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Abstract: Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R)
instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is
usually computed from the time difference between the peak of the direct signal waveform and the
maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the
airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and
Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This
work analyses different methods to compute the altimetric observables using GNSS-R. A proposed
novel method, the Peak-to-Minimum of the 3rd Derivative (P-Min3D) for narrow-band codes (e.g.,
L1 C/A), and the Peak-to-Half Power (P-HP) for large bandwidth codes (e.g., L5 or E5a codes) show
improved performance when using real data. Both methods are also compared to the Peak-to-Peak
(P-P) and Peak-to-Maximum of the 1st Derivative (P-Max1D) methods. The key difference between
these methods is the determination of the delay position in the reflected signal waveform in order to
compute the altimetric observable. Airborne experimental results comparing the different methods,
bands and GNSS-R processing techniques show that centimeter level accuracy can be achieved.

Keywords: cGNSS-R and iGNSS-R; dual band; bandwidth; coherent integration time; ocean altimetry;
sea surface height; airborne; Microwave Interferometric Reflectometer (MIR)

1. Introduction

The concept of what is called today interferometric GNSS-R (iGNSS-R) was proposed
in 1993 for mesoscale altimetry [1]. It consist of the cross-correlation of the collected direct
and reflected signals. After some encouraging results [2–6], the concept was refined in [7],
and the technique was first demonstrated at the Zeeland bridge experiment in 2011 [8]. In
the mid 90’s another GNSS-R technique was devised, which is called today conventional
GNSS-R (cGNSS-R) [9] in which the reflected signals are cross-correlated with a locally
generate replica of the transmitted signal.

In GNSS-R there are three main types of altimetry techniques: delay altimetry, phase
altimetry, and the interference pattern technique. In delay altimetry, precision (σh) is related
to the delay precision (sigmatau), and in the presence of white thermal noise, the achievable
delay precision is given by the Cramér Rao bound, which mainly depends on the signal-to-
noise ratio (SNR), the instrument’s bandwidth (B) and the Gabor bandwidth (β) [10]. In
phase altimetry, the phase of the complex waveform of the received signal is estimated, and
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if the GNSS-R receiver includes a phase-locked loop, then phase variations are dynamically
compensated, and the delay can be readily estimated from the pseudo-ranges and a model
of the scattering geometry. Phase altimetry is feasible if the scattering takes place over a
specular surface, or at near grazing angles, which ultimately limits its range of applicability.
Finally, the interference pattern technique can be used in ground-based receivers, and it is
based on the observation of the fringes induced by the coherent interference of the direct
and reflected signals.

Phase [11–19] and delay [20–27] altimetry performance studies for GNSS-R instru-
ments have been published using spaceborne and airborne [28–33] data, or using the
interference pattern between the direct and reflected signals [34–37]. Phase altimetry
suffers from ambiguities difficult to correct for. So far, the most widely used technique
to compute the altimetric delay the altimetric delay is typically based on the position
of the maximum of the first derivative of the reflected signal waveform. The waveform
is the cross-correlation of the direct or reflected signal with either a locally generated
replica of the transmitted signal if using conventional GNSS-R (cGNSS-R) technique, or the
cross-correlation of both the direct and the reflected signals with each other if using interfer-
ometric GNSS-R (iGNSS-R) technique [38]. The achievable performance has been studied
in [10,28,39–42], including the retracking considerations [43–46], and the electromagnetic
bias [47,48]. The relative delay estimation technique can be done using the maximum of
the first derivative (P-Max1D), is well explained in [49], and a known disadvantage is that
this position shifts depending on the receiver’s bandwidth [50,51].

In order to assess the performance of different GNSS-R altimetry methods, data from a
MIR flight over the Bass Strait, which separates Australia and Tasmania, are used. MIR pro-
vides excellent data to fairly assess different GNSS-R methods, as the dual-frequency data
are from different constellations (GPS and Galileo) sharing the same frequency bands, and
can be processed with different parameters (the coherent and incoherent integration times),
and processing techniques (cGNSS-R or iGNSS-R). In order to make a fair comparison, all
the methods (P-Max1D, P-P, P-Min3D and P-HP) are evaluated using exactly the same MIR
data-set. As shown in this paper, the delay of the maximum of the first derivative presents
a number of limitations. To overcome them, a novel method for GNSS-R altimetry is
introduced in this work: the Peak-to-Minimum of the third derivative (P-Min3D), specially
useful for narrow-band signals as it is more resilient to the receiver’s finite bandwidth. For
large bandwidth signals such as L5 or E5a, it is not clear which method would perform
best as there is fewer literature. Therefore, all the methods are tested again for these signals,
and it is found that the best performance is achieved by the Peak-to-Half power (P-HP).

