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Abstract: Urban impervious surfaces area (ISA) and green space (GS), two primary components of
urban environment, are pivotal in detecting urban environmental quality and addressing global
environmental change issues. However, the current global mapping of ISA and GS is not effective
enough to accurately delineate in urban areas due to the mosaicked and complex structure. To
address the issue, the hierarchical architecture principle and subpixel metric method were applied to
map 30 m global urban ISA and GS fractions for the years 2015 and circa 2020. We use random forest
algorithms for retrieval of the Normalized Settlement Density Index and Normalized Green Space
Index from Landsat images using Google Earth Engine. The correlation coefficients of global urban
ISA and GS fractions were all higher than 0.9 for 2015 and circa 2020. Our results show global urban
ISA and GS areas in circa 2020 were 31.19 × 104 km2 and 17.16 × 104 km2, respectively. The novel
ISA and GS fractions product can show potential applications in assessing the effects of urbanization
on climate, ecology, and urban sustainability.

Keywords: land cover mapping; urban boundary; spatiotemporal dynamics; hierarchical classifica-
tion; urban environments; Landsat

1. Introduction

Global urbanization promotes social–economic development, which profoundly af-
fects ecosystem services and environmental sustainability. Humans are the dominant
drivers of the land-use/cover change from rural to urban as they seek to improve their
well-being [1,2]. Currently, urban areas accommodate 55% of the global population, con-
tribute 75% of global gross domestic product (GDP), and produce 75% of global carbon
emissions in energy use [3,4]. Cities symbolize the most intensified land-use activities
within coupled human–environment systems [5]. As a result, urbanization can influence
the biophysical and biochemical processes, i.e., land-cover change, surface radiation and
energy changes, hydrologic processes, and materials cycles, among others [6–9], all of
which affect cropland encroachments, urban heat islands, rain flood disasters, biodiversity
loss, and climate change in many ways [10–12]. Therefore, new knowledge about global
urban land cover is essential to address urban-related issues of environmental sustainability
through science–policy interfaces [4,13].

As the two foundation components of urban land or built-up areas, urban impervious
surface area (ISA) and green space (GS) are important for building a better urban future that
is livable, comfortable, and sustainable (https://unhabitat.org/ (accessed on 12 April 2021)).
A series of indexes on sustainable cities and communities in the sustainable development
goals (SDGs) for 2030 (https://sdgs.un.org/ (accessed on 12 April 2021)) were proposed
for urban land cover, such as the ratio of land consumption rate to population growth
rate and the average share of a built-up area that is open space for public use. Thus,
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fine-scale and timely urban land-cover maps are required for urban planning, spatial
governance, and sustainability assessment to attain the SDGs. State-of-the-art technologies
of urban land-cover mapping have advanced toward higher spatiotemporal resolution and
accuracy [14–16]. In their initial stage, Moderate Resolution Imaging Spectroradiometer
(MODIS) and Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS) images from 250 m to 1 km resolution were utilized to map the global urban
extent and ISA [13,17–21]. Recently, Landsat, Sentinel, and higher-resolution images were
adopted to retrieve the urban extent or ISA with less than 30 m resolution [9,22–29], while
the magnitude, rate and spatial heterogeneity of global urban change and their impacts
on land-system and environment sustainability were assessed based on spatially explicit
information [26].

In contrast, the development of urban GS datasets does not have sufficient resolu-
tion and completeness, due to varied definitions of green space and different monitoring
methods [30]. The pan-European CORINE Land Cover data set contains a designated class
“Green Urban Areas,” including GS larger than 25 ha [31].The Urban Atlas [32] for the
EU and the Trust for Public Land’s ParkServe data set [33] for the US contains land-use
information only for selected cities. Therefore, it is necessary to integrate multisource data
fusion to create a comprehensive urban GS dataset to realize the monitoring and evaluation
of urban GS across multiple cities. In a comparative study of urban GS in Poland using five
open-source data, the results reveal large differences in the total amount of urban GS in the
cities as depicted in different datasets [34]. Recently, developments in very high resolution
(VHR) satellite remote sensing systems have begun to provide reliable and reproducible
information on urban vegetation across large areas [30,35]. However, because urban GS
monitoring is carried out in only a few cities or regions, high-precision mapping of global
urban GS is still a significant challenge.

