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Abstract: Sedimentary rocks provide records of past surface and subsurface processes and environ-
ments. The first step in the study of the sedimentary rock record of another world is to learn to
recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms.
For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identifica-
tion is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover
in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to
cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting
(e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks
that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of
conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts
a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks
remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic,
mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be
considered separately from the depositional record. Mars likely has much more sedimentary rock
than previously recognized.

Keywords: MARS sedimentary rock; early Mars; Mars volcanism; extraterrestrial sediment; space-
craft image interpretation; satellite image interpretation; aerial image interpretation; rover image
interpretation; sandstone landforms; conglomerate landforms

1. Introduction

Sedimentary rocks are records of past surface and subsurface (diagenetic) environ-
ments that capture information about the nature and actions of fluids and the histories of
associated tectonic, magmatic, and impact events. The foundational steps in the study of
the sedimentary rock record of other worlds are to use images acquired by instruments
onboard flyby, orbiting, airborne, ascending, or descending platforms to:

1. Learn to recognize sedimentary rock occurrences; and
2. Identify where they outcrop at the planet’s (or moon’s) surface.

These steps can then lead to detailed studies using existing data, e.g., [1–32], or to
target new data collections, or to develop new spacecraft and instrumentation, to obtain
additional observations.

This contribution is about learning to recognize sedimentary rock occurrences—for
Mars—largely using visible wavelength, reflected light images, to identify sub-meter- to
decameter-scale sedimentary structures and other signs that a given geological material,
exposed at the planet’s surface, is sedimentary rock. Identification of sedimentary rocks
on worlds other than Mars likely requires remote sensing methods that differ from those
employed for Mars; for example, finding a sedimentary rock record on Venus is a high
scientific priority [33–35] that will likely require use of new imaging radar systems and
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near-infrared airborne or descent cameras [36]. A search for sedimentary rocks on Titan,
a world with present-day aeolian, fluvial, and lacustrine processes [37–40], might also
require imaging radar systems and cameras on airborne, descending, and landed platforms
such as the planned Dragonfly rotorcraft mission [41].

Sedimentary rocks were speculated to occur on Mars for decades [42–46], although
some wondered whether the necessary diagenetic processes had ever been operative [47].
The first unambiguous evidence [48] that Mars has sedimentary rocks came in 1999 [49]
from 1.4–4.5 m/pixel images obtained by a (then) new instrument orbiting the planet, the
narrow angle camera of the Mars Global Surveyor (MGS) Mars Orbiter Camera system
(MOC-NA) [50]. These early MOC-NA observations were soon followed by recognition
of lithified landforms that resemble an aeolian dune field (Figure 1a) [51,52] and a river
delta (Figure 1b) [53]. While some rocks at the Sojourner rover field site seen in 1997 were
speculated to be conglomerates [54,55], the ultimate confirmation that sedimentary rocks
occur on Mars came from images of the sandstones of the Burns formation examined using
the Opportunity rover in 2004 in Meridiani Planum (Figure 1f) [56,57].
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(a) Cratered, lithified aeolian dune field near the Apollinaris Sulci. The white box shows the location of
the inset; the inset highlights the cratered nature of the dune field; HiRISE PSP_010453_1675 and CTX
B02_010453_1675_XN_12S182W, J04_046452_1689_XN_11S181W, J20_052557_1688_XI_11S182 -W.
(b) Lithified Eberswalde crater delta; MOC-NA mosaic from NASA/JPL-Caltech/Malin Space Science
Systems. (c) Lithified deltaic sediment in western Jezero crater; CTX P03_002387_1-987_XI_18N282W.
(d) Light-toned, un-cratered, stratified rock exposed in a crater in northwest Schiaparelli basin; HiRISE
PSP_002930_1800. (e) Light-toned, stratified rock in west Candor Chasma; HiRISE ESP_056707_1735.
(f) Light-toned sandstone of the Burns formation explored via the Opportunity rover; Olympia
outcrop, target Overgaard [58]; MER Sol 695 left Pancam product 1p189898150rad64kcp2435l7c1. The
center latitude and longitude of each panel is indicated (e.g., 28.3◦ S, 326.4◦ E); this practice is also
applied to subsequent figures.

The sedimentary rock record of Mars is important to deciphering the planet’s past.
Without sustained, mobile-lid (plate) tectonics [59], the upper Martian crust might have
retained much of its earliest sedimentary record [60]. Of course, some early sedimentary
rocks would have been subjected to subsequent weathering, erosion, and recycling [61].
With strata time-equivalent to Earth’s Hadean and early Archean eons—older than the
oldest sedimentary and metasedimentary rocks on our planet [62,63]—the Martian archive
presents opportunities to learn, by analog, about the kinds of environments that might
have existed on Hadean Earth, Eoarchean Earth, or similar extrasolar worlds cf. [64]. If
Mars never had life, then its sedimentary record also offers an opportunity to examine
the products of deposition, diagenesis, weathering, and erosion—on a rocky planet with
a silicate crust—in the absence of biological influence. In addition, Martian sedimentary
strata might include records of local, to solar-system-wide, astronomical events [65,66],
potentially correlative across multiple worlds.

This contribution is a guide to a daunting and unfinished task, the recognition of Mar-
tian sedimentary rock occurrences in images acquired by cameras aboard aerial (ascending,
descending, or airborne platforms) and satellite (orbiting or flyby spacecraft orbiting an-
other body or leaving the solar system) platforms that are, or were previously, operating
(or someday will operate) at Mars. The observations, concepts, and ideas presented here
are also applicable to future Mars landing site selection and robotic and human crew explo-
ration planning efforts that make use of orbiter, aerial, or long-distance views from landed
cameras. We use the term occurrences because outcrop inadequately limits identification;
some examples can be recognized even though they are not strictly outcropping because
they are partly (or mostly) covered with aeolian sand or dust [12,67,68].

Our work was highly informed by key observations made over the last decade using
images obtained by cameras aboard the Mars Science Laboratory (MSL) Curiosity rover
and the 99.97% (as of 1 January 2021) coverage of the planet achieved at ~6 m/pixel by
the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX). Tens of thousands of
higher-spatial resolution orbiter images in the 0.25–6 m/pixel range, of select areas around
the planet, also inform the results presented here.

Our overarching theme is that identification of sedimentary rocks on Mars is not
limited to exposures that have geomorphic expressions that mimic their original deposi-
tional setting (Figure 1a–c), nor limited to stratified exposures of light tone that have poor
impact crater retention (Figure 1d,e), nor is identification of sedimentary rock occurrences
always easy. Contrary to understanding a decade ago [48,69], some sedimentary rocks are
dark-toned (Figure 2), retain craters as well as do lava flows (Figure 3), and have mafic to
felsic compositions [70–73] that, if observed remotely, could be misinterpreted as signals of
igneous rock. One of the key challenges lies in the distinction of sedimentary from igneous
rocks, including lava and tuff. This concern applies whether one is examining images
acquired by orbiting cameras, airborne cameras, or even images obtained by rover cameras
that view rock surfaces at scales of 16–32 µm per pixel (e.g., Figure 4).
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004094); azimuths 110° and 180° indicated; see (b) for escarpment scale. (b) A closer look at the dark gray Salsberry Peak 
sandstone, overlying lighter-toned mudstones of the Murray formation. White materials are calcium-sulfate-bearing veins 
[74]; MSL Sol 939 Mastcam-100 mosaic (sequence 004119). (c) Portion of small boulder named, Kanosh, derived from the 
Salsberry Peak sandstone; inset shows the medium sand-sized grains that compose the rock; MSL MAHLI focus merge 
product 0942MH0001630000303666R00. 

Figure 2. Example of dark-toned sedimentary rock occurrence on Mars. (a) View showing the dark gray Salsberry Peak
sandstone that caps a mesa above the Pahrump Hills outcrop in Gale crater; MSL Sol 931 Mastcam-34 mosaic (sequence
004094); azimuths 110◦ and 180◦ indicated; see (b) for escarpment scale. (b) A closer look at the dark gray Salsberry
Peak sandstone, overlying lighter-toned mudstones of the Murray formation. White materials are calcium-sulfate-bearing
veins [74]; MSL Sol 939 Mastcam-100 mosaic (sequence 004119). (c) Portion of small boulder named, Kanosh, derived from
the Salsberry Peak sandstone; inset shows the medium sand-sized grains that compose the rock; MSL MAHLI focus merge
product 0942MH0001630000303666R00.
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Figure 3. Example of an erosion-resistant (impact crater-retaining) sandstone. (a) Context view of “cratered surface
unit” [75,76] in Gale crater near the Curiosity rover landing site. The northern edge of the unit was investigated at the
Shaler outcrop [77,78]; HiRISE ESP_028335_1755. (b) Curiosity’s heat shield impacted the cratered surface unit, raising
dust (inset) when it did; MSL Sol 0 MARDI 0000MD0000000000100352C00. (c) North edge of the cratered surface unit at
the Shaler outcrop. The rocks are dark gray and laminated; large yellow box indicates location of (d); small yellow box
indicates the location of (e); MSL Sol 315 Mastcam-100 mosaic (sequence 001291); azimuth 140◦ indicated. (d) Detailed
view of a portion of the mosaic in (c), showing cobbles derived from the dark-gray, erosion-resistant rock that forms the
bedrock of the cratered surface unit. Note that the rocks are laminated and cross-bedded. Yellow box indicates the location
of (e). (e) Close-up view of a portion of the cobble named Mary River. Sunlit from the upper right; the rock surface exhibits
millimeter-scale pits and medium- to coarse-sand-sized textural elements indicative of sand grains in the rock; MSL Sol 316
RMI cr0_425563399prc_f0060704ccam04316l1.
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at 16–32 µm/pixel. (a) This example considers a rock target named Heinrich Waenke (Wänke). It is a cobble accessed by
Curiosity’s MAHLI on Sol 2640. The cobble was derived from the rubble that caps Western Butte in Gale crater. Whether
the rubble is mass movement debris or a broken-down cap rock is not certain. The rover could not drive to the top of
the butte; thus, the Heinrich Waenke target was examined to determine rock type; MSL Sol 2616 Mastcam-100 mosaic
(sequence 013743); azimuth 230◦ indicated. (b) A color, 23.0 ± 0.3 µm/pixel image shows a dark gray rock with some areas
covered by small patches of dust. The inset shows that the rock has ~70–90 µm-scale features of differing size and color
(plus orange/tan, adhering aeolian dust). These features could indicate very fine sand-sized sand grains, tephra, or (less
likely) a crystalline texture (e.g., basalt). The problem is, the grains (if that is what the 70–90 µm-scale features are) are so
fine, and the rock apparently so uniformly fine-grained, that no one will ever be certain whether the rock is sedimentary
or igneous. In context with all of the other rocks explored in Gale crater e.g., [79–81], it is most likely (but inconclusively)
sedimentary. MSL MAHLI focus merge product 2643MH0004580001001010R00.

In addition to serving as a guide to Martian sedimentary rock identification, this
contribution is also an invitation to more deeply explore the vast data sets acquired from
Mars over the last >55 years to look beyond the easy and the obvious. For example, are
there sedimentary rocks—including those of dark tone and strong resistance to erosion—
exposed in the walls of the Valles Marineris? What percentage of the yardang-forming
and non-yardang-forming members and facies of the Medusae Fossae Formation [82] are
sedimentary rocks rather than tuffs? How much of the upper crust of the Martian heavily
cratered terrain is sedimentary, and are there sedimentary rocks beneath the Martian
northern plains?

2. Materials and Methods

Pre-dating the 2021 arrival of (and, thus, not including results from) the Persever-
ance [83] and Zhurong [84] rovers, and the Ingenuity helicopter [85], the observations
and ideas presented here come from more than two decades (February 1998–January
2021) of image acquisition planning, targeting, and examination of visible wavelength,
reflected-light images obtained by cameras aboard Mars orbiters, descending platforms,
and rovers. The data we used are described in the Data Availability Statement. Our data
analysis focused on commonly used aerial, satellite, and remotely operated vehicle image
interpretation approaches and skills, e.g., [86–88].

Most of the tens of thousands of satellite images examined were acquired by the
MGS MOC-NA (1.4–12 m/pixel) [50,89], MRO CTX (~6 m/pixel [90]), and MRO High
Resolution Imaging Science Experiment (HiRISE; 25–60 cm/pixel [91]) cameras. Prioritized,
hypothesis-driven acquisition of the data [50] was strongly informed after 2001 by the
geomorphic expressions and thermophysical contrasts of rock and regolith revealed by the
~100 m/pixel images from the Mars Odyssey (ODY) Thermal Infrared Imaging System
infrared subsystem (THEMIS-IR [92]) and, after 2006, also by the growing 6 m/pixel cover-
age of Mars by CTX. High spatial resolution images from the Tianwen-1 High Resolution
Imaging Camera (HiRIC [93]), and the ExoMars Trace Gas Orbiter (TGO) Colour and Stereo
Surface Imaging System (CaSSIS [94]), were not examined for this study, but their data are
relevant to application of the ideas presented here because these cameras provide images
at scales that fall within the 0.25 to 6.0 m/pixel range bracketed by HiRISE and CTX.