2. Materials
2.1. Receiver Specifications

The Microwave Interferometric Reflectometer (MIR) instrument [52] (Figure 1) was
designed, built and operated by the Universitat Politècnica de Catalunya. MIR is an air-
borne multi-constellation multi-beam dual-band GNSS-Reflectometer, with beam-steering
capabilities to automatically track the direct and reflected GNSS signals from GPS and
Galileo. MIR can acquire the direct and reflected signals at L1/E1 (1575.42 MHz), and at
L5/E5a (1176.45 MHz) simultaneously using 2 + 2 up-looking beams, and 2 + 2 down-
looking beams with a measured average bandwidth at −10 dB of ≈20 MHz at L1/E1,
and ≈ 34 MHz at L5/E5a. The beams are automatically steered to track the direct and
reflected GNSS signals, and compensate for aircraft attitude changes, and GNSS satellites
movement. The signals are sampled at 32.736 MSps, with 1 bit for both the in-phase
and quadrature (I and Q) components, and stored for offline processing [52], using either
cGNSS-R or iGNSS-R techniques and configuring other parameters as the coherent and
incoherent integration times.
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(a)
(b)

Figure 1. (a) MIR instrument, and (b) 19-element up-looking antenna array mounted in a fixed-wing
aircraft ready for an airborne campaign (Melbourne, Australia) [52].

2.2. Data

The data used in this analysis correspond to one of the transects of the MIR flight on
6 June 2018 over the Bass Strait. This transect has been selected because it tracks exactly
the same GPS satellite simultaneously at L1 and L5 bands. This allows for a consistent
comparison between bands. In addition, simultaneously to the tracking of the L1 and L5
bands, another beam was tracking a Galileo satellite at the E5a band. The aircraft flew at an
average stable altitude of 1535 m with respect to the WGS84 ellipsoid. The ground track is
shown in Figure 2. The transect started at 4:14 UTC at (38.9176° S, 149.0996° E), and ended
at 4:36 UTC in (38.1843° S, 149.1952° E). The GPS satellite was PRN 3. It changed its azimuth
angle from −44.5° to −46.3° with respect to the aircraft, and the incidence angle changed
from 31.1° to 21.0° . The Galileo satellite was the PRN E08. In this case, the satellite changed
its azimuth angle from −45.5° to −34.1° with respect to the plane, and the incidence angle
changed from 33.7° to 27.8° .

The flight track and time were chosen so that it overlapped precisely with the track
of CryoSat-2 [53] for comparison, starting at 4:11:29 UTC in (38.1846° S, 149.1982° E) and
ending at 4:11:51 UTC in (38.9182° S, 149.1052° E) (Figure 2). CryoSat-2 altimeter offers
centimeter level resolution, its data are freely available, so they can be used as ground truth
of the closest MIR GNSS-R specular reflection point.

Figure 2. Map of the location of the track from the MIR transect (yellow), CryoSat-2 (red), and the
specular reflections position of the GPS PRN 3 (green) and Galileo E08 (blue).

For this scenario the size of the first Fresnel zone at L5 is between 21 m and 33 m [54].
The plane speed was ∼67 m/s, which translates into an average distance between samples
of ∼6.7 m for an integration time of 100 ms. For the L1 C/A signal, the resolution is limited
by the width of its auto-correlation function, and the footprint is ∼300 m. In comparison,
CryoSat-2 has a cross-track resolution of 15 km [53]. The along-track base resolution is
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also 15 km, although CryoSat-2 performs a SAR-processing technique, which significantly
improves the resolution to ∼250 m in the along-track direction. CryoSat-2 high quality
data clearly allows the observation of the shape of the geoid (Figure 3).

Figure 3. CryoSat-2 altimetry data used as reference ground-truth in this study and geoid (EGM96),
both with respect to WGS84. CryoSat-2 flight direction was opposite to the one from the MIR
transect analyzed.

Equation (1) shows the cross-correlation to process the data in cGNSS-R; ys corre-
sponds to either the direct or reflected signal in the time domain, and yr is the locally-
generated PRN code replica of the transmitted signal. The term ej2π fdt is a complex phasor
at the Doppler frequency fd; Tcoh is the coherent integration time; Y(τ, fd) is the so-called
complex Delay-Doppler Map (DDM), and |Y(τ, fd)|2 is the power DDM, which can be
incoherently integrated to reduce speckle noise (Equation (2)). In Equation (2), Nincoh is the
number of correlations incoherently averaged corresponding to an incoherent integration
time (Tincoh, Equation (3)). The cross-correlations are computed using Fast Fourier Trans-
forms (FFT) as described in [55]. In this work, the GNSS-R observable is the waveform
or delay profile at the particular Doppler frequency that passes through the maximum of
the amplitude of the DDM, |Y(τ, fd = fd||Y|2max

)|2. The computation time is limited, so in
this study, L1 and L5 waveforms which come from the same satellite are prioritized and
computed using the cGNSS-R technique with coherent integration times of 1, 4 and 10 ms
for GPS data. While Galileo E5a data is only computed with 1 ms. Using the iGNSS-R tech-
nique the coherent integration time is also set to 1 ms. In all cases the data are incoherently
averaged up to 100 ms, as shown in Table 1.

|Y(τ, fd)|2 = |
∫ Tcoh

0
yr(t)y∗s (t− τ)ej2π fdtdt|2 (1)

|Y(τ, fd)|2 =
1

Nincoh

Nincoh

∑
n=1
|Y(τ, fd)|2n (2)

Tincoh = Nincoh · Tcoh (3)