Global urban land mapping has made massive progress toward finer-scale and higher-
spatiotemporal resolutions, which is attributed to the applications of big data and the
cloud platform; for example, Google Earth Engine (GEE) remarkably enhances the data-
processing capacity [9,14]. However, the spatially explicit metrics for global cities are
defective in the systemic recognition of urban underlying environments and knowledge
acquisition for the important science-to-practice continuum [36,37]. Those concepts, such
as built-up area, urban land, constructed ISA, human settlement, and artificial ISA are
often confusing and inconsistent with corresponding spatial extents, in which their spatial
domains are actually different. Therefore, urban and rural settlements are not effectively
differentiated, and the area of urban land is overestimated [9,17–20,22–28]. A number of
researchers regard artificial ISA as built-up area or urban land, which may be misleading
when scientists relay potential implications to practitioners [25,26]. We conducted a com-
parison and an analysis of the thirteen mainstream datasets that show large discrepancies
between the different data products (Table S1).

The built-up environment of cities is usually complex in composition and structure
with varied function areas and land uses/covers, with mosaics of buildings, roads, squares,
some trees, and lawns [38,39]. Therefore, a large number of mixed-pixel ISA, GS, and
other cover types occur despite Landsat images with 30-m resolution [40] or Sentinel
images at 10-m resolution. The majority of global urban land-cover mapping relies on
“hard classifications” in specific ISA and GS types. These classification results restrict
the comprehensive evaluation of urban hydrological process, heat island intensity, and
vegetation layout in urban planning.

To address those issues, a number of studies have combined the principle of spatial
autocorrelation or used spatial structure information as a priori models to conduct subpixel
mapping analyses of low- and medium-resolution images [41–47]. In our research, we
used linear spectral mixture analysis and regression tree (RT) algorithms to decompose
the mixed pixels of urban ISA and GS at national and urban scales—i.e., the ISA mapping
from the National Land Cover Dataset (NLCD) in the USA and GS fraction mapping
from China’s Land Use/cover Dataset (CLUD)—and at city scale in Beijing, Shanghai,
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Guangzhou, Chicago, New York, and Los Angeles [38,40,48]. Big data, cloud computing,
and application of human digital interpretation [38] were also utilized to timely and
accurately delineate urban built-up environment [13,14]. We used the random forest (RF)
method to map the global urban ISA and GS fractions by subpixel classification. Then, we
generated a series of datasets from urban boundaries to ISA and GS fractions.

2. Materials and Methods
2.1. The Principle and Strategies for Developing Urban ISA and GS Products
2.1.1. The Hierarchical Architecture Principle and Subpixel Metric Method

Urban areas closely related to human activities have the characteristics of complex
landscape structure and spatial heterogeneity. In order to accurately describe the internal
characteristics of a city, we further classified the urban and rural construction land, the
independent industrial zone on the edge of the city, and the traffic zone through visual
interpretation [40,49]. From the perspective of land use, the built-up areas are identified
as a homogeneous unit through the segmentation of urban–rural boundaries according to
their spatial configuration and intensity [49]. Therefore, human settlements adhere to a
hierarchical architecture principle in spatial domains in line with construction activities.
Among them, built-up areas manifest spatially explicit mosaics of dominant buildings,
roads, squares, trees, lawns, or other cover types [39]. Here, the urban or built-up areas
were usually decomposed into ISA, GS, water area (WA), and bare soil (BS) fractions at
pixel scale as the percentage of land-cover composites (Figure 1).
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 Figure 1. The hierarchical scale principle and subpixel metric method for mapping ISA and GS fractions.

According to the principle, ISA and GS located in built-up areas were mapped with
percentages of pixels. These fractions can be expressed as

Urban = ISA ∪ GS ∪WA ∪ BS (1)

ISAP + GSP + WAP + BSP = 100% (2)

where Urban represents the urban or built-up area, which is composed of ISA, GS, WA,
and BS. ISAp, GSp, WAp, and BSp represent the percentage of different fractions in pixels.
The ISA and GS fractions were mapped on the GEE platform from Landsat images and
the visualization of maps, such as images acquired by Google Earth, Gaofen-2 (GF-2),
etc. [13,38].