Images from the cameras onboard the Curiosity rover, operative in Gale crater [95],
were also vital and examined as the data were received on Earth. These include images ob-
tained during the August 2012 landing by the Mars Descent Imager (MARDI [96]); images
and mosaics acquired by the Navigation and Hazard cameras (Navcams, Hazcams [97]),
Mast cameras (Mastcams [96]), and Remote Micro Imager (RMI [98]) on the rover’s remote
sensing mast [99]; as well as the Mars Hand Lens Imager (MAHLI [100]) on the turret at
the end of Curiosity’s robotic arm [101]. The rover’s mobility system [102] was used to
move the cameras to different localities in Gale crater. Images from the Panoramic camera
(Pancam [103]), Microscopic Imager (MI [104]), and Descent Image Motion Estimation
System (DIMES [105]), onboard the Mars Exploration Rover (MER), Opportunity—which
operated in Meridiani Planum (2004–2018 [106])—also informed the results presented here.
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3. Results

Identification of sedimentary rock occurrences on Mars can be challenging. This is true
even when considering 16–32 µm/pixel images of Martian rocks obtained by rover cameras
(Figure 4). First, there is the likelihood that colleagues will disagree on interpretation,
typically because they have not first agreed on the nature of the observables. This type of
disagreement can occur even on Earth when a group of geologists of differing backgrounds
and experience are together, examining an outcrop in the field. On Mars, no one is “in the
field” and so the discussion is reliant on remotely gathered data. This section describes
features that are sought to make the case that a given geological feature is an occurrence of
sedimentary rock.

Sedimentary rock outcrop and landform erosional expressions are a function of rock
physical properties and the processes and chemistries that have acted upon the rocks to
modify them over time [107–109]. Important attributes include depositional texture (e.g.,
grain size, packing), depositional structure (e.g., bedding), diagenetic features at all scales
(e.g., differential cementation, fractures, veins, concretions, etc.), and depositional, basin-
scale facies configurations (e.g., interfingering of sandstones and mudstones; transgressive
and regressive relations in subaqueous sediments). Deformational structure can also
be helpful for sedimentary rock occurrence identification in some cases (e.g., jointed or
polygonal fracture patterns).

Identification is aided by standard photointerpretation methods, particularly through
the “recognition elements” of Ray [86]: tone (and color, where available), texture (frequency
of tonal change as a function of image scale), pattern, shape, size, relation of a feature to
associated features, and combinations of these. Solar illumination conditions and seasonal
frost patterns are also important to consider when examining aerial and satellite images of
Mars. The phase angle can have a profound impact on the visibility of landforms and the
perception of tone and color.

Sedimentary rock occurrence identification also benefits from familiarity developed
from field experience on Earth, robotic (rover) field experience on Mars, photographic
guidebooks, e.g., [110,111], and illustrations of Earth’s sedimentary rock landforms
[107,109,112–114]. For example, systematic, parallel, or subparallel alternations in tone [115]
—characteristic of layered rock outcrops bearing distinct stratal horizons—provide approxi-
mate knowledge of the stratigraphic locations of depositional surfaces [116,117].

3.1. Signs That a Geological Material Is Rock

Identification of sedimentary rock occurrences in satellite and aerial images of Mars
begins with determination of whether an observed feature is, or has the properties of,
an exposure of rock. Rock is a consolidated (lithified) geological material that, on Mars,
is distinguished from ice on the same basis that whole worlds are classified as rocky or
icy. Rocky worlds are dominated by silicates and metals [118]; ices (e.g., H2O, CO2, CH4)
dominate the crust and regolith of colder worlds [118]. Thus, while Mars has H2O and CO2
ices [119,120]—and these can cement sediment and regolith at high latitudes [121–123] and
form ephemeral boulders during mass movement events [124]—ices and ice-cemented
sediments on Mars are not generally considered to be rock.
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Rock is created through lithification. On rocky worlds, it is produced by freezing of
melt (magma, lava, pyroclasts, impact melt), welding of pyroclasts, sintering of clasts via
impact-cratering-induced shock metamorphism [125], formation of chemical sediments, or
diagenesis of sediment and primary volcaniclastic deposits. Clastic diagenesis can involve
cementation, compaction, and cementation, or compaction without cementation [126].
Chemical sediments can also be subjected to diagenesis, including recrystallization. Lithi-
fication of clastic sediment can occur in both surface/near-surface, e.g., [127–129], and
sub-surface environments, e.g., [126,130]. Clastic lithification is distinguished from in-
duration because the latter refers to a broader range of phenomena. Induration includes
lithification through sediment diagenesis and welding of tephra, but also refers to case
hardening of weathered rock surfaces and thermal alteration of sediment or primary
volcaniclastics in contact with lava or magma [131].

Recognition that a material is rock in high spatial resolution (e.g., centimeters to
several meters per pixel) satellite or aerial images of Mars can be challenging, and the
observables are not always fool proof. For example, even on Earth there remains a lack of
consensus as to whether cemented, Quaternary loess (aeolian silt) should be considered to
be rock [132]. Dry playa muds present another example; some playa surfaces can be so hard
as to permit landing an aircraft or spacecraft on them [133]; such a material—if present
on Mars and hardened at the surface/atmosphere interface—could be indistinguishable
from bedrock. However, there are several observables that can be sought to help make an
interpretation that a material is rock or—like dried playa muds—has properties similar to
rock: boulder production; preservation of steep slopes; distinct contrasts in tone or color
between strata; sharp expressions of faults, fractures, or joints; resistance to the impact of
saltating grains; the presence of yardangs or other aeolian erosional forms; or the presence
of an overlying material determined to be rock. These observables do not all have to be
evident to make the case that a material is rock. In addition, they might not always be
diagnostic.

3.1.1. Boulder and Megaclast Production

Clast production and release can occur as a unit of rock breaks down at a planet’s
surface. Clast release is the liberation of particles (grains or concretions) already present in a
rock, whereas clast production refers to the breakdown sensu [134,135] of rock into smaller
fragments. On Mars, boulders and megaclasts are typically produced when an impact
cratering event fragments rock (Figure 5a), when rock is weathered and eroded from steep
slopes, or when plateau-, mesa-, or butte-capping rocks break up as the landforms decay
(Figure 5b,c). Boulders in crater ejecta are a good sign that the impacted material is rock,
although boulders present in an impacted, unconsolidated deposit can also be released
by such an event. Lava flows and sedimentary rock outcrops, alike, can exhibit signs of
boulder production. Polygonal fracture patterns in rock can also lead to boulder-sized
fragment production when fracture-bounded slabs are dislodged and displaced from their
original outcrop position (Figure 5d).
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Of course, how long a produced boulder or megaclast may persist in the landscape—
before being broken down to finer particles that are transported away—will depend upon 
the rock physical properties and the processes acting on that rock. A boulder produced 
from an erosionally-recessive rock, for example, will not persist as long as a boulder pro-
duced from an erosionally-resistant rock, as evident in the comparison of the landscapes 
at the Opportunity and Spirit rover sites in Meridiani Planum (sandstone bedrock) and 
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Figure 5. Example boulders produced from the breakdown of—and examples of mesas, buttes, and pinnacles formed
of—Martian sedimentary rock. (a) Boulders produced by an impact cratering event in light-toned sedimentary rock in west
Candor Chasma; inset in white box shows boulders in proximal ejecta; inset in yellow circle shows close-up view of some
of the ejected boulders; HiRISE PSP_002841_1740. (b) Mesas, buttes, and pinnacle (stereopair anaglyph inset) formed in
sedimentary rock in northeastern Sinus Meridiani. Butte in upper inset shows boulders produced and shed from the butte
capping rock; HiRISE ESP_064616_1820; anaglyph ESP_064616_1820 and ESP_064761_1820. (c) Butte in the Murray buttes
region of Gale crater showing boulder- and cobble-sized sandstone [136] fragments shed as the capping rock breaks down;
MSL Sol 1432 Mastcam-34 mosaic (sequence 007075); azimuth 220◦ indicated. (d) Creation of boulder-sized rock fragments
(examples labelled 1, 2, 3) from dislodgment and displacement of polygonally fractured slabs of Martian mudstone in the
Murray formation, Gale crater. Inset shows view from MRO HiRISE (ESP_064519_1750); MSL Sol 1688 Mastcam-34 mosaic
(sequence 008784); azimuth 270◦ indicated.

Of course, how long a produced boulder or megaclast may persist in the landscape—
before being broken down to finer particles that are transported away—will depend upon
the rock physical properties and the processes acting on that rock. A boulder produced from
an erosionally-recessive rock, for example, will not persist as long as a boulder produced
from an erosionally-resistant rock, as evident in the comparison of the landscapes at the
Opportunity and Spirit rover sites in Meridiani Planum (sandstone bedrock) and Gusev
crater (basalt lava bedrock) [137].
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3.1.2. Retention of Steep Slopes

The ability of a geological material to hold a steep slope that exceeds the angle of
repose—such as an escarpment, caldera wall, impact crater wall, or canyon wall—is a key
indicator that a geological material is likely rock [12,49,138]. Slip faces of whole aeolian sand
dunes that have become lithified [51,52,139] can also exceed the angle of repose [139,140].
Among Martian rock outcrops, escarpment-bounded landforms include plateaus, mesas,
buttes, and pinnacles (Figure 5b; see definitions of [108]). Overhangs developed above
recesses in escarpments also signal the presence of rock and can be rendered visible in
satellite or aerial images by their shadows or via off-nadir views (Figure 6a).
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Figure 6. Example features that assist identification of rock outcrops on Mars. (a) Stratified rock with overhangs and rock
fragment talus below; Juventae Chasma; HiRISE PSP_007561_1775. (b) Stratification identified by sharp contrasts between
alternating strata or stratal packages; southern Holden crater; HiRISE ESP_019322_1530. (c) Stratification appearance
enhanced by presence of modern sediment accumulations (aeolian sand; talus shed from rock slopes); Becquerel crater;
HiRISE ESP_045140_2015. (d) Faulted rock; Danielson crater; HiRISE PSP_002733_1880. (e) Jointed rock; west Candor
Chasma; HiRISE PSP_002841_1740. (f) Rock substrate across which aeolian sand has recently saltated; crater in western
Arabia Terra; HiRISE ESP_066067_1890. (g) Close-up view of rock surfaces (reddish Murray formation [141] mudstone
and a dark gray “float” rock) cleaned of aeolian dust by saltating sand; Gale crater, about 12 m north of Nathan Bridges
dune [142]; MAHLI image 1600MH0001900010601863C00.
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3.1.3. Distinct Contrast between Strata

Sharp contrasts in tone or color exhibited by, or a lack of blur between, adjacent strata
or stratal packages exposed on a slope are good signals that rock is present (Figure 6b) [49].
One caution is that apparent sharp tonal contrasts between strata can, in some cases,
instead be an indicator of modern sediment (aeolian sands; talus) deposited on rock
outcrop benches separating strata of similar tone (Figure 6c) [24,25].

3.1.4. Sharp Expressions of Faults, Fractures, and Joints

Sharply distinguished faults and offsets along faults (Figure 6d) [49], as well as
fractures and joints (Figure 6e) [8,25,143–145], are good indicators of the presence of rock.
However, like the aforementioned uncertainty regarding cemented loess [132], the presence
of fractures might not always indicate a lithified material.

3.1.5. Resistance to the Impact of Saltating Sands

Wind-mobilized sand is active on Mars in the modern environment [146,147]. Aeolian
interdune substrates and dune transport corridors free of aeolian dust and sand accumula-
tions can be good signs of rock exposures on Mars [49]. Saltating sand grains bounce off of
hard surfaces [148], such as a bedrock exposure, limiting the accumulation of aeolian dust
and sand. Figure 6f shows an example observed using an orbiting camera, and Figure 6g
shows an example viewed from the ground in Gale crater.

3.1.6. Kharafish (Wind Erosion Forms)

Signaling the presence of rock—or at least indurated material—kharafish is an Egyptian
term that encompasses the full range of aeolian erosional forms [149], from kilometer-scale
mega-yardangs [150], to centimeter-scale ridges and grooves [151] (p. 68), and millimeter-
scale flutes [152]. Yardang-scale kharafish (Figure 7a) occurs in a variety of forms that
go beyond the classical inverted boat hull shape [153,154], including meter- to kilometer-
scale scour-remnants that develop in the lee of knobs (Figure 7b) of greater erosion resis-
tance [155] (p. 38). Yardangs form in a variety of lithologies on Earth, including carbonates,
tuffs, and clastic sediment [156–161]; unusual examples include yardangs formed in weath-
ered basalt [157] and weathered gneiss [155,162]. The term, kharafish, might extend to
the “knapped” (Figure 7c) [24,25] erosional expression common to some Martian sedi-
mentary rock outcrops, although the exact origins of these surfaces needs further study.
Field studies, e.g., [153,157,163,164] indicate that the morphologies of yardangs and other
kharafish are related to material properties such as texture (e.g., grain size), depositional
structure (e.g., bedding), and deformational structure (e.g., joints, faults, folds). In addition,
wind erosion shapes rock according to its physical properties, such that erosion-resistant
heterogeneities in the rock may form protrusive elements (Figure 7d) [165].
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Figure 7. Example Martian wind erosion forms (kharafish) viewed at different scales. (a) Yardangs carved into in a plateau of
stratified rock (e.g., see HiRISE PSP_006187_1915) in a crater in western Arabia Terra; CTX B04_011395_1915_XN_11N346W.
(b) Large “wind tail” formed in rock in the lee of an exhumed impact crater in southern Amazonis Planitia; HiRISE
ESP_066983_1910. (c) “Knapped” surface texture in light-toned rock in Juventae Chasma; HiRISE PSP_004291_1755.
(d) Centimeter- and millimeter-scale wind tails and stalks [166], or dedos [167], in mudstone in Gale crater; MAHLI image
1463MH0003900010503794E01.