The SNRs are computed as the ratio of the waveform peak and the noise floor level,
estimated using 30 delay bins prior to the start of the waveform, where the signal power is
not present. cGNSS-R uses a locally-generated replica of the code and the SNR is higher
than in iGNSS-R in which the correlation is computed with the direct noisy signal. However,
it has the advantage that it is not limited to public codes and their limited bandwidths
(Table 1). Increasing the coherent integration time increases the SNR [56]. Comparing GPS
L1 and L5, which are transmitted from the same satellite, L1 signals with Tcoh = 1 ms have
lower SNR than L5, as the transmitted power at L1 C/A is lower than at L5 [10].
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Table 1. Summary of the MIR data processed in this work. Available bandwidth (BW) refers to the bandwidth limited by
the public codes in cGNSS-R cases or by the total transmitted bandwidth in the iGNSS-R cases [10]. MIR has a measured
average bandwidth at −10 dB of ≈20 MHz at L1/E1, and ≈34 MHz at L5/E5a.

Sat. Band Available MIR Process. Tcoh Nincoh Tincoh Average SNR
PRN BW [MHz] beam Tech. [ms] [ms] [dB]

3 L1 2.046 2 cGNSS-R 1 100 100 20.5
3 L1 2.046 2 cGNSS-R 4 25 100 26.5
3 L1 2.046 2 cGNSS-R 10 10 100 28.7
3 L1 30.69 2 iGNSS-R 1 100 100 10.9
3 L5 20.46 3 cGNSS-R 1 100 100 22.6
3 L5 20.46 3 cGNSS-R 4 25 100 25.3
3 L5 20.46 3 cGNSS-R 10 10 100 27.5
3 L5 24.00 3 iGNSS-R 1 100 100 18.8

E08 E5a 20.46 4 cGNSS-R 1 100 100 20.8

3. Altimetric Methods

The waveforms contain information on the time of arrival of the signal. For airborne
heights, the flat Earth approximation holds, and the height measurement (hmeasured) can be
computed from the delay difference between the direct (Tdirect) and the reflected (Tre f lected)
waveforms as in Equation (4) (from p.171 of [57]), where c is the speed of light, and θelev is
the elevation angle, which is the complementary of the incidence angle (θinc) (Figure 4). In
the interferometric case, the delay can be derived from the interferometric waveform [58].
Equation (4) can be transformed into Equation (5) to use the difference in samples between
waveforms (di f fsamp), where Fs is the sampling frequency. Finally, subtracting the height
of the platform (hplaneWGS84) referenced to the WGS84 ellipsoid, the sea surface height
(SSHmeasured) referenced to the WGS84 is obtained (Equation (6)). Note that, because of
the low flight height, atmospheric and ionospheric delay corrections can be neglected.
Variations in the pitch (σpitch = 0.46° ), roll (σroll = 0.65° ) and yaw (σyaw = 0.69° ) angles
from the plane are also negligible during the integration time.

hmeasured =
Tre f lected − Tdirect

2sin(θelev)
· c (4)

hmeasured =
di f fsamp

2cos(θinc)
· c

Fs
(5)

SSHmeasured = hplaneWGS84 − hmeasured (6)

Figure 4. Diagram representing the different magnitudes involved in Equations (4)–(6).
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One of the key points in GNSS-R altimetry is the determination of the tracking point
of the reflected waveform to compute the delay difference (Figure 5). In this work different
approaches are analyzed:

• In Peak-to-Peak (P-P), the peak (maximum) of the waveform is optimal for the direct
signal. However, for the reflected case, it will only be optimal if the reflection is
specular. As seen in [54], during the analyzed flight the wind-driven waves were
∼1.7 m high with a period of 5 s, and the swell waves were ∼1.2 m high with a period
of 10 s. Therefore, the flat surface condition (Rayleigh criterion, Equation (7), [35,59])
is not satisfied for the frequencies and incidence angles considered, and the reflection
was not specular.

σh <
λ

8cos(θinc)
(7)

• The second method considered uses the peak of the direct signal waveform, and the
maximum of the first derivative of the reflected signal waveform (P-Max1D) [49].

• The third method tracks the Half-power position of the waveform (P-HP), as in radar
altimetry [60]. It is adapted to GNSS-R using the peak of the direct signal waveform
and the half-power point of the leading-edge of the reflected signal waveform. The
main difference with respect to radar altimetry is that the bandwidths used in GNSS-
R are much smaller, at least by an order of magnitude. Based on the model of the
position of the maximum of the first derivative [49], some GNSS-R experiments [41,61]
have also used this technique, but using the point at 70% instead.

• Finally, to overcome the limitations of the previous methods, a new method is pro-
posed: the use of the peak of the direct signal waveforms and the minimum of the 3rd
derivative of the reflected signal waveform (P-Min3D).

Figure 5. Diagram illustrating different methods to compute the time difference between the direct
and the reflected correlations for the altimetry observable. P-P (purple), P-Max1D (green), and
P-HP (yellow).

