the search radius is 50. This value is also
used in subsequent experiments.

In FFM of the DBBoxHead part, we propose several feature fusion methods, as shown
in Figure 6. In order to choose the best method, we conducted further experiments on these
methods. The experimental results are shown in Table 1. In this table, “shadow” means that
only shadow information is used, “tower” means that only target information is used, and
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“add” and “concat” mean that both shadow and target information are used together. It
can be seen that only using shadows for classification has the lowest precision, followed by
only using targets for classification. The precision of classification using shadow and target
information is higher than that of using only one type of information alone. This also proves
that our idea of using shadows to complete actual information and to assist classification is
correct. Judging from the postoperation without using 1× 1 convolution, in addition to
using shadow information alone for classification, other methods have improved accuracy
after using 1× 1 convolution. 1× 1 convolution is also equivalent to a weight allocator,
indicating that it is effective to redistribute feature weights before classification.

Figure 8. The precision corresponding to different search radius in AMM. All results are obtained on
the TowerM data set. The abscissa represents different search radius, the search radius is in pixels,
and the radius range is 1 to 65. The ordinate represents the precision corresponding to different
search radius. There are two broken lines in the figure. The blue one represent the changes of AP
when the IoU threshold is 0.5 for different search radius, and the red one represent the changes of AR
when the IoU threshold is 0.5 for different search radius, and the precision ranges from 0.8 to 1.0.

The result in row 3 in Table 1 is the result when only the target information is used
for classification and no postoperation is performed. This experiment just divides the
classification and regression of the Head part in the original Faster R-CNN framework into
two channels for processing separately. Comparing the results of Faster R-CNN in Table 2,
it can be seen that in the final classification, separating classification and regression can
improve the precision and reduce the mutual influence of classification and regression.
Comparing the results of the first four rows with the last four rows of Table 1, it can be seen
that the comprehensive use of shadow and target information for classification can indeed
improve the final precision. This also reflects that our AMM is indeed effective and can
accurately match the shadow to the target.

3.4. Results
3.4.1. Performance on the Two Data Sets

In the experiment part, there are five comparison networks, namely Faster R-CNN [17],
TSD [29], ATSS [30], Retinanet [26], and SI-STD [22]. In order to verify the effectiveness
of STC-Det when the satellite perspective change, we establish two data sets, which are
called TowerS and TowerM, respectively. The satellite perspective of the data in TowerS
are relatively simple, while the satellite perspective of the data in TowerM are variable.
There are six experimental indicators: “AP”, “AP50”, “AP75”, “AR”, “Params”, “FPS”.
“AP”, “AP50”, “AP75” represent the precision of networks under different IoU thresholds,
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“AR” represents the average recall of networks under different sizes of bboxes, “Params”
represents the number of network parameters, “FPS” represents the network’s ability
to process data per second, the calculations of “Precision” and “Recall” are shown in
Formula (33) and (34), and the calculation method of the above six parameters is consistent
with the MS COCO data set [31]. The performance of experimental networks on the two
data sets are shown in Tables 2 and 3, respectively.

Precision =
True Positives

True Positives + False Positives
(33)

Recall =
True Positives

True Positives + False Negatives
(34)

Table 2. Experimental results on the TowerM data set. Each column represents a indicator, and each row represents a
network. The parameters in the table are calculated three times, and the corresponding average (AVG) and standard
deviation (SD) are listed.

Model
AP AP50 AP75 AR FPS

(Task/s)
Params
(M)AVG SD AVG SD AVG SD AVG SD

Faster R-CNN 0.412 0.002 0.806 0.002 0.392 0.0 0.518 0.001 31.9 44.1
TSD 0.412 0.001 0.792 0.0 0.391 0.003 0.518 0.0 15.0 72.3
ATSS 0.397 0.001 0.776 0.0 0.377 0.001 0.528 0.0 20.2 32.2

Retinanet 0.432 0.002 0.821 0.002 0.393 0.002 0.549 0.002 36.1 36.1
SI-STD 0.313 0.003 0.770 0.002 0.170 0.005 0.448 0.001 18.1 35.2

STC-Det 0.449 0.003 0.852 0.005 0.424 0.006 0.536 0.001 9.8 55.2

Table 3. Experimental results on the TowerS data set. Each column represents a indicator, and each row represents a
network. The parameters in the table are calculated three times, and the corresponding average (AVG) and standard
deviation (SD) are listed.