3.1.7. Emergence from Beneath a Body of Rock

Another sign that a material is rock is its partial exposure from beneath an overlying
material that is determined to be rock based on any of the above observables. Figure 8a
shows a case in northern Meridiani Planum in which an impact crater ejecta deposit is partly
exhumed from beneath light-toned, sedimentary rock [168]. Because the stratigraphically
higher light-toned material in Figure 8a has been lithified, the clastic impact ejecta beneath
that rock must also have been subjected to diagenesis and lithification, not unlike examples
of lithified impact ejecta on Earth e.g., [169,170]. The other examples in Figure 8 illustrate
cases of fluvial and alluvial sedimentary forms (see Sections 3.5.2 and 3.5.3) emergent from
beneath rock or remnants of rock. An exception occurs in cases of lava flow superposition
on unconsolidated regolith, sediment e.g., [171], or tephra, provided that the underlying
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material has not subsequently become lithified through diagenesis. It should also be noted
that some sediments emergent from beneath units of rock could be much more poorly
lithified than their overburden, such as much of the Fontainebleau Grés (Sandstone) in
France, which is overlain by limestones [172–175].
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Figure 8. Examples of material emergent from beneath units of rock. (a) Impact crater ejecta deposit in northern Si-
nus Meridiani; CTX T01_000886_1819_XN_01N000W, P03_002113_1825_XI_02N000W, B05_011501_1820_XI_02N359W.
(b) Emergence of a ‘fluvial ridge’ [176,177] from within light-toned sedimentary rock in northern Sinus Meridiani; HiRISE
PSP_004091_1845. (c) Emergence of fluvial ridges from within rock in a crater in northern Noachis Terra; HiRISE
ESP_044059_1560. (d) Emergence of sedimentary fan material in southern Nicholson crater from beneath yardang-forming
rock; CTX F01_035994_1802_XN_00N165W. (e) Fans (each one colored) in a crater in Tyrrhena Terra emergent from beneath
a mesa-forming, heavily cratered rock unit; left: CTX P03_002084_1567_XI_23S285W, P03_002295_1568_XI_23S286-W,
B17_016417_1568_XI_23S285W; middle and right: CTX P03_002295_1568_XI_23S286W.
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3.2. Stratification

Commonly expressed in landscapes and rock outcrops as a product of differential
resistance to erosion, stratification is “fundamental to” [86] (p. 16) the recognition of
sedimentary rock occurrences in satellite and aerial images [86,115–117]. Sedimentary strata
are time-ordered records of change (i.e., geological history) and their three-dimensional
configurations provide information about sediment transport and depositional conditions.
Of course, strata are not unique to sedimentary rocks—unconsolidated sediment, primary
volcaniclastic deposits, e.g., [178], accumulations of lava, e.g., [179], the perennial Martian
polar caps [121,180,181], and even the igneous rocks and impactogenic regoliths of the
Moon, e.g., [182–184], can all exhibit stratification.

MOC-NA and HiRISE images emphasized the ubiquity of stratified materials—
sedimentary, igneous, and otherwise—exposed at the Martian surface [48,115,185,186].
In such images, stratification is identified through “the presence of alternations in bright-
ness”, particularly those that are “laterally traceable for ~10 m or more”, or the observation
of “distinct shadowed, shelf-like topographic breaks in slope” [115] (p. 17). Images of
higher than HiRISE (~25 cm/pixel) spatial resolution can reveal stratification at finer
scales, both in terms of lateral extent and layer thickness [21,187]. The finest strata on
Mars—laminae undetectable using orbiter imaging systems sent to Mars thus far—display
sub-millimeter thicknesses [188–190].

Satellite and aerial images of Martian sedimentary rock outcrops exhibit stratifi-
cation through landform expression, stratal patterns, and the revelation—by erosional
exposure—of major unconformities that reveal paleo-surfaces. Considerable informa-
tion about the materials can be interpreted from images of Martian sedimentary strata,
including (but not limited to) studies that address depositional settings and conditions,
e.g., [1,2,5,17,27,191], depositional and deformational structure, e.g., [2,4,8,25], environ-
mental controls on repeated (cyclic, rhythmic, periodic) stratification e.g., [16,48,192], and
stratigraphic correlation across distance, e.g., [12,19,28].

3.2.1. Expressions of Stratification

Where large enough to spatially resolve in a given satellite or aerial image, strata
exposed on Martian rock outcrop slopes are expressed as terraces or cliff-bench forms,
alternating bands of differing color or tone, or through the presence of gaps that parallel or
separate strata (Figure 9). Gaps, narrow relative to the scale of the outcrop (Figure 9d), can
result from the presence of erosionally-recessed layers or from fractures or joints (fractures
of regular spacing) that parallel the bedding. Fractures or joints (as well as bedding plane
separations) can result from stress relief caused by overburden removal, e.g., [193] or by
undermining. Gaps can also be apparent features, not true gaps, created at erosionally
recessed partings on rock slopes, e.g., [194] (pp. 208–209); a parting is a thin stratum or
group of strata consisting of a lithology that differs from the thicker, main lithology above
and below it [195]. Gaps will be apparent on a rock face if a parting has recessed far enough
back that it cannot be seen in available images.
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Figure 9. Examples of stratified Martian sedimentary rock outcrop expressions. (a) Cliff-bench outcrop in southwest Candor
Chasma; HiRISE PSP_002340_1735. (b) Stair-stepped variant of cliff-bench expression (with cliffs and benches also partly
covered with talus) in a crater in western Arabia Terra; HiRISE ESP_066067_1890. (c) Banded layered rock exposure on
plateau above southwestern Juventae Chasma; HiRISE PSP_003579_1755. (d) Relatively narrow gaps between strata or
stratal packages exposed in Juventae Chasma; HiRISE PSP_007561_1775.

Cliff-bench, stair-stepped, and terraced landform expressions are common, although
not universal, among Martian sedimentary rock occurrences (Figure 9a,b). Cliff-bench
forms consist of prominent stacks of layered rock exhibiting vertical (cliff) and horizontal
(bench) elements. Stair-stepped occurrences are similar, but the vertical height of each
cliff, and the width of each bench, are similar and repeated (or nearly so), like a staircase.
Terraced hillslopes [109] are another variant in which benches form narrow terraces, cliffs
are absent, and slopes may approach that of the angle of repose. The cliffs in cliff-bench
sedimentary rock landforms are usually not actually vertical, and the pattern can be one of
thin, erosion-recessive and thicker, erosion-resistant couplets [17]. A thin, recessive layer
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need not always be present; differences in resistance to weathering and erosion resulting
from differences between the top and bottom of a given stratum or stratal package (e.g.,
particle size, sorting, cementation, and/or composition [196]) could also contribute to the
patterns observed.

Banding can indicate stratification, and is expressed in orbiter or aerial images of Mars
as alternations of strata or stratal packages that exhibit differing color or tone (Figure 9c).
Color or tone differences can result from intrinsic tonal or color properties of the rock,
or from textures (e.g., rough vs. smooth) that exist on the rock surface (or alluvium ac-
cumulated on the rock surface) at a scale below the spatial resolution of the image (see
Section 3.3). Banding can also result from accumulation of rock breakdown debris, wind-
blown sand, or windblown dust on benches or terraces on slopes cutting across stratified
rock (Figure 6c). Finally, banding might, in some cases, be reflective of stratigraphic proper-
ties but is actually a product of diagenesis or weathering. The Burns formation exposure
in Endurance crater examined via Opportunity provided an example of diagenetic band-
ing [57]. According to Young et al. [107] (p. 12), outcrops of the Glass Hill Sandstone of the
Bungle Bungle range in the Australian Kimberley provide an example on Earth of banding
that is only skin-deep. There, colorful bands exhibited by towering sandstone cliffs are
caused by weathering and microbial activity acting on minor stratigraphic variations in
porosity and clay content.

3.2.2. Patterns of Stratification

Exposures of stratified sediment can exhibit stratal patterns [197] that aid the iden-
tification of sedimentary rock and are useful for interpreting depositional settings and
conditions [14]. Patterns include the nature of stratum and stratal package thickness, the
three-dimensional shape of a stratum or stratal package (e.g., lens, wedge, etc.), repetitious
stratification, and sedimentary structures large enough to observe in aerial and satellite
images, such as meter- to decameter-scale cross stratification.

In their initial survey of sedimentary rocks in early MOC-NA images, Malin and
Edgett [49] described units of thin, thick, and massive stratal packages. “Thin” packages
were said to be a few meters to ~200 m thick and contain “one to hundreds” of thinner
beds; “thick” packages were described as being ~200–2000 m thick and also contain thinner
layers “Massive” packages were a few hundreds of meters to a few kilometers thick and
exhibit poor to zero evidence of stratification within them. In describing a stratified rock
occurrence observed in a satellite or aerial image, terms such as thin and thick should be
accompanied by quantitative definitions [14,198]. Massive, too, is a problematic term—
although it remains in use, even for Martian sediments e.g., [23,31,49]—because it has
nothing to do with mass; an alternative term is structureless [197]. In this case, structureless
refers to depositional rather than deformational structure [197]. The structureless descriptor
should be applied relative to observation scale (e.g., the rock unit exhibits no depositional
structure observable at an image scale of ~25 cm/pixel). Some of the rock units explored
at the Opportunity and Curiosity rover sites can appear to be (or are nearly) structureless
when observed in HiRISE images, but exhibit considerable sedimentary structure (e.g., fine
laminae, cross bedding) when viewed at higher spatial resolution using rover cameras
(Figure 10).
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Figure 10. Some Martian sedimentary rock outcrops appear “massive” or “structureless” at the scale of HiRISE 0.25 
m/pixel images, but are indeed stratified at millimeter to centimeter scales. (a) Light-toned area at the center is the 
Pahrump Hills outcrop explored via the Curiosity rover [189,199]; HiRISE PSP_009294_1750. (b) Oblique MAHLI view 
(receding away from the viewer) of fine, sub-millimeter-thickness strata at the Pelona target (blue box in (a)). Note light 
gray surface brushed by Curiosity’s dust removal tool [200]; MAHLI focus merge product 0806MH0004420000300703R00. 

Figure 10. Some Martian sedimentary rock outcrops appear “massive” or “structureless” at the scale of HiRISE 0.25 m/pixel
images, but are indeed stratified at millimeter to centimeter scales. (a) Light-toned area at the center is the Pahrump Hills
outcrop explored via the Curiosity rover [189,199]; HiRISE PSP_009294_1750. (b) Oblique MAHLI view (receding away
from the viewer) of fine, sub-millimeter-thickness strata at the Pelona target (blue box in (a)). Note light gray surface
brushed by Curiosity’s dust removal tool [200]; MAHLI focus merge product 0806MH0004420000300703R00.

Stratification patterns include those that repeat and those that provide information
about depositional forms and conditions (e.g., lenses, channel fills, cross stratification). Re-
peated patterns include repetition of stratum (or stratal package) thickness, rock properties
(as expressed in the landscape by erosion), or the patterning within one stratal package
as compared to the next. Repetition (Figure 9a) might be related to reoccurring, periodic,
or quasi-periodic climate patterns [16,192]. In clastic rocks, repeated strata also imply
that sediment supplies of similar or equivalent particle size, composition, and source are
available through each period or cycle. Although spectacular in appearance [16,69,192],
repeated (or cyclic) stratal patterns are, apparently [14,48], uncommon on Mars relative to
the overall abundance of sedimentary rock occurrences identified (up to the year ~2012) in
0.25–6.0 m/pixel orbiter images.

Cross-stratification and other sedimentation patterns are sometimes evident—albeit
very difficult to discern in many cases—in satellite or aerial images of well-exposed sed-
imentary rocks on Mars. Grotzinger and Milliken [48], for example, noted an outcrop
that cut through a feature that they interpreted as a small, filled, buried impact structure.
Dromart et al. [2] described a complex suite of stratal patterns in Melas Chasma—a stratal
architecture—interpreted to include subaqueous clinoforms and channel fill sediments
(Figure 11a). Meter- to decameter-scale cross stratification, interpreted to be aeolian, is
seen in a variety of settings on Mars, including several locations in Juventae Chasma (e.g.,
Figure 11b) [25], and stratal packages exposed in Aeolis Mons in Gale crater [22,191,201].
An important caveat applies here; Fedo et al. [202] noted that, based on an experience with
mudstones explored via Curiosity in Gale crater, some apparent cross-bedding patterns
might—upon closer inspection—turn out to be a fracture (or fracture and vein) pattern,
and determining this might be impossible using orbiter or aerial images.
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Figure 11. Example stratal architectures viewed in orbiter images of Mars. (a) Cross-cutting beds in southern Melas
Chasma described by Dromart et al. [2]; HiRISE PSP_007878_1700. (b) Candidate aeolian cross-stratification in “feature
A” (or “mound A”) in southwestern Juventae Chasma, reported by Sarkar et al. [25]; note that some cases of apparent
cross-stratification could actually be poorly resolved fracture (or fracture and vein) patterns [202]; HiRISE PSP_004291_1755.