3.1. GNSS-R Altimetry Using the Peak-to-Minimum of the 3rd Derivative

This novel method can be understood as a refinement of the analysis made in [49]. In
Case 1 the simulation in [49] is repeated to study the minimum of the 3rd derivative, and
compared it with the maximum of the first derivative. Then, in Case 2, the consideration of
having a rougher sea altered by waves is included in the simulation to make it more realistic.
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3.1.1. Case 1

Following the procedure in [49], the ideal L1 C/A waveform (Figure 6a), and an
off-specular (or scattered) reflection impulse response (Figure 6b) are generated first.

The reflected waveform (Figure 6c) is generated as the convolution of the previous
two functions (Figure 6a,b). As expected, the maximum of the first derivative corresponds
to the inflexion point (zero of the second derivative) at delay 0, and so it is the minimum of
the third derivative.

To include the effect of the receiver’s finite bandwidth, the waveform has to be
smoothed (low-pass filtered). In doing so, the maximum of the first derivative and the
minimum of the third derivative shifts towards negative delays in the non-reflected case
(Figure 7a, bandwidth≈ 5.115 MHz), as compared to the ideal case (Figure 6a, infinite band-
width).

(a) (b) (c)

Figure 6. (a) Simulated ideal L1 C/A waveform, with infinite bandwidth, and its first, second, and third derivatives.
(b) Simulated reflected power function as a function of the delay. (c) Simulated L1 C/A reflected waveform (convolution of
a and b). The maximum of the first derivative, and minimum of the third derivative correctly track the delay 0.

(a) (b)

Figure 7. (a) Simulated L1 C/A waveform low-pass filtered (bandwidth ≈ 5.115 MHz). (b) Simulated reflected L1 C/A
waveform low-pass filtered (convolution of Figure 7a and Figure 6b). The maximum of the first derivative shifts towards
the negative delays, while the minimum of the third derivative remains closer to the zero delay.

When convolved with the reflected power function (Figure 7b) the first derivative
shifts towards a negative delay [49,50]. The zero in the second derivative shifts with the
maximum in the first derivative, while the minimum shifts to the positive side, closer to
the peak of the waveform, at the point of maximum curvature. Between these two points,
the second derivative describes an abrupt slope change because the waveform’s curvature
changes drastically. The third derivative tracks the rate of change of the curvature, which
has a minimum when the slope of the second derivative is minimum (maximum negative
change). It has to be noted that the maximum negative rate of change in the waveform
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curvature (minimum of the 3rd derivative) occurs at delay 0, in both the ideal case and in
the smoothed one (finite bandwidth case).

The position change of the maximum of the first derivative, and the minimum of the
third derivative, is now computed for several bandwidths (i.e., low-pass filtered versions).
Figure 8 shows that the position of the first derivative maximum is only optimum for very
large bandwidths (near infinite), otherwise a non-negligible shift in the tracking position of
the waveform is introduced. Conversely, the third derivative minimum correctly tracks
the delay for a wider range of bandwidths (larger than ∼5 MHz), and then the shift is
less abrupt.

Figure 8. Delay position tracking of the maximum of the first derivative and minimum of the third
derivative as a function of the bandwidth. The first derivative maximum shifts towards negative
delays for finite bandwidths, while the third derivative minimum remains closer to the zero delay for
a wider range of bandwidths (larger than ∼5 MHz).

3.1.2. Case 2

In the previous case the leading edge of the reflected power function had an infinite
slope. However, when the reflection takes place over a rough sea (i.e., waves) as in radar
altimetry the leading edge of the returned power has a finite slope [60].

To analyze this effect the increase of the rise time of the leading edge with the sig-
nificant wave height (SWH) is modelled as 2 · SWH/c [62]. Considering the swell waves
of 1.7 m, the rise time is not a step function anymore at delay 0, but takes about 11.3 ns,
or 0.0116 C/A chips. Since the power function is normalized, the slope can be estimated
from the rise time delay as 1/0.0116 = 86.2 u/(C/A chips). The maximum point of the
triangle (rise time, as it starts at 0) is 0.0116 C/A chips, and the mid-rise position of the
leading-edge is at 0.0058 C/A chips (Figure 9a). Following the same procedure, Figure 9a
is convoluted with the ideal C/A waveform (Figure 6a). Then, as in the previous case,
low-pass filtered cases are computed to simulate a bandwidth reduction. Figure 9c shows
the simulated case for a bandwidth ≈ 5.115 MHz.

As in Figure 8, the tracking point is computed as a function of the equivalent receiver’s
bandwidth for the maximum of the first derivative, and the minimum of the third derivative
(Figure 10a). The position of the delay of the minimum of the third derivative is coincident
with the mid-rise position of the leading-edge of the reflected power function (marked
with a dashed green line) for a wide range of bandwidths (larger than ∼5 MHz), which
is optimal to compute the altimetry delay. For the first derivative, the tracking position
is close to the zero delay only for very large bandwidths (near infinite), but starts to drift
rapidly as in Case 1 (Figure 8).
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(a) (b) (c)
Figure 9. (a) Simulated reflected power function as a function of the delay with a leading edge slope of 86.2 u/(C/A chips)
(SWH ≈ 1.7 m). (b) Comparison between the reflected power function with a leading edge slope of 86.2 u/(C/A chips)
compared to the one from Case 1 (Figure 6b) with infinite slope. (c) Simulated low-pass filtered version of a reflected
waveform for a rough sea (SWH ≈ 1.7 m, bandwidth ≈ 5.115 MHz).