Remote Sens. 2021, 13, 4187 4 of 16

2.1.2. The Mapping Strategies for ISA and GS Products

According to the above principle, the strategies for mapping the urban ISA and GS
were developed based on Landsat images in 2015 and circa 2020 using the GEE platform.
Five major steps were conducted: data collection and preprocessing, retrieval of the
Normalized Settlement Density Index (NSDI) and Normalized Green Space Index (NGSI),
identification of urban–rural boundaries, mapping urban ISA and GS, and quality control
and accuracy validation of the ISA and GS (Figure 2).
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2.1.3. Data Collection and Preprocessing

The preprocessing of the data was carried out on GEE, including cloud masking,
band combination, image mosaic creation, image fusion, and other preprocesses. The data
sources were mainly Landsat OLI with a spatial resolution of 30 m. VIIRS day/night,
and SRTM digital elevation model (DEM) data were also used as input parameters in the
calculations to map urban ISA and GS products. Google Earth and GF-2 images were used
for the accuracy assessments (Table 1).

Table 1. The data sources for mapping urban impervious surface area and green space products.

Data Source Resolution Scene/Extent Covered Period

Landsat 8 OLI 30 m/15 m 146,878 1 January 2015–31 December 2015
Landsat 8 OLI 30 m/15 m 160,659 1 February 2019–31 January 2020

SRTM Digital Elevation 30 m Global –
Google Earth images 0.6 m 865 2015 and circa 2020

Gaofen-2 (GF-2) 4 m/1 m 536 Circa 2020
Global surface water 30 m Global 2015 and circa 2020

DMSP/OLS 1 km/500 m Global 2015 and circa 2020

2.2. Mapping Global Urban ISA and GS Using GEE
2.2.1. Retrieval of NSDI and NGSI

The algorithms and codes for mapping urban ISA and GS were developed on the GEE
platform. The annual maximum NDVI values in 2015 and circa 2020 were derived from
Landsat 8 OLI. According to the principle of NDVI invariant region extraction, the NDVI
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in circa 2020 and 2015 was subtracted to extract the areas where the NDVI was basically
unchanged. We randomly select 300 points in the urban area and generate a 90 m × 90 m
grid on each point. Based on these grids, the GF-2 image was visually interpreted, and
the sample grid digitized into ISA and GS (Figure 3). After that, the impervious fraction
attributes corresponding to each grid were calculated to generate training samples, which
were used in the subsequent RF algorithm.
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Figure 3. (a) shows the selection principle of the spatial distribution of sample points; (b1,b2) show
the sampling areas in a Google Earth image; whereas (b3,b4) show the digitized proportions of the
impervious (pink) and vegetation (green) areas.

Due to the large differences in climate, land use, vegetation covers, and social–
economic conditions among the urban ecoregions, Schneider et al. separated global
terrestrial land into sixteen urban ecoregions [18]. There is no urban distribution in the
permanent ice region, so we choose 57 sample cities from the other fifteen ecoregions to
train our samples (Figure 4). The NSDI was used to calculate the proportion of ISA in the
grid. Each urban ecoregion’s NSDI (the ISA percentage within each pixel) was generated
based on an RF algorithm on the GEE platform.

The RF algorithm is a supervised learning regression algorithm based on inputting
training samples with features, labeling them into a decision tree, formulating a set of
rules with the ensemble of decision trees, and merging them to gain a more accurate
prediction [50]. Many previous studies have indicated that RF is more effective and
accurate in classifying urban land types than other machine learning approaches such as
support vector machines (SVMs) and artificial neural networks (ANNs) [27,51–53]. Thus,
we proposed a strategy to acquire the ISA and GS percentage at the pixel scale using the
advantage of RF and big-data processing based on the GEE platform.

On the GEE platform, Landsat 8 OLI spectral band, SRTM digital elevation, and
samples were used as input data. Meanwhile, DMSP/OLS, global surface water [54], and
enhanced bare soil index (EBSI) [55] were used to process NSDI data. The NGSI data
was generated after removing NSDI, WS, and BS. The NGSI and NSDI data with 1◦ × 1◦

grids were downloaded and merged at continental scale with a 30 m × 30 m resolution.
Ultimately, the ISA and GS fractions at that resolution were produced by overlaying the
urban boundaries with NSDI and NGSI, respectively (Figure 5).