Another important challenge to interpretation of sedimentary rocks observed on Mars
was explored by Day and Catling [30]. That is, some known Martian aeolian sandstones do
not exhibit cross-bedding patterns that are large enough to be observed in the presently
highest spatial resolution orbiter images (i.e., HiRISE), particularly the Burns formation in
Meridiani Planum [57,203,204], and the Stimson formation in Gale crater [136,188].

3.2.3. Unconformities

Unconformities in sedimentary rock sections indicate episodes during which sedi-
ments were not deposited and erosion occurred [205]. Previously eroded surfaces, emergent
from beneath sedimentary strata, provide the most obvious examples of unconformities
that can be recognized in satellite and aerial images of Mars. Unconformities in stratal
sections that expose older, partly exhumed terrain include the cratered surface identified
by Malin and Edgett [49] about a quarter of the way up the north slope of Aeolis Mons in
Gale crater (Figure 12a), and the partly-exhumed surfaces in Figure 8. Unconformities can
also be identified in places where a younger stratal package overlies older strata in a cross-
cutting relation; examples occur in Terby crater [see 11], Melas Chasma (Figure 11a) [2],
and Galle crater (Figure 12b) [206].

3.3. Tone and Color
3.3.1. Tone

Global, visible wavelength image coverage of Mars at the highest spatial resolution
currently available (6 m/pixel), is grayscale. Acquired by the panchromatic MRO CTX,
these grayscale images provide the foundational basis for planet-wide identification of
actual and candidate sedimentary rock occurrences. They also provide vital context for
the higher spatial resolution views obtained by other orbiter cameras such as MOC-NA,
HiRISE, HiRIC, and CaSSIS, as well as aerial imaging. While some of these higher spatial
resolution cameras provided color views of Martian sedimentary rock outcrops, the entire
planet has not yet been imaged, in color, at high spatial resolution (e.g., 0.25–6 m/pixel).
Thus, tone is presently more valuable, globally, for identification, description, and inter-
regional comparison of sedimentary rock occurrences. Tone is a qualitative proxy for
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albedo that is usually discussed in a relative sense, i.e., whether a feature is lighter or
darker than adjacent or nearby features in an image or image mosaic.
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Figure 12. Example unconformities in the Martian sedimentary record as viewed from orbit. (a) Some erosional un-
conformities can be identified where an impact-cratered paleo-surface is in a state of partial exposure from beneath
younger rock. Here, an eroded impact structure is emergent from beneath light-toned rock [49]; Aeolis Mons, Gale crater;
HiRISE PSP_009294_1750. (b) Unconformities between stratal packages in a mound of sedimentary rock in southern Galle
crater [50,206]; HiRISE PSP_003855_1275.

Many of the early identifications of sedimentary rock occurrences on Mars noted their
light tone (Figure 1d,e and Figure 6f) [48,49]. In addition, the sandstones of the Burns
formation at the Opportunity rover site were also light-toned (Figure 1f) [56,57]. However,
sedimentary rocks of dark tone and “intermediate” tone (between light and dark) were
also known [49], but considered less common.

Observations made at the Curiosity, Opportunity, and Spirit field sites have under-
scored a few important points regarding the tones of sedimentary rock occurrences observ-
able in satellite and aerial images. First, the observed tone can be an intrinsic property of
the rock, such as the observation that the sandstones at Meridiani Planum are light-toned
(Figure 1f). Second, there is the possibility that tone can be an intrinsic property not of the
rock but of a surface coating or weathering rind [207–209]. Third, and more importantly,
the observed tone might be an extrinsic signal of a combination (in various proportions) of
rock surface texture and aeolian dust or sand accumulation (Figure 13). Surface roughness
at scales smaller than a given satellite or aerial image pixel can cause a rock surface to
appear darker than the intrinsic rock tone because of self-shadowing. In contrast, accumu-
lation of light-toned aeolian dust can make the rock appear to be lighter than its intrinsic
tone (Figure 13a,b) [210] (p. 6). Martian aeolian sand is largely dark-toned [211], and
saltating sand will generally bounce off of rock surfaces [148]; however, sand grains can
accumulate in pits and fractures that are too small to observe in remotely-acquired images
(Figure 13c,d) and, thus, can impart an apparent darker tone. It is also important to note
that where an entire region is coated with dust, the apparent (extrinsic) tone of a given
rock unit will be indistinguishable from the surroundings (e.g., lithified dune field near the
Apollinaris Sulci, Figure 1a).
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Figure 13. Tone apparent in satellite or aerial images is, in some cases, a function of the presence of surface roughness, 
aeolian sand, or dust cover, or both. (a) Orbiter image of Curiosity’s Kimberley field site in Gale crater; the striated rock 
that occurs between the rover and Square Top is light-toned relative to its surroundings; HiRISE ESP_036128_1755. (b) 
The light-toned, striated rock was examined on a vertically-oriented surface at Square Top and found to consist of dark-

Figure 13. Tone apparent in satellite or aerial images is, in some cases, a function of the presence of surface roughness,
aeolian sand, or dust cover, or both. (a) Orbiter image of Curiosity’s Kimberley field site in Gale crater; the striated rock
that occurs between the rover and Square Top is light-toned relative to its surroundings; HiRISE ESP_036128_1755. (b) The
light-toned, striated rock was examined on a vertically-oriented surface at Square Top and found to consist of dark-toned
(gray) rock; orange-brown materials are adhering aeolian dust; MAHLI focus merge product 0586MH0003680000202975R00;
sunlight from the right/upper right. (c) Light-toned rock can appear to be darker in tone, than it actually is, where the
surface is rough (at sub-pixel scale), or where dark-toned aeolian sand is present in patches on the rock surface, or both;
this view provides context for (d); HiRISE PSP_009650_1755. (d) A view from the ground at the location in (c), showing
intermediate-toned, reddish-gray mudstone outcrops overlain by patches of dark, gray aeolian sand; MAHLI rover wheel
inspection image 1512MH0002610010600069E01.

3.3.2. Color

Rock color is like tone. It can be an intrinsic property or it can be (literally) a reflection
of sub-pixel scale roughness, superimposed aeolian sediment, or a combination of these.
Color is also challenging to establish—what is the “true color” of something? If you have
a lawn of green grass, how does that green look to your eye in sunlight? On a cloudy
day? In the shadow of a tree? In twilight? Do your eyes perceive green the same way as
another person’s eyes? In some cases, satellite and aerial imaging systems use cameras that
attempt to capture color close to that which the typical human eye sees (e.g., Bayer pattern
microfilters [212]), or they use cameras that capture images at wavelengths not visible to
the human eye (e.g., MRO HiRISE near-infrared band [91]).
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A key observation from the Curiosity rover mission in Gale crater is that Martian
sedimentary rocks exhibit a variety of colors, as evident in Bayer pattern color interpolated
images of bare rock surfaces acquired by the MAHLI (e.g., Figure 14). Examples from
Curiosity include conglomerates, sandstones, and mudstones of various shades of gray,
from nearly black to nearly white; mudstones that are reddish-brown, yellowish brown,
or purplish-gray; and vein-forming minerals that are white and various shades of gray
(Figure 14). The colors (excluding white) generally result from varied amounts of oxidized
versus reduced iron-bearing minerals (e.g., hematite vs. magnetite [213,214]).
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Figure 14. Example qualitative look at Martian sedimentary rock colors as recorded by Curiosity’s MAHLI red-green-blue 
Bayer pattern color detector in sunlight. (a) Dark gray sandstone; target Devil’s Punchbowl, 0942MH0001630000303666-

Figure 14. Example qualitative look at Martian sedimentary rock colors as recorded by Curiosity’s MAHLI red-green-blue
Bayer pattern color detector in sunlight. (a) Dark gray sandstone; target Devil’s Punchbowl, 0942MH0001630000303666-
R00. (b) Gray sandstone; target Rensselaer, Cooperstown field site, 0442MH000163-0000200183R00. (c) Light gray mud-
stone (tan material is aeolian dust) revealed by dust removal tool [200], which scratched a hole at the center; target
Buckskin, 1057MH0002270000400369R00. (d) Reddish mudstone, laminae expressed as stair-steps; target Folly Island,
1518MH0001700000600213R00. (e) Yellowish mudstone; target Pulpit Ledge, 1702MH0001710000604328R00. (f) Pur-
plish/yellowish mudstone; target Marimba; 1418MH0001530000503178R00. (g) White (calcium sulfate) vein in reddish
mudstone with gray aeolian sand; target Burnt Coat, 1783MH0007060010700661C00. (h) Red, green, and blue swatches on
the MAHLI calibration target [100], as imaged on Mars; 1696MH0003740010604177C00. (i) Blue sky and green palm fronds
viewed through a window on Earth by MAHLI during testing on 19 September 2008; CAL_MH0809780140001207B00. No
processing has been applied to alter the color or dynamic range of the original images; the calibration target and sky/palm
images qualitatively demonstrate the fidelity of MAHLI’s ability to record visible wavelength color.

3.4. Rock Breakdown and Resistance to Erosion

Landforms and landscapes are temporary, even on the ancient surface of Mars [215]
(p. 45). Their configurations result from the competition between the processes and rates at
which new rocks are formed, or become exposed at the surface, versus the processes and
rates at which rocks disaggregate and the fragments and dissolved ions are transported
and deposited elsewhere. On modern and geologically recent Mars, lateral erosion (e.g.,
undermining, scarp retreat, rock falls, wind abrasion) has been proceeding at a higher
rate than vertical erosion (lowering of surfaces); this is evident, for example, in the pace
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of erosional exposure of rock in Gale crater [216]. Vertical erosion rates may slow as lags
develop or erosion-resistant strata become exposed.

Subtle and not-so-subtle differences in rock properties can make a big difference in
landscape configuration. In sedimentary rock exposures, these result from differences
in lithology, including differing intraformational depositional or diagenetic facies [107].
For example, consider the impact on the landscape of the Petrified Forest National Park
in Arizona, USA, of intraformational sandstones and conglomerates in the otherwise
mudstone-dominated Chinle formation e.g., [217]. Such erosion-resistant rocks, part of
the same formation as the very colorful and much more erodible mudstones [217], led
to the creation of plateaus and hills that are capped by sandstones and conglomerates or
mantled by—or formerly mantled by—their broken-down debris. Variability in intraforma-
tional diagenetic facies in the Murray formation, a largely mudstone-bearing rock unit in
Gale crater, provides examples of diagenetic contributions (e.g., variable cementation) to
landscape configuration, including Vera Rubin ridge [218,219].

Breakdown (or weathering or decay) [134,135,220], and erosion, of Martian sedi-
mentary rock imparts signals of rock properties into the landscape that can be observed
in images acquired by orbiting and aerial instrumentation. Some of these signals are
interpretable as rudimentary information about sedimentary rock texture or structure.
Others—such as impact crater retention and formation of escarpments—provide informa-
tion that can be interpreted in terms of relative rock hardness. Resistance to breakdown and
erosion can also be a function of the nature of overlying, unconsolidated debris, including
lags deposits and aeolian bedforms that protect the bedrock from erosion.

3.4.1. Small Impact Crater Retention

The contribution of impact cratering to Martian rock breakdown and redistributive
transport of the resulting debris should not be underestimated [137,221,222]. In this context,
small (sub-kilometer diameter) impact crater retention refers to the opposite—the presence
and abundance of impact structures, at the Martian surface, as a signal of rock physical
properties. In particular, it refers to the erodibility of the rock in geologically recent and
modern times, rather than the application of impact crater size-frequency distributions for
absolute or relative age dating of geological materials.

Figure 15a illustrates the concept using an example of a lava flow located west of
Meridiani Planum that superposes its surrounding terrain. In this case, the flow is younger
than the materials it embays, but it retains many more small impact structures per unit area
than does the older, surrounding terrain. Figure 15b, showing lavas that embay yardang-
forming material in Galdakao crater, provides a similar illustration; in this case, the one
large impact structure in the yardang-forming material underscores the greater crater
retention age sensu [223] of these rocks, but the relative abundance of very small craters on
the lava surface illustrate the point that the lavas are more resistant to erosion and, thus,
retain small craters better than the yardang-forming material. Of course, it should be noted
that not all lavas are heavily peppered with small impact craters. Figure 15c shows an
example in Elysium Planitia that has a young crater retention age, attributed to the youth
of these lavas. Vaucher et al. [224] estimated these lavas might be only 2.8 ± 0.5 million
years old.
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Figure 15. Retention of small impact craters on lava flow surfaces. (a) Dark-toned lava plain (right/bottom) retains more
small craters than the older terrain (left/top) that it embays; CTX P15_006834_1793_XN_00S010W. (b) Lava plain (right) in
Galdakao crater embays older yardang-forming rock (left). The yardang-forming material retains fewer impact structures
than the lava surface, but the large crater that superposes the yardang-forming material is also embayed by the lava plain
and indicates the greater age of the yardang-forming material; CTX P18_008172_1668_XI_13S183W. (c) Not all Martian lava
plains are so heavily cratered as the examples in (a,b); younger lavas, such as this example in Elysium Planitia, have fewer
craters because of their relative youth [224]; MOC-NA M07-00444 and S11-00617.