(a) (b)
Figure 10. Delay position tracking of the maximum of the first derivative and minimum of the third derivative as a function
of the bandwidth (considering leading-edge of (a) slope 86.2 u/(C/A chips), SWH ≈ 1.7 m and (b) a slope 60 u/(C/A
chips), SWH ≈ 2.4 m ). The minimum of the third derivative tracks the mid-rise position of the leading-edge of the reflected
power function (marked with a dashed green line, while the maximum of the triangle is marked with a dashed red line).
The maximum of the first derivative tracks a point near the zero delay for very large bandwidths, and then it starts to shift.

In order to generalize the previous results, and include other factors like the incidence
angle, a smaller leading edge slope is simulated for the power reflection function. The
slope considered is 60 u/(C/A chips) which models the reflection over a rough sea surface
with a SWH ≈2.4 m. The maximum for this is at about 0.0167 C/A chips, and the mid-rise
position of the leading-edge is at 0.0083 C/A chips.

For this slope (Figure 10b), the behavior is similar to the previous case. The minimum
of the third derivative still tracks the mid-rise position of the leading-edge of the reflected
power function. Other lower slopes have been tested (e.g., 20 u/(C/A chips), SWH ≈ 7.3 m)
and the same behavior has been observed.

4. Results

All the described altimetry methods are computed for the time series of all the wave-
forms computed with Tcoh = 1 ms and Tincoh = 100 ms. For each different method, a linear
regression with the CryoSat-2 data is computed. Once the best method is found (slope of
the linear fit closer to 1, as offsets can be calibrated) processing for other Tcoh at the same
frequency band and processing type are conducted (Table 1).

For each configuration (Table 1), the Allan Variance [63] and the unbiased root mean
squared altimetry error (ubRMSE) with respect to the CryoSat-2 data are computed for
different bands and processing methods.
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The computation of the Allan Variance requires that the altimetric measurement series
are detrended so that they have a zero mean. For the computation of the ubRMSE, the
offset of the linear fit regression is subtracted from all the values. Missing data samples are
omitted in the computations, and values of the track edges closer to the moving window
length discarded.

4.1. Altimetric Methods

Figure 11 shows the SSH obtained from L1 computed using the cGNSS-R technique,
and 3 different methods for the height estimation. The linear fit of the estimates is stable
with increasing averaging. Therefore, to have a better visualisation, the figure shows the
incoherently averaged data at 100 s. In Figure 11a, SSH estimates are plotted against
time. In Figure 11b the unbiased SSH estimates from MIR are plotted with respect to the
CryoSat-2 SSH data. Choosing a sub-optimal method not only introduces an offset, but it
also affects the slope of the regression, which ideally should be equal to one.

(a)

(b)
Figure 11. Sample of altimetry estimates computed using cGNSS-R at L1 with 3 different methods:
P-P, P-Max1D, and P-Min3D, showing (a) the error introduced in the time series, and (b) the scatter
plot of the unbiased SSH obtained by each method and CryoSat-2 SSH values. Computed using the
cGNSS-R technique with Tcoh = 1 ms and Tincoh = 100 s. For this case, P-HP would present similar
behaviorthan P-Max1D but with an even lower slope as shown in Table 2.
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Table 2. Slopes and offsets of the regressions for the different GNSS-R altimetry methods, bands, and
processing techniques with respect to the CryoSat-2 data. Using Tcoh = 1 ms and Tincoh = 100 ms.

Process. Tech. Band Altimetry Method Slope [m/m] Offset [m]

cGNSS-R

L1 P-P 1.36 −9.42
L1 P-Max1D 0.71 12.25
L1 P-HP 0.57 46.52
L1 P-Min3D 1.03 2.78

cGNSS-R

L5 P-P 1.35 −8.63
L5 P-Max1D 1.12 1.97
L5 P-HP 1.03 3.87
L5 P-Min3D 1.17 −0.97

cGNSS-R

E5a P-P 1.20 −8.39
E5a P-Max1D 1.05 1.52
E5a P-HP 1.02 3.04
E5a P-Min3D 1.07 −0.57

iGNSS-R

L1 P-P 1.14 −4.06
L1 P-Max1D 1.17 1.48
L1 P-HP 0.50 11.17
L1 P-Min3D 1.16 1.01

iGNSS-R

L5 P-P 1.20 −6.84
L5 P-Max1D 1.19 1.73
L5 P-HP 1.05 4.09
L5 P-Min3D 1.16 0.63

Table 2 shows the results of the fit of the GNSS-R altimetry products with CryosSat-2
for the different altimetry methods, using L1, L5 and E5a, cGNSS-R and iGNSS-R tech-
niques, for Tcoh = 1 ms and Tincoh = 100 ms. The following conclusions can be extracted:

• In the first part of the table L1 cGNSS-R cases are shown.

– The P-P method is not optimal as the slope is significantly larger than 1.
– The P-Max1D is not optimal either. As explained in Section 3.1, results match

with the simulation of P-Min3D, where, due to the finite bandwidth, the tracking
position shifts.