Model
AP AP50 AP75 AR FPS

(Task/s)
Params
(M)AVG SD AVG SD AVG SD AVG SD

Faster R-CNN 0.269 0.006 0.614 0.003 0.184 0.001 0.417 0.0 44.1 30.4
TSD 0.253 0.004 0.575 0.005 0.170 0.001 0.378 0.002 72.3 15.1
ATSS 0.250 0.002 0.572 0.003 0.175 0.002 0.405 0.001 32.2 19.7

Retinanet 0.207 0.003 0.470 0.006 0.167 0.003 0.420 0.001 36.1 35.9
SI-STD 0.267 0.007 0.742 0.023 0.103 0.021 0.434 0.002 35.2 17.4

STC-Det 0.321 0.007 0.746 0.006 0.224 0.018 0.450 0.007 55.2 9.7

Through the analysis of Tables 2 and 3, it can be seen that the precision of STC-
Det on the TowerS data set is increased by 5.2% compared with other networks, and
the precision on the TowerM data set is still improved by 1.7% compared with other
networks (here, considering the average precision AP). On the TowerS data set, the
recall of STC-Det increased by 1.6%, and it also maintained a high recall rate on the
TowerM data set. However, the network parameters of STC-Det did not increase much,
much less than the number of parameters of TSD, indicating that STC-Det improved the
detection precision while maintaining no significant increase in parameters. Observing
the FPS index, it is found that the detection speed of STC-Det is the slowest among these
networks, almost twice as slow as other networks. This is because the network needs to
extract the shadow and target candidate regions at the same time, and also to match the
shadow and the target, which undoubtedly greatly increases the amount of calculation,
but in the case of low requirements for detection speed, it is worthwhile to trade the loss
of detection speed for a substantial increase in precision.
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3.4.2. Visualization of Results

Figure 9 shows the visualization results of the networks used in the experimental
part. Combining Table 2 with Table 3, it can be seen that these networks can all com-
plete the detection task. Networks such as Faster R-CNN, TSD, ATSS, and Retinanet
perform relatively ordinarily on these two data sets. SI-STD performs better when the
satellite perspective is small, while the precision decreases when the satellite perspective
increases. This may be due to the increase of the satellite perspective, and the target
features gradually become obvious. SI-STD basically only pays attention to the target,
so the shadow next to target will interfere with the detection. STC-Det performed well
in both cases, which may be due to the separate use of shadow and target features and
the different weights of shadow and target.

Figure 10 can also explain this phenomenon. It can be seen from the heatmap that
traditional networks such as Faster R-CNN, TSD, ATSS, Retinanet pay more attention to
the target itself. These networks only focus on the target itself and ignore the shadows
next to the target. When the satellite perspective is small, the characteristics of the target
are very inconspicuous, which makes the detection precision low. After the satellite
perspective is increased, the target features are obvious, and the detection precision is
improved. According to Figure 10e, it can be seen that when the satellite perspective
is small, the SI-STD pays attention to the shadow and the target at the same time.
At this time, the target characteristics are not obvious, and the network tends to shadow
characteristics. This phenomenon makes sense. But when the satellite perspective
increases, the target characteristics become obvious. SI-STD almost only pays attention to
the target feature, but it also extracts the shadow feature. The shadow extracted interferes
with the overall detection and reduces the detection precision. It can be seen from
Figure 10f that STC-Det can comprehensively use shadow features and target features
regardless of whether the satellite perspective is large or small. It can be clearly found
that when the satellite perspective is small, STC-Det pays more attention to the shadow
features. When the satellite perspective is large, STC-Det is more inclined to focus on
the target features, which is also our expectation. It can be proved that compared with
SI-STD, STC-Det can flexibly set different weights for shadows and target features, and
can automatically select different degrees of attention in different situations, which also
broadens the scope of application of the network to the satellite perspective.