Until Curiosity’s exploration in Gale crater was well underway, it had seemed that the
majority of Martian sedimentary rock occurrences have very few superimposed impact
craters [48,49,69,90,115,225]. This lack of craters was considered to be a signal of the
erodibility of these rocks which, in turn, was seen to be an indicator that they consist of
materials that are readily released by weathering and removed by erosion (e.g., clasts of
sand size and smaller). In contrast, surfaces heavily peppered with sub-kilometer-diameter
impact craters seemed to provide a good signal for distinguishing lava plains in cases
for which no vents, edifices, flow fronts, pressure ridges, or other geomorphic evidence
of volcanism are present [226]. However, there was a mystery. Among the very first
sedimentary rocks identified on Mars—in MOC-NA images in 1999—were those of a
lithified aeolian dune field in the Apollinaris Sulci region (Figure 1a) [51,52]. The lithified
dune field is dotted by many small impact craters. One and two decades ago, the retention
of small craters in a material that is best interpreted as sandstone seemed strange relative
to the majority of known sedimentary rock occurrences [226].
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The crater-retaining, lithified dune field (Figure 1a) was a signal that, perhaps, not
all Martian sedimentary rock occurrences are so easily eroded. However, recognition that
this observation is not unusual did not come until the early years of the Curiosity mission.
During Curiosity’s descent to the floor of Gale crater in 2012, its MARDI recorded an image
of the impact of the MSL heat shield on a surface that retains many sub-kilometer-diameter
impact structures (Figure 3b). For months thereafter, the science team considered it possible
that this crater-retaining bedrock surface (literally called a “cratered surface unit” [75,76])
might be lava, with the largest crater on its surface (Figure 3a) a possible maar. Indeed,
many other cratered surfaces, elsewhere in northern Gale crater, were also considered to be
candidate lava surfaces [76]. Ultimately, Curiosity was driven close to the northern edge of
the cratered surface unit that was impacted by the heat shield (Figure 3c) and its Mastcam
and ChemCam RMI images (e.g., Figure 3d,e) showed that the rock is sandstone [77,78].

Thus, a picture began to emerge, that some Martian sedimentary rocks are sufficiently
resistant to erosion that they retain (at least, qualitatively) sub-kilometer-diameter impact
craters as well as or nearly as well as do Martian lava flows and plains [227]. Continued
investigation via Curiosity has shown that while well-cemented [228] sandstones and
conglomerates retain small impact craters [229], so, too, can some mudstones. This is
particularly evident on Vera Rubin ridge (Figure 16). Diagenesis caused—in a manner that
cuts across stratigraphic boundaries [190]—this particular part of the Murray formation to
be more erosion-resistant than other parts [190,218]. While most of the Murray formation
consists of recessive mudstones [81], Vera Rubin ridge is a topographic high and retains
more craters per unit surface area than typical Murray formation exposures [230].

The number of small (sub-kilometer diameter) impact craters and remnant impact
structures retained by a given surface (of a given surface area) on Mars is the integrated
product of:

1. The total period (which can include multiple episodes of burial and exhumation)
during which the surface was exposed to the atmosphere through which impactors
penetrate to reach it;

2. The impact cratering rate and variability of that rate—owing to changes in atmo-
spheric density, impactor supply, and astrodynamic availability of impactors—during
the period(s) of exposure;

3. The formation of secondary impact craters and proximity to the primary impact site;
and

4. The rate and variability of the rate at which impact structures are removed by erosion,
including destruction by subsequent impact events.

The removal of small impact structures is, at least in part, a function of rock physical
properties—erosion-resistant rocks can retain many small craters [137]. The Curiosity rover
mission has shown that such erosion-resistant rocks can include mudstones (Figure 16),
conglomerates, and, especially, well-cemented sandstones (Figure 3).
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Figure 16. Erosion-resistant mudstone of the Vera Rubin ridge [219] in Gale crater. (a) The ridge retains more impact
structures than is typical for other mudstone outcrops explored in Gale crater [230]; HiRISE PSP_009294_1750. (b) Context
for ((a); box) on the ridge top; HiRISE PSP_009294_1750. (c) Stereopair anaglyph view of Vera Rubin ridge, emphasiz-
ing its erosion resistance; HiRISE PSP_009149_1750, PSP_009294_1750. (d) Context view of Vera Rubin ridge relative
to the recessive valley to its immediate south and the recessive valley and erosion-resistant slope to the west; CTX
P21_009294_1752_XI_04S222W.
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3.4.2. Boulder Production and Retention

Retention of boulders, cobbles, and megaclasts [231] produced from rock breakdown
is analogous to impact crater retention; rocks more resistant to erosion produce mega-
clasts, boulders, and cobbles that are retained longer because they are more resistant
to post-production disaggregation and removal of the resultant fines (and vice versa).
Boulders, cobbles, and megaclasts can be produced from sedimentary rock by impact
events (Figure 5a), fracturing followed by dislodgement and displacement (e.g., mass
movement; rock fall) at retreating escarpments (Figure 5b,c) and crater walls, or from
fracturing followed by slower dislodgement and displacement processes (Figure 5d).

In MOC-NA images acquired through the middle months of the year 2000, boulders
associated with sedimentary rock occurrences were not seen [49]. This observation was
considered to be an indicator that the rocks are composed of fine-grained clasts such as
clay, silt, and sand [49]. However, this notion changed dramatically once the MOC-NA
was operated in cPROTO (compensated Pitch and Roll Targeted Observation) mode for
higher spatial resolution views [50]. MOC-NA cPROTO images showed boulders shed
from sedimentary rock escarpments in, for example, northern Sinus Meridiani and western
Candor Chasma [168,232]. Subsequent imaging by MRO HiRISE and rover cameras has, of
course, also shown boulders produced from Martian sedimentary rock (Figure 5). Still, of
course, a lack of retained boulders is, in some cases, interpretable as a signal that a rock
poorly resists erosion, and that any boulders produced are soon reduced to particle sizes
small enough to be removed by wind [49,233].

3.4.3. Friability

Contrary to common usage of the term in Mars geoscience [72,225,234–237], the fri-
ability of a rock cannot be detected using satellite or aerial images. The geological term,
friable, refers to rock that crumbles or sheds small fragments (such as sand grains) as a
result of rubbing by human touch. No geomorphic observations can be said to indicate
friability, although, in the Mars context, poor impact crater retention and kharafish land-
forms such as yardangs have been invoked as evidence of friability. Where no human hand
(or robotic touch of similar pressure) has rubbed the rock, friability cannot be determined.
Further, friability is not an indicator of rock hardness or resistance to erosion. For exam-
ple, Young [238] described friable, yet steep-sloped (in some places, vertical), sandstone
outcrops in the Bungle Bungle range of the Kimberley of Australia. In this case, a lack of
intergranular cement makes the rock friable, but compaction and interlocking grains make
the rock resist erosion [238].

3.4.4. Escarpments and Scarp Retreat

Slopes cut through sedimentary rock strata on Mars can take a variety of forms that
reflect (1) local- to deposit-scale (or basin-scale) physical properties related to depositional
and diagenetic texture and structure; (2) the landscape-shaping processes that have acted
upon the outcrop, including (but not limited to) impact crater formation, faulting, mass
movement, fluvial erosion, and aeolian erosion; and (3) the nature of subsequent slope-
modifying processes and their relation to the time elapsed since the slope was initially
formed. Differential erosion of stratified rock units of differing physical properties can be
expressed in landscapes in the form of escarpments and scarp retreat (Figure 5b), leading
to formation of the canonical progression of landforms from plateau to mesa to butte to
pinnacle and hill [108,112,239]. Lateral erosion in rocks of differing properties may lead to
undermining, collapse, disaggregation, and dispersal of erosion-resistant lithologies that
overlie those of poorer resistance. Where rock is fractured and groundwater is present, it
can lead to dissolution and weathering of the rock even before it is exposed at the planetary
surface [108,240]. Where the rock is fractured, water, or ice tables are lowered or not
present at all, and the environment is subject to aeolian processes, deflation and abrasion
by saltating grains can contribute to scarp retreat and shallow basin formation [241,242].
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As noted previously, rover observations made in Gale crater suggest that lateral scarp
retreat rates via aeolian processes dominate over vertical erosion rates [216]. Plateaus,
mesas, and buttes are generally topped by a capping rock unit that is more resistant to
erosion than the rock beneath it. Observations from Gale crater demonstrate that such
erosion-resistant rocks can be sedimentary (e.g., the sandstones capping the Emerson
plateau and Murray buttes [136,188]). Such capping rocks can be intraformational, such as
the sandstones and conglomerates of the Chinle Formation on Earth, noted above [217],
or they can consist of a drastically differing lithology (e.g., lava overlying sedimentary
rock). In any case, they can be either conformable or unconformable with subjacent strata;
an example of the latter is the Salsberry Peak sandstone (Figure 2), which is part of the
Pahrump Hills member of the Murray formation in Gale crater [74,80], and examples of
the latter include the Stimson formation rocks that overlie the Murray formation also in
Gale crater (Figure 17) [136,145,188].
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Figure 17. Example Stimson formation outcrops. The erosion-resistant Stimson formation sandstones form buttes, mesas,
and plateaus that overlie Murray formation mudstones along an erosional unconformity that mimics the paleo-slope on
which the Stimson sands were deposited [136,188,243]. (a) The Stimson/Murray contact on the east side of Emerson plateau;
MSL Sol 981 Mastcam-24 mosaic (sequence 004333); azimuths 150◦ and 160◦ indicated. (b) The Stimson/Murray contact
on the east side of Naukluft plateau; MSL Sol 1272 Mastcam-100 mosaic (sequence 005949); azimuths 200◦ and 210◦ are
indicated.

3.4.5. Dispersal of Liberated Clasts or Rock Fragments in the Landscape

As clastic rocks break down, produced lithic fragments and liberated clasts are released
into the landscape. In the case of sand-, silt-, and clay-sized particles, they are likely to be
subject to mobilization and transport by wind. Distinguishing such materials and linking
them directly to their source outcrop in satellite and aerial images is generally quite difficult.
It would be ideal to be able to say that a given rock is a sandstone because a satellite image
reveals it to be the source of liberated sand that has moved downwind from the outcrop.
While this is usually not possible, Chojnacki et al. [244] demonstrated that a combination
of satellite image and multispectral remote sensing analysis provided a reasonable indictor
that some of the sulfate mineral-bearing sedimentary rocks in the Valles Marineris have



Remote Sens. 2021, 13, 4296 28 of 94

been shedding sand-sized material (whether produced fragments or liberated clasts cannot
be known from the data) that is contributed locally to aeolian sand dunes.

Larger liberated or produced clasts—boulders, cobbles, and pebbles—are generally
likely to remain near their source until they breakdown to finer particles and are removed
by wind (exceptions can include ballistic transport by impact events and transport by
fluvial action earlier in Martian history). The boulder-sized rock fragments referred to in
Section 3.4.2 and Figure 5 provide an example, as do the pebbles liberated from and lying
on the ground next to conglomerate outcrops in Gale crater (Figure 18a) [245], and pebbles
produced from the breakdown of Jura member (of the Murray formation) mudstones, also
in Gale crater (Figure 18b,c) [246].
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Figure 18. Pebbles liberated or produced from bedrock can form a pebbly regolith that translates to an apparent “smooth”
surface at orbiter image scales (e.g., 25 cm/pixel HiRISE). (a) Example of pebbles liberated from conglomerate bedrock
near Bradbury Landing, Gale crater; MSL Sol 27 Mastcam-100 mosaic of 0027MR0001290000100750E01 and 0027MR000-
1290050100755E01. (b) Angular pebbles locally produced from breakdown of Jura member mudstone [190] in Glen Torridon,
Gale Crater; MSL Sol 2432 Mastcam-34 mosaic (sequence 012875). (c) Orbiter view of the area in (b) shows that the pebbly
regolith is expressed as a smooth surface in 25 cm/pixel images; blue rectangle indicates rover position at the time the view
in (b) was acquired; HiRISE ESP_060840_1750. (d) Pebbly regolith produced by liberation of pebbles from a conglomerate
bedrock (Point Coulomb member [247]) at the Kimberley site, Gale crater; mosaic of MAHLI wheel inspection images
0587MH0002640000203006E01 and 0587MH0002620000203007E01. (e) Orbiter view of the Kimberley site shows that the
pebbly regolith is expressed as a smooth, surface; blue rectangle indicates rover position at the time the view in (d) was
acquired; HiRISE ESP_036128_1755.
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3.4.6. Burial or Lag Protection

Liberation or production of pebbles from rock breakdown can accumulate and form a
pebbly regolith or an aeolian lag [248] that further enhances resistance to vertical erosion
of underlying rock. A pebbly regolith or lag can appear to be smooth and featureless at
image pixel scales that exceed the size of the pebbles. This is true whether the source
of the pebbles is liberation from a conglomerate or breccia (Figure 18a) or breakdown of
a finer-grained rock, such as mudstone (Figure 18b). An example of this occurs at the
Kimberley field site visited by the Curiosity rover, where the Point Coulomb member
of the Kimberley formation [247], a conglomerate bedrock, is overlain by a regolith lag
of liberated pebbles (Figure 18d) that give the terrain a smooth appearance in HiRISE
0.25 m/pixel images (Figure 18e). At meter to decameter scales, of course, the rock is
not smooth but hummocky, reflecting prior erosion of the conglomerate. In addition to
lags, aeolian sand accumulations (i.e., dunes and dune fields) can also bury and protect
underlying rock from vertical erosion, at least as long as the sand remains in place.