– The P-HP shows the worst results. L1 C/A signal limited bandwidth (Table 1)
makes a wide waveform with a gradual leading edge. Figure 9c) shows that the
50% position is shifted almost 0.2 C/A chips (∼58 m) from the optimal zero delay,
which explains the large offset and that the behaviorfrom the estimates is so far
away from the optimal (slope 1). As it will be seen, this method extrapolated
from radar altimetry works better with larger bandwidth signals with a steeper
leading edge.

– As in the simulations, the P-Min3D tracks well the desired mid-rise leading-edge
position of the reflected power function, and has a slope very close to 1. L1 MIR
waveforms (Figure 12a) have similar shape to the simulated cases (Figure 9c).

• The next section of the Table 2 shows the main results for the cGNSS-R at L5:

– As in L1, the P-P method does not offer the best performance. As it has been
stated, this method works best with specular reflections and the sea waves present
on that day induce a non-specular reflection.

– The P-Max1D performs slightly better than at L1. In the L5 case, the first deriva-
tive maximum is close to the half power position (Figure 12b), because of the
steepness of the waveform.

– The P-HP achieves the best slope (i.e., closest to 1). L5 codes have a large band-
width, 10 times larger than L1 C/A codes. which leads to a sharper waveform
(Figure 13).
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– Finally, the P-Min3D presents a similar behaviorto the P-Max1D. Its position is
closer to the half power position as now the leading edge is much steeper, due to
the larger bandwidth.

(a) (b)
Figure 12. Sample of a normalized (a) L1, and (b) L5 cGNSS-R reflected waveform acquired by MIR, and its first and third
derivatives. Computed with Tcoh = 1 ms and Tincoh = 100 ms.

(a) (b) (c)
Figure 13. Examples of normalized reflected waveforms shapes acquired by MIR, showing (a) L1 waveform, (b) L5
waveform and (c) E5a waveform, all computed with cGNSS-R technique and with Tcoh = 1 ms and Tincoh = 100 ms.

• The slopes of the E5a waveforms have a similar behaviorto those of at L5. The
waveform shapes are very similar (Figure 13b,c), and the code bandwidth is the same.
The P-HP method is the one with the closest slope to 1. Galileo E5a transmitted power
is also 3 dB higher than GPS L5 [10], this is likely to be the reason why, in general, all
the slopes are better than at L5.

• As shown in Table 1, iGNSS-R cases exhibit a lower SNR than cGNSS-R, and lower at
L1 than at L5. L1 waveforms also present multiple correlation peaks overlapping in the
same composite waveform, formed by the correlation of the different signals present
at L1 (e.g., C/A, P(Y) or M-codes). The low SNR, and the different shapes present in
the waveforms are actually a challenge for these methods. The P-P method is the one
performing the best for this case. It usually tracked the peak of the correlation of the
encrypted codes, although not in the optimal position for non-specular reflections.
For these reasons, the slope of the fit is worse than for the other cases.

• The iGNSS-R L5 case is quite similar to the conventional case, as it is already using
large bandwidth codes. The secondary peaks from secondary reflections which
sometimes appear in the L5 waveforms [54] are also present. As in the L5 conventional
case the P-HP achieves the slope closest to 1.

All things considered, to get the best of iGNSS-R processing, different methods than
those used for cGNSS-R are needed to properly handle multiple reflections, correlation
peaks, or possibly different signals transmitted by the GNSS satellites.
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Offsets theoretically should tend towards 0, but they will normally differ a bit for
different factors (e.g., antenna phase centers are not in the same exact point). However, it is
important to notice that a wrong method with a slope different than 1 also introduces error
in the offset (e.g., cGNSS-R L1 P-HP). Once the slope is correct, this can be easily calibrated
as it is constant.

4.2. Allan Variance

The computed Allan variance is shown in Figure 14. In all cases, the general decreasing
trend of the variance is proportional to

√
Tincoh. The following conclusions can be extracted:

(a) (b)
Figure 14. Allan variance computed for (a) L1 and (b) L5 and E5a for the computed altimetric methods and coherent
integration times.

• L1 cGNSS-R with Tcoh = 1 ms measurements with few averaged samples have less
variance than those from the L5. This might be due to the oversampling at L1. MIR
uses 32 samples per C/A chip, at L5 due to the narrower waveforms the number of
samples defining the peak is smaller. As the averaging increases, L5 starts to show a
smaller variance than the L1 ones, although both results are quite close.

• L1 and L5 cGNSS-R at long coherent integration times, Tcoh = 4 ms and Tcoh = 10 ms
exhibit better performance, at L5 better than L1. At L1 cGNSS-R the SNR improved
with longer coherent integration times, and the variance decreased as the SNR in-
creased. At L5, the SNR also increased with longer coherent integration times, but for
Tcoh = 4 ms the variance is smaller than for Tcoh = 10 ms. This behavioris attributed
to the coherence time of a surface (τs) which can be estimated as Equation (8) [56].