2.2.2. Mapping Urban Boundaries Based on NSDI

The threshold of the segmentation of urban–rural boundaries is differentiated due
to the large divergences in human settlement densities among the urban ecoregions. We
acquired the best thresholds of NSDI from each urban ecoregion based on the evaluation
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of sampled cities. In each city, the overall accuracy and kappa coefficient of the retrieval of
urban boundaries were tested according to the 5% incremental threshold from 25% to 60%.

The thresholds of the global urban boundaries are listed in Table S2. We determined
the best thresholds vary from 35% to 50% in fifteen urban ecoregions. Generally, the
threshold is 35% in South America and Africa, in which cities are relatively compact and
have low urbanization. Next, we adopted a threshold of 40% in Europe and North America,
in line with high urbanization levels and low-density sprawling of the cities. The threshold
of most urban ecoregions is 50% except for tropical and subtropical forests with 45%, and
boreal forest and tundra with 35% in Asia. Accurate urban boundaries were acquired based
on the differential thresholds of NSDI in the various urban ecoregions.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 4. (a) shows the distribution of global urban ecoregions and sampled cities; (b1) and (b2) 

show the impervious surface area fraction in sampled cities; (c1) and (c2) show the urban and 

non-urban land in sampled cities; (b3), (b4), (c3) and (c4) show the digitized the impervious and 

vegetation areas.  

On the GEE platform, Landsat 8 OLI spectral band, SRTM digital elevation, and 

samples were used as input data. Meanwhile, DMSP/OLS, global surface water [54], and 

enhanced bare soil index (EBSI) [55] were used to process NSDI data. The NGSI data 

was generated after removing NSDI, WS, and BS. The NGSI and NSDI data with 1° × 1° 

grids were downloaded and merged at continental scale with a 30 m × 30 m resolution. 

Figure 4. (a) shows the distribution of global urban ecoregions and sampled cities; (b1,b2) show the
impervious surface area fraction in sampled cities; (c1,c2) show the urban and non-urban land in
sampled cities; (b3,b4,c3,c4) show the digitized the impervious and vegetation areas.

Converting NSDI raster to vector data, we identified the urban–rural boundaries. The
hollow holes located in urban extent induced by low NSDI were eliminated to generate
homogeneous regions. The global urban vector boundaries were calculated in 2015 and
circa 2020. Finally, urban boundaries were calibrated by human digital interpretation to
ensure high-quality products.
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2.2.3. Mapping Global Urban ISA and GS Fractions

The percentage of ISA at 30-m resolution pixel scale was retrieved by using the
global urban boundaries to clip the NSDI in 1◦ × 1◦ grids. Then, we obtained correction
coefficients according to the regression analysis of the original NGSI and FVC data, and
corrected the NGSI data of each urban ecoregion. The fraction of vegetation cover (FVC) in
each pixel was calculated using the NDVI value for each pixel in the entire urban extent in
2015 and circa 2020 with the following equations:

FVCi =
NDVIi − NDVIsoil

NDVIveg − NDVIsoil
(3)

NGSIi = β× FVCi, (4)

where NGSIi is the GS fraction in the i pixel, FVCi is the fraction of vegetation cover in the
i pixel, and NDVIi, NDVIsoil , and NDVIveg are the NDVIs of the i pixel, pure vegetation,
and pure BS, respectively. β is the slope in the linear regression between FVCi and NGSIi
in each urban ecoregion (Table S3). The acquisition of NDVIveg and NDVIsoil values were
extracted by human–computer interaction visual interpretation using different thresholds
to fit the range of vegetation and soil in each ecoregion.

In some arid and semi-arid areas, the EBSI was utilized to separate the built-up areas
from BS areas [55]. Finally, the global urban ISA and GS fractions with 30 m resolution
were generated (Figure 6).
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Figure 5. Examples of spatial distribution of NSDI and NGSI in selected regions circa 2020.
(a1,b1,c1,d1,e1) show the NSDI in selected regions; (a2,b2,c2,d2,e2) show the NGSI in selected regions.

2.2.4. Accuracy Assessment

The accuracies of urban boundaries classification, the percentage of ISA, and GS
fractions were assessed considering the principle and method of hierarchical architecture
and subpixel metric of global urban land [56]. Globally, a total of 37,962 samples from
different urban ecoregions along urban–rural gradients with a random sampling method
were acquired within the sampled cities (Figure 4). The urban and non-urban land types
were manually digitized based on Google Earth and GF-2 images in 2015 and circa 2020.
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The overall accuracy, producer’s accuracy, user’s accuracy, and Kappa coefficient were
calculated to evaluate the accuracy of the urban boundaries map [40,57].
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Figure 6. Examples of urban impervious surface area fraction in selected cities. (a1,b1,c1,d1,e1)
show the urban impervious surface area fraction in 2005; (a2,b2,c2,d2,e2) show the urban impervious
surface area fraction circa 2020.