3.5. Depositional Setting Mimicry

Some sedimentary rock exposures are readily identified on Mars because their geo-
morphic expression in the modern landscape mimics their original depositional setting or
deposit morphology (e.g., Figure 1a–c). Such landforms exhibit properties that indicate they
are rock (Section 3.1). This mimicry is a product of the combined attributes of deposit-scale
depositional structures, sedimentary facies, and the impact of diagenesis as a function of
differing compaction, paleo-porosity, and paleo-permeability.

3.5.1. Bedforms

Lithified bedforms expressed in the modern Martian landscape include those that resem-
ble whole, intact aeolian dunes and dune fields in Melas Chasma (Figure 19a) [50,139,249]
and near the yardangs of the Apollinaris Sulci (Figure 1a) [51,140,185]. Preservation of in-
tact dunes and dune fields requires a process or processes that allow the material to become
rock, while not disrupting the original dune morphology. On Earth, such preservation
sometimes occurs through inundation by lava [171,250]. As no lavas are apparent at the
Melas Chasma and Apollinaris Sulci locations, the possibilities for preservation of these
dune forms include rapid burial by aeolian dust or tephra to a depth at which the wind
could no longer access and mobilize the sand, or through stabilization of the dunes (e.g.,
wetting, freezing, cementation), followed by—or not—slower, gentle air-fall deposition of
dust or fine tephra over some period of time.
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Figure 19. Depositional mimicry—lithified bedforms. (a) Cratered, lithified aeolian dune in south Melas Chasma [139];
HiRISE PSP_007522_1685. (b) Cratered, lithified, discontinuous subparallel ridges in lithified dune field near Apollinaris
Sulci; in context, the ridges are interpreted as candidate, fossil transverse aeolian ridges (TARs); HIRISE PSP_007460_1675.
(c) Large (90 m wavelength) bedforms preserved in stratified rock in Terby crater [50]; HiRISE PSP_001596_1525. (d) Barchan-
dune-shaped pits (sunlight illuminates the scene from upper left) in eastern Hellas Planitia; “ghost dunes” of Day and
Catling [251]; CTX P19_008558_1398_XI_40S281W. (e) Example crescent forms, interpreted as lithified remains of two
barchan dunes, in Barth crater [27]. (f) Dune-like forms (with regards to morphology, scale, and intracrater setting)
in rock, partially exhumed from beneath a dark-toned mantling unit, in a crater in southwestern Arabia Terra; CTX
D21_035566_1822_XN_02N000W.

Features interpreted by some investigators to be smaller, lithified aeolian bedforms,
such as “transverse aeolian ridges” [252,253], have also been identified (Figure 19b) [191].
Additionally, a rock stratum (or stratal package)—emergent from beneath subsequent
strata—in Terby crater exhibits large “ripples” of wavelengths of ~90 m, crest-to-crest
(Figure 19c). Whether these bedforms were deposited subaerially or subaqueously is
unresolved [50].

The subject of Martian bedform preservation observable at satellite and aerial photo-
graph scales intersects with preservation of the opposite—spaces left behind by the removal
of a bedform. Day and Catling [251] described barchan dune-shaped depressions in Hellas
Planitia (Figure 19d) and Noctis Labyrinthus that they termed “ghost dunes” and inter-
preted as dune casts (alternatively, they can be called molds because they have negative
relief). Formation of such ghost dune hollows required deposition of interdune material
that surrounded each dune, followed by erosion that removed mobile sand. Based on an
Earth analog in Idaho [254], some amount of aeolian sand is thought to have remained
in the Martian ghost dune hollows and could provide a sandstone or meta-sandstone
record for future exploration [251]. Day et al. [27] described a different situation, in which
similar-oriented, lithified, transverse and crescentic forms in and near Barth crater are the
preserved remnants of former aeolian dunes (Figure 19e). Additional dune-like lithic forms
are seen in Figure 19b.

Transverse ridge patterns preserved in Martian rock can be signs of former bedforms
(Figure 19b)—or they can be faux signals of depositional setting mimicry. There are
two varieties of concern. One is a ridge pattern called “periodic bedrock ridges” [255],
and the other is a pattern of regularly spaced, low ridges and shallow troughs called
“washboard” [201]. Periodic bedrock ridges exhibit patterns similar to aeolian bedforms
but are created by the combination of (1) substrate protection from aeolian erosion beneath
megaripples or transverse aeolian ridges; (2) aeolian erosion of the substrate between
the bedforms; and (3) the eventual removal of the bedforms to reveal ridges of substrate
material (e.g., rock) that had been protected beneath them [255,256].

The other transverse ridge and trough pattern, sometimes referred to as a “washboard”
texture [191,201,257], is a geomorphic expression observed on rock surfaces as a series
of regularly spaced troughs and ridges of decameter-scale wavelength and meter- to
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decameter-scale amplitude (Figure 20). They are common in Gale crater [191,201] but
also occur in other low latitude regions of Mars [257] Some of the rocks in Gale crater
that exhibit a washboard pattern have been explored using the Curiosity rover and are
found to be aeolian sandstones [188]. However, no linkage between aeolian sedimentary
structure (Figure 20d) and the washboard pattern was found [188]. A concern regarding
washboard patterns in Gale crater is whether they are an erosional expression of aeolian
sedimentary structures or of differential erosion of fractured (jointed) rock. To date, this
concern is unaddressed and it is possible that some washboard patterns do reflect aeolian
depositional architectures, while others reflect deformational and diagenetic events that
occurred during or after lithification.
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3.5.2. Deltas and Alluvial Fans

Perhaps the most broadly recognized examples of depositional setting mimicry are
the deltaic landforms in Eberswalde and Jezero craters (Figure 1b,c) [53,258]. Many other
similar, sediment distributive landforms are evident on Mars in the form of both deltas
and fans [13,19,259–262]. In some cases, the colleagues who investigated these did not
address whether the materials are lithified, but some percentage of them most certainly
are. For example, Figure 8d,e shows sedimentary fans that are emergent from beneath
younger rock; an observation that implies that these examples are lithified. Figure 21 shows
additional examples, including a boulder-producing fan crosscut by a graben.
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Figure 21. Depositional setting mimicry—sediment fans. (a) Example in western Gunjur crater; crosscut by a graben,
the escarpments attest to the competence of the deposit; CTX P21_009109_1797_XN_00S213W. (b) Example in south-
eastern Hellas Planitia; the fan terminus is bounded by escarpments and distal remnants form mesas and buttes; CTX
K20_061053_1332_XI_46S272W.

3.5.3. River and Stream Sediment

The initial recognition of the lithified delta in Eberswalde crater included the observa-
tion of ridges that resemble former stream courses [53,263]. Similar landforms had been
identified on Mars at a few locations before that time [264,265], and these were reminiscent
of networked, inverted fluvial forms previously identified on Earth [266,267]. Colloquially
referred to as “inverted channels” or “sinuous ridges” [201,235,268–271], in more recent
years, the term “fluvial ridge” has been devised [176,177], especially because not all cases
are a product of landscape inversion [13]. However, none of these terms adequately de-
scribes the landform [177], as some ridges are not sinuous and the other terms imply
knowledge of process (inversion of topography) or material (fluvial sediment).
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Ridges (and networks of ridges) that record the locations of former stream courses
are quite common on Mars [26,177,272,273]. Figure 22a–d shows examples. On Earth,
analogous ridges usually do not consist of 100% fluvial sediment [177]. In some cases, the
bulk of the material might be an erosion-resistant igneous rock (e.g., lava) that filled the
channel or valley of a former stream course. In other cases, much of the ridge volume might
be occupied by rock that originally occurred beneath the stream (e.g., “ghost channels” of
Clarke et al. [274]). Thus, a ridge that marks a former stream course might or might not
indicate the presence of sedimentary rock.
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Figure 22. Depositional setting mimicry—fluvial forms. (a) Fine, contributory fluvial ridges at the southeastern head of
Naktong Vallis in Arabia Terra; CTX F19_043068_1800_XI_00N321W. (b) Fluvial ridges in southeastern Hellas Planitia [177];
HiRISE ESP_032293_1320. (c) Fluvial ridge network on plateau immediately west of Juventae Chasma [50,268]; CTX
N13_067415_1758_XN_04S063W. (d) Fluvial ridge in northern Terra Cimmeria, CTX G14_023798_1696_XN_10S199W.
(e) Channel-fill sediment preserved in Gediz Vallis on northern Aeolis Mons in Gale crater [49]; HiRISE PSP_009149_1750.
(f) Channel-fill sediment preserved in Sakara Vallis on western Aeolis Mons; HiRISE PSP_006855_1750.

Most Martian ridges that mark former stream courses are candidates for the presence
of preserved fluvial sediment. Preservation of fluvial sediment in ridge form on Earth
generally follows one of four pathways [177]:
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1. The sediment and/or channel-adjacent alluvium become cemented in the surface/near-
subsurface environment and becomes a ridge when adjacent, unconsolidated or
poorly-cemented alluvium is eroded away;

2. The sediment is preserved beneath lava or tuff that filled the channel or valley;
3. The sediment becomes lithified by deep burial diagenesis (compaction, cementation)

and then returns to the surface (tectonism, erosion) and is subjected to differential
erosion and exposure; or The sediment is never lithified, and coarse fluvial sediment
grains (boulders, cobbles, pebbles) are left behind as an aeolian lag to protect the
material from further removal.

Cementation in the surface/near-subsurface environment, also known as early diage-
nesis or eogenesis [126], typically involves formation of a ’crete (silcrete, gypcrete, calcrete,
etc.), at least on Earth [177].

While ridges—marking the locations of former stream courses—composed of lava
are common on Earth [177], very few examples have been (thus far) been identified on
Mars [275]. The proportion of the abundant fluvial ridges on Mars [26,177,273] that are the
products of deep burial sediment diagenesis, surface/near-surface cementation, or aeolian
lag development is not known. A few cases on Mars provide definitive examples of fluvial
ridges that are emergent from beneath younger rock (Figure 8b,c). An initial remote sensing
study of the thermophysical properties of 20 such ridges suggested that those examined
are more likely composed of lithified material than unconsolidated sediment protected by
a lag [276].

Mars orbiter imaging has also shown that not all stream channel depositional set-
ting mimicry takes the form of a ridge. The inner channels of Gediz Vallis and Sakarya
Vallis, two canyons that cut the stratified Aeolis Mons in Gale crater, contain sediment—
interpreted to be lithified [20,49,201]—still located within the original channels (Figure 22e,f).

3.5.4. Lakes and Ponds

No specific attribute(s), such as water surface area or depth, distinguish lakes from
ponds. Indeed, “it is difficult to specify an upper size limit to what is called a pond and
when it should be called a shallow lake” [277] (p. 716). On Earth, ponds are more common
than lakes [278] and are generally regarded as “small” water bodies [279,280] that lie along
a continuum between megalakes [281] and bodies of surface area ≤ 100 m2 [282,283].
Similar to ponds, pools are distinguished from ponds because they dry out at episodic
(“regularly, yearly or every few years,” [277] (p. 716)) intervals [284].

Just as Mars has ridges that mimic stream courses and provide records of past fluvial
sediment transport and depositional settings, so too, can some raised landforms (e.g.,
mesas, hills, mounds) reflect the former presence of a small lake, pond, or pool. The least
ambiguous examples (Figure 23) occur as local topographic highs at a terminus of a ridge
or ridges that record a former stream course. As with fluvial ridges, the proportion of
the volume of these landforms that consists of aqueously deposited sediment is currently
unknown, as is the pathway (surface/near-surface cementation, lava, deep burial diage-
nesis, and aeolian lag formation) by which any given example followed before attaining
its present configuration in the Martian landscape. Analogs to these Martian examples do
exist on Earth [285–289]. They do not always mimic the original lake or pond shape, but
some examples do [290,291].
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its northward trace (yellow arrows) with plateau-forming rock; southwestern Arabia Terra; CTX 
N12_067004_1928_XN_12N011W. (c) Intersection of narrow, dark-toned plateau (former valley floor/fluvial sediment?) 
with eroded basin floor material to the west (left) in eastern Terra Sabaea; mosaic of CTX K23_062228_1603_XI_19S311W 
and K06_055555_1593_XN_20S310W; caution, note sharper contrast west (left) of the mosaic seam. (d) Convergence of 
ridges (former streams) with a small, crater-retentive plateau in north central Arabia Terra; CTX F05_037820_2056_X-
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3.5.5. Impact Crater Ejecta 
Impact ejecta deposits consist of (1) material violently released from a given crater 

and (2) materials eroded from the substrate beneath the ejecta during emplacement 
[221,293]. Rock formed from impact melt can be locally present in an ejecta deposit [294], 
and some of the ejected rock fragments are shock-metamorphosed [295]. The bulk of an 
ejecta deposit, however, is essentially a clastic sediment (breccia) that can, like any other 
sediment, undergo diagenesis and lithification [169,170,296,297]. 