τs =
λ

2 · v

√
h

2 · c · τc · cosθinc
(8)

where λ is the wavelength; v the platform speed; h is the height; c the speed of
light; τc is the duration of a chip; and θinc the incidence angle. For the conditions
of this flight, at L1, the coherency would be lost after 2 ms for θinc = 0° or 2.8 ms
for θinc = 45° [64], so the improvement in 4 and 10 ms is purely linked to the SNR
improvement. However, at L5 coherency would be lost after 7.7 ms for θinc = 0° or
10 ms for θinc = 45° [64]. Since θinc varied from 31° to 21° , it never reached 10 ms, but
the coherence of the surface was always longer than for 4 ms. This is clearly shown by
the L5 variance which reached the better value for Tcoh = 4 ms.

• The iGNSS-R cases achieved the smallest variances since they have largest band-
widths, despite the lower SNRs. In this particular case L1 is a bit better than L5.
iGNSS-R cases are limited by the receiver’s bandwidth and the maximum bandwidths
transmitted at the band. In L5 MIR bandwidth ∼34 MHz is larger than the total
transmitted bandwidth at L5, 24 MHz, so noise is being added to the signal. At L1
MIR bandwidth ∼20 MHz is lower than the 30.69 MHz transmitted, in this case the
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maximum resolution [10] is limited by the bandwidth, but there is no addition of
noise due to a larger bandwidth.

• E5a measurements (cGNSS-R with Tcoh = 1 ms), start with a variance similar to L1,
and as the averaging increases it shows similar variances to the L1 and L5 cGNSS-R
ones with Tcoh = 1 ms.

After ∼40 to 90 samples of averaging the variance stops decreasing. This corresponds
to remaining differences between the aircraft height variations and the measured height.
Especially in the iGNSS-R cases, that the variance also stopped decreasing at ∼5 to 8 sam-
ples. The equivalent distance of these amount of samples corresponds to ∼30 m to ∼50 m,
which corresponds to the averaging distance of swell waves.

4.3. ubRMSE

Figure 15 shows the unbiased root mean squared error. At Tincoh = 100 ms (1 sample,
6.7 m) the worst ubRMSE is ∼6.6 m for L5 cGNSS-R with Tcoh = 1 ms case, and the best
one is ∼2.7 m for the iGNSS-R case. At about 10 s integration (100 samples, 670 m) for all
cases it is about 80 cm–1.3 m, and at 100 s, between ∼30–40 cm, except for L1 iGNSS-R case
which is ∼60 cm. L1 iGNSS-R has the slope fit with CryoSat-2 data most different from
1 among the considered cases, although having the lowest Allan variance for τ[average
samples] > 300 s.

Coincident with the minimum of Allan variance, most cGNSS-R cases reached the
minima from ∼7 cm to ∼17 cm at around 500–550 s. Except, L1 iGNSS-R which only
reached ∼30 cm. The drawback of this long averaging times is the coarse spatial resolution
(∼37 km).

(a) (b)
Figure 15. Unbiased root mean squared error (ubRMSE), with respect to CryoSat-2, for (a) L1 and (b) L5 and E5a for the
computed altimetric methods and coherent integration times.

5. Discussion

The analysis of the slope of the regression for each method (P-Max1D, P-P, P-Min3D
and P-HP) has shown that for L1 cGNSS-R, the best method is our proposed P-Min3D
(Table 2). Unlike P-P and P-HP, this method computes the delay estimate in the waveform
near the optimal place as P-Max1D, but it has shown to be more resilient to the receiver’s
finite bandwidth. For waveforms derived from larger bandwidth signals, such as the codes
at L5 or E5a, the methods that had performed best at L1 (P-Max1D and P-Min3D) may
work, but are not optimal as the waveform is much narrower. The P-P does not perform
well as the reflections is not specular. P-HP method performs the best for these cases,
thanks to the larger bandwidth of the signal.

Moreover, analyzing the magnitude and behavior from the precision results (Table 3)
match with those found in other research of airborne experiments [31]. For 1 s (67 m)
incoherent averaging, the obtained ubRMSE is of∼2–3 m ,∼1 m for 10 s (670 m) incoherent
averaging , and up to centimeter level, 7–17 cm, with longer averages.
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This means that when the same data is used to compare between the different altimetry
methods the new ones considered (P-Min3D and P-HP) perform the best and, in addition,
when these are compared with other airborne experiments they show consistency in
the measurements.

Table 3. Unbiased root mean squared error (ubRMSE, σh), with respect CryoSat-2, for the computed
bands, altimetric methods and coherent times. For Tincoh = 0.1, 1 and 10 s. The slopes are computed
from the fit with respect to the CryoSat-2 data using Tincoh = 100 ms, as in Table 2.