In terms of ISA and GS fractions, the 14,986 samples located in built-up areas using a
stratified random sampling method with 10% intervals of the ISA fraction were acquired
from global urban ecoregions. In those samples, the validation values of ISA and GS
fractions with 3 × 3 pixels (90 m × 90 m) were calculated via manual digitalization derived
from Google Earth images and GF-2 images [38,40]. The correlation coefficient (R) and root
mean square error (RMSE) of ISA and GS fractions were calculated at global and continent
scales. The above methods are explained in detail in previous publications [13,38,40,57]. R
values were between 0.91 and 0.94, and RMSE values were between 0.03 and 0.18.

3. Results
3.1. Performance and Accuracy of Ubran ISA and GS Fractions

Our assessment showed that the product has accurate urban boundaries and good
performance in urban ISA and GS measures. The overall accuracies of the global urban
boundaries are 91.40% and 91.63% for 2015 and circa 2020, respectively, and kappa coeffi-
cients are 0.870 and 0.860 for the same years (Table 2). However, the accuracies of urban
boundaries among the continents illustrate the given discrepancies. In Europe, North
America, South America, Asia and Oceania, the urban boundary maps have excellent
overall accuracies of 91.10%, 92.10%, 92.31%, 91.58%, and 91.44% and kappa coefficients of
0.822, 0.842, 0.864, 0.832, and 0.857, respectively, the urban–rural boundaries were sharply
segmented in the differential landscape and spatial configurations.

We also found that the maps of cities in Africa have slightly lower overall accuracies of
90.80% and kappa coefficients of 0.849 circa 2020 (Table 2). In North America, especially in
the USA with its high urbanization, the cities are sprawling with low density in residential
areas, and the spatial extents of cities are elongated well beyond the suburbs. Since the
NSDI threshold in North America is relatively low at 40%, some areas of selected cities less
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than this threshold might not have been observed in the urban boundaries mapping. The
lowest accuracies occur in arid and semi-arid cities in Africa and Oceania (Table 3). The
landscapes in those cities are usually mosaicked with BS and built-up areas and are not
differentiated from outlying areas.

Table 2. The accuracy of urban boundaries acquired from Landsat images in 2015 and circa 2020.

2015 Circa 2020

Index PA (%) UA (%) OA (%) Kappa PA (%) UA (%) OA (%) Kappa

Asia 90.19 90.58 90.38 0.900 91.19 91.98 91.58 0.832
Europe 91.22 93.10 92.15 0.926 90.56 91.64 91.10 0.822

North America 91.33 92.40 91.86 0.837 91.60 92.60 92.10 0.842
South America 91.30 92.84 92.07 0.868 91.45 93.19 92.31 0.864

Africa 90.20 91.92 91.05 0.855 90.49 91.12 90.80 0.849
Oceania 91.15 91.62 91.38 0.864 91.03 91.86 91.44 0.857
Global 90.78 92.03 91.40 0.870 91.11 92.15 91.63 0.860

Table 3. The accuracy of urban impervious surface area (ISA) and green space (GS) fractions acquired from Landsat images in 2015
and circa 2020.

2015 Circa 2020

Data Type ISA GS ISA GS

Index R RMSE R RMSE R RMSE R RMSE

Asia 0.93 0.14 0.93 0.14 0.94 0.12 0.93 0.11
Europe 0.93 0.16 0.93 0.13 0.94 0.15 0.94 0.16

North America 0.94 0.13 0.93 0.14 0.94 0.13 0.92 0.14
South America 0.93 0.03 0.92 0.08 0.93 0.03 0.93 0.11

Africa 0.92 0.15 0.91 0.18 0.92 0.13 0.91 0.12
Oceania 0.93 0.14 0.92 0.15 0.94 0.08 0.92 0.10
Global 0.93 0.13 0.92 0.14 0.94 0.11 0.93 0.12

The R and RMSE were used to assess the accuracy of ISA and GS fractions. The
Rs of the global ISA and GS in 2015 were 0.93 and 0.92, and RMSEs were 0.13 and 0.14,
respectively; circa 2020, Rs were 0.94 and 0.93, and RMSEs were 0.11 and 0.12, respectively
(Table 3).