Figure 23. Depositional setting mimicry—candidate pond or lake sediments associated with fluvial ridges. (a) Convergence
of fluvial ridge forms on a small area, ~6 km wide; candidate small lake or pond sediment facies [292]; western Arabia Terra;
sunlight from the upper left; CTX J19_052300_1855_XN_05N007W. (b) Convergence of a fluvial ridge and its northward
trace (yellow arrows) with plateau-forming rock; southwestern Arabia Terra; CTX N12_067004_1928_XN_12N011W.
(c) Intersection of narrow, dark-toned plateau (former valley floor/fluvial sediment?) with eroded basin floor material to
the west (left) in eastern Terra Sabaea; mosaic of CTX K23_062228_1603_XI_19S311W and K06_055555_1593_XN_20S310W;
caution, note sharper contrast west (left) of the mosaic seam. (d) Convergence of ridges (former streams) with a small,
crater-retentive plateau in north central Arabia Terra; CTX F05_037820_2056_X-I_25N338W.

3.5.5. Impact Crater Ejecta

Impact ejecta deposits consist of (1) material violently released from a given crater and
(2) materials eroded from the substrate beneath the ejecta during emplacement [221,293].
Rock formed from impact melt can be locally present in an ejecta deposit [294], and
some of the ejected rock fragments are shock-metamorphosed [295]. The bulk of an ejecta
deposit, however, is essentially a clastic sediment (breccia) that can, like any other sediment,
undergo diagenesis and lithification [169,170,296,297].
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Some proximal impact crater ejecta deposits on Mars have been buried (or partly
buried) and then partly exhumed from beneath sedimentary rock (e.g., Figure 8a). Their
present-day geomorphic form mimics the original ejecta deposit but, because the material
has been excavated from beneath subsequently emplaced rock, the ejecta deposit must be
inferred to have been lithified.

3.5.6. Mass Movement Deposits

Like any other sediment, landslide deposits [298] can be subjected to burial and
diagenesis or surface/near-surface diagenesis without burial. For example, in carbonate-
clast-rich cases on Earth, near-surface diagenesis can (in some cases) cement and lithify
the brecciated debris [299]. Lithified landslide deposits can mimic their original deposi-
tional form if they are exhumed, partly exhumed, or—like the aforementioned carbonate
examples [299]—became lithified without burial. We have not yet definitively identified an
example of a lithified landslide deposit on Mars, but Figure 24 shows a good candidate
that is emergent from beneath subsequently-deposited, erosion-resistant (small impact
crater-retaining), sedimentary fans that might also be lithified.
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and aerial images from Mars. Of course, some cases are not difficult at all; for example, 
there is little question that Olympus Mons is a volcanic edifice [300], and that repeated 
strata of repeated thickness and physical properties argue for environmental influences 
on deposition (i.e., sedimentation) [16,49]. However, with: (1) the recognition of erosion-
resistant, dark-toned, mafic sedimentary rocks at the Curiosity field site [70,71,77,188]; (2) 
pre-Curiosity-landing speculation that some of the upper stratal packages of Aeolis Mons 
(the 5-km-high mountain in Gale crater) consist of Medusae Fossae Formation material 

Figure 24. Depositional setting mimicry—candidate lithified landslide deposit. (a) Context showing landslide deposit
emergent from beneath sedimentary fans; inset (lower left) shows some details of the contact between the landslide and
fan materials; CTX mosaic of F05_037831_1559_XN_24S273W and J03_045928_1562_XI_23S273W. (b) Contact between fan
(left/bottom) and landslide (right/top) sediments; fan sediments are stratified, retain eroded impact structures, and hold
cliffs; the landslide materials are emergent from beneath the fan sediments; HiRISE ESP_062108_1560.

3.6. Distinction of Igneous from Sedimentary Rock

Distinction of igneous from sedimentary rock is one of the most challenging and vital
concerns with regard to deciphering the geological history of Mars. Doing so is not always
easy, whether using hand-lens-scale images from a rover (e.g., Figure 4), or using satellite
and aerial images from Mars. Of course, some cases are not difficult at all; for example,
there is little question that Olympus Mons is a volcanic edifice [300], and that repeated
strata of repeated thickness and physical properties argue for environmental influences
on deposition (i.e., sedimentation) [16,49]. However, with: (1) the recognition of erosion-
resistant, dark-toned, mafic sedimentary rocks at the Curiosity field site [70,71,77,188];
(2) pre-Curiosity-landing speculation that some of the upper stratal packages of Aeolis
Mons (the 5-km-high mountain in Gale crater) consist of Medusae Fossae Formation mate-
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rial [301,302], considered by some colleagues to be tuffs [303–305]; and (3) pre-Perseverance-
landing uncertainty, as to whether the bedrock at or near the surface of the floor of Jezero
crater would be igneous or sedimentary [31,306]. The concern about distinguishing igneous
from sedimentary rocks has become more acute and has real-world consequences, such as
landing site selection.

The main concerns for discrimination between igneous and sedimentary rocks center
on the diagnostic value (or not) of columnar jointing, wrinkle ridges, boulder production
and retention, lobate rock unit margins, the nature and patterning of stratified outcrops,
the challenge to distinguish tuffs, and, most importantly, rock outcrop context. In addition
to these, first, we briefly depart from the imaging theme to discuss remote spectroscopic
detection of rock composition. In particular, while some sedimentary rock occurrences
might be dominated by infrared spectral signatures indicative of sulfates, clay minerals,
hematite, chlorides, or carbonates, e.g., [29,307–310], others have compositions similar or
equivalent to igneous or impact melt rocks and, therefore, can potentially be misinterpreted.

3.6.1. Remote Sensing of Composition

By itself, information regarding rock composition determined using satellite or aerial
remote sensing instruments does not permit distinction between igneous (or impact melt)
and sedimentary rock on Mars. Most important to this point is the detection by near- or
thermal-infrared remote sensing of igneous rock-forming minerals (e.g., olivine, pyroxene,
plagioclase), or a spectrum interpretable as an igneous rock type (e.g., basalt, andesite).
Observations made using the instruments onboard Curiosity in Gale crater have, for
example, shown that Martian sandstones can be basaltic [71,73,77], and even mudstones
can contain considerable, detrital feldspar and pyroxene [141,214]—and, in some cases,
olivine [311]. The investigations using orbiter observations of intercrater “bedrock plains”
described by Rogers et al. [72] and Cowart et al. [312], and the studies of intracrater
dark-toned pyroxene- and olivine-bearing rock and light-toned, feldspar-bearing rock
by Irwin et al. [23], underscore the points that sedimentary rocks with igneous rock-like
compositions are present on Mars, may be identifiable via satellite or aerial remote sensing,
and might even be common.

Ultimately, compositional information (e.g., interpreted from infrared spectra) is
informative of composition but it does not, alone, inform us of the genesis of a given
rock unit. Indeed, Rogers et al. [72], Cowart et al. [312], and Irwin et al. [23] relied on
geomorphic observables to make their interpretations. Such observables included poor
retention of small impact craters (indicative of poor erosion resistance), kharafish (aeolian
erosion forms, carved into the rock, at a variety of scales), paucity of regolith (indicative of
aeolian removal of sand-size and finer rock breakdown debris), a presence of aeolian lags
(e.g., small bedforms) and, in some cases, association with fluvially-incised valleys or the
inverted forms of former fluvial systems [23,72,312]. A lack of volcanic features such as
flows, vents, and edifices was also an important factor in their interpretations [23,72,312].

3.6.2. Columnar Jointing

One possible discriminator between igneous and sedimentary rock observable in
satellite and aerial images of Mars is columnar jointing. Columnar jointed rocks defini-
tively occur on Mars [144]. In fact, columnar jointing provides excellent—but not en-
tirely conclusive—evidence for magmatism. On Earth, they are most common in lavas
e.g., [179,313] and shallow igneous intrusive bodies like the Devil’s Tower volcanic plug in
Wyoming, USA [314]. They also occur in some impact melt sheets [315] and welded [316]
and non-welded [317] tuffs. Although unusual, examples of columnar joints also occur in
metasedimentary rocks such as thermally altered chalk [318], paleosols baked beneath lava
flows [318], and, especially, contact-metamorphosed sandstones [319–323]. Thus, although
an excellent signal of magmatic activity, the context of columnar jointed rocks on Mars
should be considered to evaluate whether they formed in igneous rock, impact melt, or in
contact-metamorphosed sedimentary rock.
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3.6.3. Wrinkle Ridges

During the first several decades of spacecraft exploration of Mars, wrinkle ridges
were considered a reasonably good signal of the presence of a lava plain [324–326]. In
some research products, the presence of a wrinkle ridge in a Mariner 9 or Viking orbiter
image was the only evidence available to interpret a given inter- or intra-crater plain as
volcanic [327–329]. However, others cautioned that wrinkle ridges might not be diagnostic
of lava plains [330,331] and that Earth analogs include examples occurring in sedimentary
rock [331,332].

The term, wrinkle ridge (e.g., Figure 25a), refers to a landform assemblage that gen-
erally consists, in cross-section, of a narrow ridge superimposed on a broader arch [332].
They typically range from linear to arcuate as measured along their axes. Their name comes
from the viewer impression that near-surface bedrock has been wrinkled or buckled. They
can also be called maria ridges, or mare-type ridges, because they were first known from
telescopic investigations of the lunar maria [333]. Wrinkle ridges are surface expressions
of compressional deformation—thrust faulting and/or folding [334,335]—in competent
(typically, erosion-resistant) rock. It is because of their similarity to the wrinkled ridges of
the volcanic lunar maria, that some early Mars investigators took their presence to be a
good sign of a lava plain.
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K17_059947_1972_XI_17N325W. (d) Boulder and megaclast production and stratification in a fluvial ridge north of the 
basin; slope direction indicated by blue arrows; dust- and debris-covered cliff-bench strata are evident (green arrows), as 
are angular rock slabs slightly displaced (yellow arrow) from the outcrop; HiRISE ESP_059314_1985. (e) Boulder and meg-
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ESP_069404_1980. (f) Boulder and megaclast production at wrinkle ridge crest; a progression from (1) an intact (or nearly 
intact) rock slab, to (2) a dislodged, slightly displaced rock slab eroding from the outcrop, to (3) smaller boulders as slabs 
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Figure 25. Wrinkle ridges. (a) Typical wrinkle ridge in northern Lunae Planum, commonly interpreted as a lava plain;
CTX K23_062522_2007_XI_20N063W. (b) Context for wrinkle ridge in candidate sedimentary rock in an intercrater basin in
central Arabia Terra; white box shows location of (c) through (g); presented on the next page; daytime THEMIS-IR base
map [336] combined with the topographic product of Fergason et al. [337]. (c) Wrinkle ridge (indicated) in candidate, small
crater-retentive, sedimentary rock associated with several fluvial ridges (indicated); locations of (d–f) are indicated; CTX
K17_059947_1972_XI_17N325W. (d) Boulder and megaclast production and stratification in a fluvial ridge north of the
basin; slope direction indicated by blue arrows; dust- and debris-covered cliff-bench strata are evident (green arrows), as
are angular rock slabs slightly displaced (yellow arrow) from the outcrop; HiRISE ESP_059314_1985. (e) Boulder and
megaclast production at wrinkle ridge crest; the presence of a rhombohedral rock slab (yellow arrow) is suggestive of
fractured sedimentary rock rather than lava; blue arrows indicate down-slope direction to the west of the ridge crest;
HiRISE ESP_069404_1980. (f) Boulder and megaclast production at wrinkle ridge crest; a progression from (1) an intact
(or nearly intact) rock slab, to (2) a dislodged, slightly displaced rock slab eroding from the outcrop, to (3) smaller
boulders as slabs breakdown over time and distance from the source; green arrows indicate example dust-covered, in place,
polygonal fracture-outlined rock slabs; blue arrows indicate down-slope direction to the west of the ridge crest; HiRISE
ESP_059314_1985. (g) Stereo pair anaglyph of the same area as shown in (c); CTX K17_059947_1972_XI_17N325W and
N11_066567_1972_XN_17N325W.
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In recent decades, there has been occasional acknowledgement that Martian wrinkle
ridges are not definitive signals of lava plains [186,338,339], and that they can be expressed
in competent, erosion-resistant, sedimentary rock. However, they have not been described
to occur in the major light-toned layered rock outcrops on Mars, such as Meridiani Planum
e.g., [168,340] and the Valles Marineris interior layered materials e.g., [4,8,24]. Figure 25b–g
presents a candidate example of a wrinkle-ridged sedimentary rock occurrence in an
intercrater basin in Arabia Terra. No known volcanic (e.g., vents, flows) or intrusive (e.g.,
dikes, plugs) landforms occur in the region. In Figure 25c,g, wrinkle-ridged basin floor
material is expressed as erosion-resistant bedrock (bounded by escarpments) that exhibit
areas of differing erosional expression (e.g., some surfaces with many parallel ridges, some
without). Two ~80–600 m-wide ridges intersect the intra-basin plain and can be traced
laterally for about 8–9 km, outward, and then they merge with the plain. These ridges (or,
based on Zaki et al. [177], some percentage of their interior materials) are interpreted as
occurrences of fluvial sediment; their intersection with the plain is suggestive that the basin
floor material consists of fluvial and lacustrine sediment. As shown in Figure 25d–f, the
rock exposed on the steeper slopes of the wrinkle ridge, and on the larger fluvial ridge, has
been breaking down, producing rhombohedral rock slabs (perhaps by undermining of a
recessive rock layer). Boulders are less angular and more reduced in size the further they
occur down the slope, away from the ridge from which they came. These observations
regarding the setting and rock breakdown features on the wrinkle ridge and fluvial ridge
slopes are suggestive that the material deformed by the wrinkle ridge is sedimentary rock
rather than lava.