Figure 9. Visualization results of six types of networks on the two data sets. (a) is the partial result of
Faster R-CNN, (b) is the partial result of TSD, (c) is the partial result of ATSS, (d) is the partial result
of Retinanet, (e) is the partial result of result SI-STD, and (f) shows part of the results of STC-Det. The
upper row in the figure is a partial result on the TowerS data set, and the next row is a partial result
on the TowerM data set. The red rectangles in the figure are the prediction results of the networks,
and the blue rectangles are the ground truths.
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Figure 10. Visualization results of heatmaps of six networks on the two data sets. (a) is the partial
result of Fastr R-CNN, (b) is the partial result of TSD, (c) is the partial result of ATSS, (d) is the
partial result of Retinanet, (e) is the partial result of result SI-STD, and (f) shows part of the results of
STC-Det. The upper row in the figure is a partial result on the TowerS data set, and the next row is a
partial result on the TowerM data set. The darker the color in this picture, the greater the impact of
this part on the detection.

3.5. Discussion

The trunk information of the slender target in the optical satellite remote sensing will be
greatly compressed during imaging, and its performance is greatly affected by the satellite
perspective. In most cases, the shadow of a slender target can well reflect the missing structural
features of target, and the imaging of the shadow is basically not affected by the satellite
perspective. Based on this feature, we designed the STC-Det network, which uses shadow
information to assist in detecting slender targets, and can automatically adjust the weights of
shadows and targets under different satellite perspective, which greatly improves the detection
accuracy and the robustness of the satellite perspective. SI-STD is our preliminary attempt to
detect slender targets based on shadow information. Based on SI-STD, STC-Det is proposed to
solve the impact of satellite perspective on detection. However, there are still some problems
that need to be overcome. First, the shadow-based detection methods are greatly affected
by shadows. In some extreme weather or special solar parameters, the shadow information
is blurred, which not only cannot help the detection, but will interfere with the detection.
Second, the current method uses less external information such as satellite parameters and is a
completely data-driven detector, which requires a great amount of data and calculations, and
the detection efficiency of the algorithm is low. To solve this problem, we can consider adding
external prior information such as satellite parameters in the to reduce the dependence on data
and the complexity of algorithm. Finally, the existing research does not consider the drastic
changes of the solar altitude and the solar azimuth, which is also a problem that needs to be
overcome in the future.

4. Conclusions

In this paper, we found that there are two problems in the detection of slender targets
based on optical satellite images. One is that the main feature of slender targets located
on the side elevation of the trunk is compressed greatly during imaging, which is not
conducive to detection. Second, the performance of slender targets such as power trans-
mission towers in the image is greatly affected by the satellite perspective, and the same
target behaves completely differently under different satellite perspectives. In response to
these two problems, this paper has made some improvements. We analyzed the imaging
geometry model of slender targets and their shadows in optical satellite images. Slender
targets are easily affected by changes of the satellite perspective, while their shadows are
less affected by the satellite perspective. When the satellite perspective is small, shadows
can be used to make up for the missing side elevation shape information of the slender
targets. When the satellite perspective changes, the invariable shadow features can be used
to assist in the interpretation of the changing slender targets. Combining this idea, in the
paper, we propose STC-Det. STC-Det imitated deformable convolution and designed the
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AMM module to realize the automatic matching of the shadow candidate regions with the
target candidate regions, and the FFM module was proposed after many experiments to
effectively use the shadow and target information, which realized the fusion of shadow
and target information and the automatic distribution of the weights of the two. Finally,
in order to intuitively see the impact of changes in satellite perspective on slender targets
and shadow imaging results, in this paper, we improve the existing heatmap algorithm to
make it suitable for object detection and verify the validity and correctness of the method
proposed in the paper in an intuitive way. In this paper, we propose a series of improve-
ment measures for the detection of high-voltage power transmission towers and other
slender targets in optical satellite images. These methods are indeed effective, but there
are still many shortcomings. Some hyperparameters of the STC-Det network proposed in
this paper need to be adjusted manually, and the detection speed of the network needs to
be improved. Therefore, the focus of the next phase of work is to reduce the number of
hyperparameters in the network and improve the efficiency of the network.
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