3.2. Distribution and Spatial Heterogenity of Global Urban ISA and GS

The global urban areas of ISA were 25.94 × 104 km2 and 31.19 × 104 km2 in 2015 and
circa 2020, and GS areas were 13.46 × 104 km2 and 17.16 × 104 km2 in the same years. The
percentages of ISA and GS in built-up areas averaged 62.34% and 32.35%, respectively, in
2015 and 60.00% and 33.00% circa 2020. Globally, 94.25% of pixels in built-up areas were
between 10% and 90% ISA circa 2020, which exhibits the mosaicked patterns in intra-urban
land cover (Figure 7).

The datasets reveal the large divergences of intra-urban ISA density and greening
condition under different urban planning. Among the countries in Europe and some cities
in the USA, the GS percentage is relatively high compared to other countries. For example,
the ISA percentage of commercial zones in Chicago is approximately 70–80%, whereas it is
less than 50% in residential areas along the fringes of the urban–rural gradient (Figure 8).
The ISA and GS fractions in Chicago are 58.89% and 38.07%, respectively. However, ISAs
of cities in Asia, Africa, and South America are relatively high. For example, the ISA and
GS fractions in Delhi are 64.39% and 28.21%, respectively, due to high-density construction
(Figure 8). We also examined some slum areas in Africa that lack city infrastructure and
urban greening, in which the percentage of ISA is 80–90%. São Paulo exhibits ISA density
of 80.95%, induced by the dense building layout (Figure 8).
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Figure 7. Spatial distribution of global ISA (a1) and GS (a2) circa 2020. (b1,c1,d1,e1,f1,g1) show the
areas of ISA in different regions; (b2,c2,d2,e2,f2,g2) show the areas of GS in different regions.
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Figure 8. The percentages of impervious surface areas and green spaces in urban land areas in selected cities.

3.3. Comparison with Other Existing Datasets

We compared the total areas, spatial configurations, and heterogeneity properties of
global urban land from several mainstream datasets. Our estimation indicated large disparities
among those datasets (Figure 9). A few datasets with 250 m to 1 km resolution (e.g., MODIS,
DMSP/OLS) showed the extent of global urban land area as 24.47 × 104–34.27 × 104 km2

in the 1990s, 57.97 × 104–65.70 × 104 km2 in the 2000s, and 62.11 × 104–78.97 × 104 km2

in the 2010s [13,17–21]. We also examined several outcomes from research conducted at
30 m resolution, with global artificial cover at 118.75 × 104 km2 in 2010 [24], global ISA at
74.71 ± 1.5 km2 in 2010 [25], global artificial impervious area (GAIA) at 79.71 × 104 km2

in 2018 [9], and global urban boundaries at 80.97 × 104 km2 in 2018 [28]. We determined
that these differences are caused by incongruous definitions or concepts of spatial domains
(Table S1).

Artificial settlements were categorized by three types, including urban land, rural
settlements and industrial, or traffic lands in peripheries of cities [49]. However, urban
extent was not often clearly defined in these earlier studies [9,21,25,28]. For example, the
definition of ISA as built-up area usually included ISA in urban and rural settlements. As
a result, some rural settlements are not excluded from spatial extents of urban land [25].
GAIA data covered ISA spatial extent in urban areas, some rural settlements, and industrial
and traffic lands in suburban areas, which yield larger ISA than other research results [9].
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Therefore, the disparate concepts of urban spatial domain may be the cause of the large
divergences in global estimations of urban land area.
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Figure 9. Comparisons between our dataset and other existing datasets. (GUE, global urban expan-
sion [21]; GUL, global urban land [25]; GHSL, global human settlement layer [23]; GAIA, global
artificial impervious area [9]; and MSMT, global ISA [27]).