Process. Band Altimetry Tcoh Slope σh [m] σh [m] σh [m]
Tech. Method [ms] at 0.1 s at 1 s at 10 s

cGNSS-R L1 P-Min3D 1 1.03 6.11 2.92 1.35
cGNSS-R L1 P-Min3D 4 1.06 4.78 2.37 1.22
cGNSS-R L1 P-Min3D 10 0.99 4.74 2.34 1.14
iGNSS-R L1 P-P 1 1.14 2.87 1.89 1.10

cGNSS-R L5 P-HP 1 1.03 6.53 2.78 1.14
cGNSS-R L5 P-HP 4 1.05 4.03 2.07 0.97
cGNSS-R L5 P-HP 10 1.04 4.20 2.09 0.92
iGNSS-R L5 P-HP 1 1.05 2.75 1.67 0.85

cGNSS-R E5a P-HP 1 1.02 5.99 2.79 1.25

Further analyzing the ubRMSE of MIR SSH data when compared to CryoSat-2
SSH data:

• iGNSS-R cases achieved the best results showing an ubRMSE improvement of a factor
of ∼2.2 with respect to the same band and Tcoh using the cGNSS-R technique. From
the simulated precisions for GEROS-ISS [42], more improvement was predicted when
using the iGNSS-R technique as compared to the cGNSS-R technique. However, this
was a space-borne prediction, and considering dual-frequency observables, among
many other corrections, which makes the results hardly comparable. Differently, it
was experimentally shown [32] that the improvement factor when using P(Y) with
the reconstructed GNSS-R (rGNSS-R) technique compared to C/A with the cGNSS-
R technique was ∼2.4. Considering that rGNSS-R will have a higher SNR than
iGNSS-R it matches that the improvement factor is higher for rGNSS-R, but with very
similar magnitudes.

• Comparing L1 and L5 iGNSS-R cases, they performed similar with low averages,
but L5 better overall. L5 iGNSS-R signal had almost 8 dB more SNR than L1 iGNSS-
R, and MIR bandwidth is more limited at L1 than at L5. Therefore, the expected
achievable resolution was lower at L1 than at L5, and the results show this behavior.
Theoretical optima have been analyzed in [10], showing that L1 should perform better
than L5. However, the conditions considered for the theoretical analysis are distinct
than the ones provided by MIR, as in that analysis the signals are considered to
have the optimal bandwidth and same 20 dB SNR, while MIR signals have different
bandwidths than the theoretical optimal and SNR varies with the signal. For these
reasons both iGNSS-R cases have these performances.

• A similar thing happens with the E5a signal. It does perform the best for cGNSS-R
with Tcoh = 1 ms and Tincoh = 100 ms, but when increasing the incoherent averaging
it does not have a clear advantage compared with L5. According to the GEROS-ISS
simulations [42] Galileo signal should perform the best, but again it is considering
dual-frequency observables. And looking at the optimal parameters again [10], the
most optimal parameters are not met. Also, the signals come form different satellites
which may generate significant differences for its fair comparison. Between the L1
and L5 cGNSS-R cases, L5 performs better than L1, because L1 only uses the C/A
code, which has a narrower bandwidth compared to L5 code.
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• Increasing the coherent integration time in cGNSS-R cases increases the SNRs, which
improves the ubRMSE. An improvement of a factor of ∼1.3–1.6 is observed with
respect to the Tcoh = 1 ms. The best performance with coherent integration time is
observed when the coherency of the surface is considered, as at L5.

6. Conclusions

This work has analyzed different methods for GNSS-R altimetry, and compared them
using dual frequency data from a flight of the MIR instrument over the Bass Strait. The
proposed P-Min3D for L1 C/A signals, and P-HP for larger bandwidth signals (e.i. L5/E5a)
showed the best altimetry performance.

For 10 s of incoherent integration time, an ubRMSE with respect to CryoSat-2 data of
∼0.85 m to ∼1.35 m was achieved. The minimum ubRMSE reached ranged from ∼7 cm
to ∼17 cm for all cases considering averages ∼550 s which is consistent with other air-
borne experiments [31], but spatial resolution is very coarse for these long averages. Only
L1 iGNSS-R which have slightly more error. L5 and E5a signals showed better perfor-
mance than L1 C/A signals, which have narrower bandwidth. The iGNSS-R performance
was ∼2.2x times better than cGNSS-R showing the potential of this technique. This im-
provement coincides with the one found in [32]. Increasing the coherent integration time
in cGNSS-R cases achieved an improvement of factor up to ∼1.6x times. Future work
will explore the feasibility of using higher waveform derivatives to better track the al-
timetric delay, the impact of noise amplification and the reliability of the methods for
space-borne missions.

Despite, the methods presented have been derived from airborne data, they can also
be applied for Low-Earth Orbit (LEO) data as well with the proper geometry modifications
to account for Earth’s curvature, and in single frequency GNSS-R instruments using
ionospheric models (e.g., Klobuchar or NeQuick) to compensate for the ionospheric delay.
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Abbreviations
The following abbreviations are used in this manuscript:

MIR Microwave Interferometric Reflectometer
GNSS Global Navigation Satellite System
Peak-to-Minimum of the 3rd Derivative P-Min3D
Peak-to-Half Power P-HP
Peak-to-Peak P-P
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Peak-to-Maximum of the 1st Derivative P-Max1D
GNSS-R Global Navigation Satellite System Reflectometry
cGNSS-R Conventional GNSS-R
iGNSS-R Interferometric GNSS-R
rGNSS-R Reconstructed GNSS-R
Bw Bandwidth
Tcoh Coherent integration time
Nincoh Incoherent integration number
Tincoh Incoherent integration time
SNR Signal to Noise Ratio
w.r.t. With respect to
SSH Sea Surface Height
ubRMSE Unbiased Root Mean Squared Error
Min Minimum
Max Maximum
Der Derivative
UTC Coordinated Universal Time
NN Neural Network
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