The issues of concept confusion, mixed pixels, and changing detection are intrinsically
challenging for global mapping of urban land. In spatial extent, artificial ISA includes
urban and rural settlements and industrial/traffic lands [9,24,25]. Nevertheless, in this
concept, ISA is recorded as a single type, which cannot decompose mixed pixels into ISA
and GS or other types of land cover [38,40]. Additionally, not extracting the minor percent
of ISA in rural settlements from satellite images results in false estimates of actual urban
extent. The different concepts of urban extent or the issues of mixed ISA pixels might result
in overestimation of global urban ISA. Therefore, efforts to eliminate the uncertainties
in area statistics of global urban land and delineate the underlying features of cities are
emerging in existing global datasets [40].

4. Discussion
4.1. Advantages of the Methods and Algorithms Used to Map Urban ISA and GS Products

Considering the uncertainties of global urban land mapping, we developed a novel
hierarchical architecture principle and subpixel method to address the issues of concept
confusion and mixed pixels. Here, we segmented the urban land, rural settlements, and
industrial and traffic lands at the peripheries of cities with thresholds to clarify the extent
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of urban land. A reasonable threshold of retrieval of global urban boundaries is essential
due to the large divergences in social–economic levels, vegetation cover, and land-use
intensity. In this procedure, the specific strategies are different, such as the kernel density
approach and cellular automata model [27], the quantile-based digital number threshold
identification [20], and the acquisition of centroid and threshold sites from normalized
difference water, vegetation, and built-up indexes [25].

Although these methods could effectively identify urban extents or built-up areas,
we examined the associated datasets and found some disadvantages in generating finer
and more accurate urban boundaries retrieved from Landsat images. The quantile-based
approach and kernel density approach might overgeneralize the urban boundaries, which
could potentially generate a coarse spatial extent of built-up areas or cities [20,25]. There-
fore, we adopted the best thresholds to acquire finer urban boundaries from the various
urban ecoregions. In addition, the polygons of cities calibrated one at a time can effectively
enhance the accuracy of urban boundaries.

Our estimation indicated that 67.41% of global urban land pixels are mosaicked
with ISA and GS. The percentages of ISA and GS fractions based on the subpixel method
produce accurate delineation of the spatial heterogeneity of urban underlying environments.
Consequently, the definition and accurate metric of urban boundaries and mixed pixels
were addressed to map the robust and reliable product.

4.2. Potential Implications for Improving Urban Environments and Assessments of
Sustainable Cities

The urban ISA and GS fractions may effectively delineate the built-up environment of
global cities based on our hierarchical architecture principle and subpixel method. Due to
the high producer’s accuracy of 93.65% in the segmentation of urban–rural boundaries and
the accurate and timely metrics of surface imperviousness and greening, our product has
broad practical implications among the datasets [13]. Based on the product of urban ISA and
GS fractions, the hotspot areas of dense ISA distribution may be identified by calculating
the ISA density and growth intensification. Therefore, the thermal-dissipating strength
of urban forest canopies and lawns may be assessed at pixel scale, and greening projects
can more effectively address and alleviate urban heat island intensity [7]. Meanwhile, the
intra-urban ISA and GS fractions can help identify flood regulation priority areas based on
an ecosystem services approach [12].

Our assessment indicated global average urban land area per capita and percentage
of ISA are 117.16 m2 and 60%, respectively, and the percentage of GS and GS area per
capita are 33% and 41.29 m2. We also found large divergences between ISA density and
greening levels among countries. As a result, urban planning and management in countries
with high ISA densities and low greening levels are seriously challenged in addressing
climate change and achieving SDGs [58–60]. Furthermore, our product will help in detailed
assessments of progress toward SDG targets, such as the ratio of land consumption rate to
population growth rate, and average share of the built-up area of cities that is open space
for public use. Such systemic and detailed datasets can help create more knowledge about
habitat environments and ecosystem services and improve global urban science [4].

5. Conclusions

In this research, a set of synthetic methodologies and technologies for depicting the
urban land surface property were developed. We also confirmed that the hierarchical scale
principle and subpixel method perform well in acquiring urban boundaries, as well as
ISA and GS fractions. Our dataset has advantages of high accuracy in identifying the ISA
and GS fractions in 30 m × 30 m pixels, and higher-resolution images were adopted to
retrieve the urban extent or ISA with less than 30 m resolution compared to other datasets.
The spatial heterogeneity of intra-urban land cover can be delineated with ISA and GS
fractions at 30 m resolution. The product of urban ISA and GS fractions can be beneficial to
urban planning and management, climate and ecology modeling, and assessments of the
sustainable development of cities.
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