3.6.4. Boulder Production and Retention

When Martian sedimentary rock occurrences were first described in 2000 by Malin and
Edgett [49], the MOC-NA images available, at the time, had insufficient spatial resolution to
detect boulders produced by the breakdown of the sedimentary rocks that they identified.
Such images did, however, show boulders produced at escarpments cut through igneous
rock [185,341]. Thus, it seemed possible, for a few years, that boulder production and re-
tention observations provide helpful information to distinguish sedimentary from, at least,
competent igneous rocks such as basaltic lavas. However, today, we know that Martian
sedimentary rocks produce boulders, and that some of these rocks are competent enough
to retain those boulders over some time period (Figure 5). Boulders produced from the
breakdown of sedimentary rocks only became apparent in satellite images with the advent,
in 2003, of higher spatial resolution via the MOC-NA cPROTO technique [50,232] and the
start of the MRO HiRISE imaging campaign in October 2006, e.g., [10,11,15,21,25,210,342].
Today we know that Mars has sedimentary rocks that are so competent that they retain
many small impact craters, and produce and retain boulders, as well as do (or similar
to) Martian lavas (Sections 3.4.1 and 3.4.2). The opposite is also likely true—that clastic
rocks that poorly retain boulders produced from them (e.g., via impact cratering) could be
sedimentary or they could be non-welded tuffs.

Thus, boulder production and retention are important observations to be made re-
garding rock physical properties, but an abundance of (or lack thereof) produced and
retained boulders (or megaclasts, for that matter) is not a signal, by itself, for distinction
of sedimentary from igneous rock. However, there is a possibility, yet unexplored, that
boulders produced from lava might be larger or more abundant than those produced
from competent sedimentary rocks; this notion comes from the fact that abundant, large
boulders and megaclasts were indeed observable in volcanic regions of Mars at the lower
spatial resolutions available in early MOC-NA images [185,341].

3.6.5. Lobate (or Arcuate) Rock Unit Margins

Lobate (or arcuate) margins of an erosion-resistant, planar to sub-planar bedrock
unit are sometimes considered to be evidence for lava e.g., [343]. This interpretation is
sometimes correct e.g., [343], but lobate margins, alone, are imperfect observables for the
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distinction of lava from sediment. Some of the erosion-resistant rock units in northern Gale
crater provide illustrative examples (Figures 3 and 26). Only one of these was investigated
using the Curiosity rover (Figure 3). The other example (Figure 26) was too far away from
the planned and executed rover traverse (Figure 26a). Before Curiosity landed, it would
have been reasonable to interpret these crater-retaining, lobate-margined rock units as
lavas. The example in Figure 3, addressed in Section 3.4.1, was investigated using the rover
and turned out to be mafic sandstone [77,78]. The example in Figure 26 (see west side of
Figure 26c) is partly confined to a low area within an impact structure. Extending Curiosity
rover observations via HiRISE images into the nearby terrain not visited by the rover,
Jacob [76] proposed that the topographically-confined example in Figure 26c,d could be
either a lava flow or record the emplacement of clastic sediment via low-energy transport.
Given the close proximity to the Peace Vallis fan (Figure 26a) [344]; the conglomerates,
sandstones, and mudstones examined by Curiosity [79]; and the recognition that some
sedimentary rocks can be resistant enough to erosion as to retain boulders and many small
impact craters (Sections 3.4.1 and 3.4.2), the sedimentary interpretation seems more likely.
If it were lava, other geomorphic evidence for flow might be expected (e.g., pressure ridges;
nearby vents). Such features—that help distinguish lava—might not always be present
at a given location on Mars; it depends, too, on the erosional state (including damage by
impact cratering) of the material.
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the Curiosity rover traverse (white trace), the Peace Vallis sedimentary fan (green annotations), and the similar cratered,
erosion-resistant rock unit illustrated in Figure 3; HiRISE image mosaic from Calef and Parker [345]. (b) A heavily cratered,
somewhat dark-toned, erosion-resistant rock unit forms plain just south of the southwest edge of the Peace Vallis fan; its
margins are lobate; HiRISE PSP_009650_1755. (c) Closer view of the erosion-resistant rock unit, showing the lobate nature
of its margins and a relation to partial filling of an eroded impact structure (left; green dashed arc) per Jacob [76] (p. 63);
HiRISE PSP_009650_1755. (d) Expanded view of the lobate margin in the impact structure; HiRISE PSP_009650_1755.

3.6.6. Stratified Outcrops

Another challenge to the distinction between igneous and sedimentary rocks in satel-
lite and aerial images of Mars centers on stratification, particularly for cases in which the
only exposure of the rock is in troughs and escarpments or crater walls and central uplifts.
While sediments exhibit stratification, so too can accumulations of tuff and lava [178,179],
even on the Moon [182,346]. However—given current knowledge that Martian sedimentary
rocks can be dark-toned, erosion-resistant, and even have mafic compositions e.g., [71]—
visual similarity [347] between layered rock outcrops on Mars and stratified volcanic rocks
on Earth or the Moon, is insufficient information to declare a Martian case to be igneous.

Törmänen et al. [348] explored this concern by comparing layers exposed in escarp-
ments cut through definitively volcanic rock (i.e., exposed on volcanoes) versus layers in
examples of sedimentary rock on Mars. They examined only a limited set of examples,
however. They noted that lava emplacement is generally episodic, local, and confined
to volcanic regions (i.e., in which vents, edifices, and flows are common). Their survey
suggested that stratified escarpments in igneous rock (generally, lava; they did not address
tuff) tend to be very similar to each other from place to place, with slopes exhibiting
spur-and-gully morphologies in their upper (approximately) one-third, and talus deposits
covering their lower two-thirds. Figure 27a shows an example similar to what they [348]
found, except that the proportion of stratified to talus-covered slopes is ~25% to ~75%.
They found that layers, in lava accumulations, are best exposed in the spurs, and appear
“very rough” and “highly serrated” (Figure 27b). Layered lavas were also described as
“highly disrupted and consist of rounded and plate-like blocks” of meters to tens of meters
size (e.g., Figure 27d). Over short distances (meters to kilometers), the layering in stratified
lavas can have variable thickness and can be non-parallel. Törmänen et al. [348] did not
comment on the fact that finding good slope exposures of definitive igneous rock is actually
challenging to accomplish; for example, in Tharsis and Elysium, slopes are commonly
mantled with sufficient debris, and aeolian sediment, that the rocks are obscured. We also
note that a spur-and-gully morphology is not always observed in volcanic rock exposures
(Figure 27c), and that much work remains to be done to consider how such exposures
compare with sedimentary rocks on similar slopes that have undergone similar erosional
processes.

The limited examples of sedimentary rock exposures examined by Törmänen et al. [348]
suggested that sedimentary rocks are more likely, than igneous, to exhibit rhythmic layer-
ing, cliff-and-bench slope expressions, “smooth” and “gently winding” slopes, and lack
talus deposits of comparable extent to those observed at volcanic sites, such as in Figure 27.
Regarding rhythmic layering, Annex and Lewis [28] similarly emphasized that packages
of repeated stratal patterns, or repeated thickness and physical properties (i.e., rhythmic or
cyclic strata), are more likely to be sedimentary than to be tuffs because “volcanic events
are stochastic and generally not forced by orbital variation or other cyclic drivers”.
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PSP_001643_1975. (b) Close-up view of stratification in north wall of Pangboche crater; not the jointed, blocky erosional 
expression as strata breakdown in place; HiRISE PSP_001643_1975. (c) Northeast wall of a caldera on a small Cerberus 
Tholi shield volcano, showing modestly stratified rock in the upper wall and talus covering much of the lower wall; spur-
and-gully erosion is not evident in this case; HiRISE ESP_017706_1845. (d) Close-up view of the rock exposed in the shield 
volcano caldera wall; it is breaking-down, in place, into large blocks and slabs; HiRISE ESP_017706_1845. 

Figure 27. Examples of stratified rock outcrop expressions in definitively igneous rock. (a) North wall, modified by
gravity-driven erosion (mass movement), of Pangboche crater high on the south slope of the volcano, Olympus Mons.
The uppermost portion of the wall exhibits spur-and-gully erosion, while the majority of the slopes are hidden by talus;
HiRISE PSP_001643_1975. (b) Close-up view of stratification in north wall of Pangboche crater; not the jointed, blocky
erosional expression as strata breakdown in place; HiRISE PSP_001643_1975. (c) Northeast wall of a caldera on a small
Cerberus Tholi shield volcano, showing modestly stratified rock in the upper wall and talus covering much of the lower
wall; spur-and-gully erosion is not evident in this case; HiRISE ESP_017706_1845. (d) Close-up view of the rock exposed in
the shield volcano caldera wall; it is breaking-down, in place, into large blocks and slabs; HiRISE ESP_017706_1845.
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It is important to understand that tuffs, sediments, and regolith can become interbed-
ded with lavas, and that these clastic materials may not be distinguishable on the basis
of composition (e.g., presence of olivine, pyroxene, plagioclase) or tone (e.g., dark gray
sandstone versus dark gray tuff versus dark gray lava). Beyer and McEwen [349] consid-
ered MOC-NA images of stratified rock exposed in the walls of Coprates Chasma, and
identified an interbedding of apparent “strong” (erosion-resistant) and “weak” (erosion-
recessive) layers (Figure 28). The erosion-resistant strata were seen as boulder producers
and interpreted as likely being lava. The more recessive strata were considered more
likely to consist of tuff, sediment, paleoregolith, thin lava flows, or some combination of
these. The weaker layers were found to be more abundant, occurring in packages that are
hundreds of meters thick, interbedded with resistant layers that have (or occur in packages
of) tens of meters thickness. Given the current understanding from Gale crater that some
sedimentary rocks can form very competent layers (Figure 3), including plateau-capping
rocks (Figures 2, 5c and 17) [136,188], it now seems possible that even the “strong” layers
investigated by Beyer and McEwen [349] could just as easily be sedimentary, as igneous.

Remote Sens. 2021, 13, x FOR PEER REVIEW 45 of 97 
 

 

 
Figure 28. Successive packages of erosion-resistant (rs) and erosion-recessive (rc) strata near the top of a mesa in the Nec-
taris Montes in Coprates Chasma, Valles Marineris. (a) Context view showing recessive and resistant strata, as well as the 
locations of (b) and (c); this same location was previously studied by Malin et al. [341] and Beyer and McEwen [349], using 
MOC-NA images, before HiRISE reached Mars; HiRISE PSP_003104_1655. (b) Close-up view with example recessive and 
resistant stratal packages indicated. Some of the “smooth” material could be rock or could be rock covered by a mantle of 
gravel, aeolian dust, or both; HiRISE PSP_003104_1655. (c) Another close-up view with example recessive and resistant 
stratal packages indicated; HiRISE PSP_003104_1655. Note that, as spatial resolution increases from (a–c), strata actually 
become more challenging to identify and slopes appear to have more boulder debris upon them. 
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sense proposed by White and Houghton [350], which focuses on clast genesis, a departure 
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volcanic rocks (and contrasted with the term, plutoniclast e.g., [354,355], for grains created 
from intrusive rocks). The term, volcaniclastic, now applies only to particulate material 

Figure 28. Successive packages of erosion-resistant (rs) and erosion-recessive (rc) strata near the top of a mesa in the
Nectaris Montes in Coprates Chasma, Valles Marineris. (a) Context view showing recessive and resistant strata, as well as
the locations of (b,c); this same location was previously studied by Malin et al. [341] and Beyer and McEwen [349], using
MOC-NA images, before HiRISE reached Mars; HiRISE PSP_003104_1655. (b) Close-up view with example recessive and
resistant stratal packages indicated. Some of the “smooth” material could be rock or could be rock covered by a mantle of
gravel, aeolian dust, or both; HiRISE PSP_003104_1655. (c) Another close-up view with example recessive and resistant
stratal packages indicated; HiRISE PSP_003104_1655. Note that, as spatial resolution increases from (a–c), strata actually
become more challenging to identify and slopes appear to have more boulder debris upon them.
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3.6.7. Distinction of Tuffs

Tuffs present a special challenge to the distinction of sedimentary from igneous rocks
in satellite and aerial images of Mars. Here, we use the terms volcaniclastic and tuff in the
sense proposed by White and Houghton [350], which focuses on clast genesis, a departure
from earlier perspectives [351–353], which included epiclasts created by weathering of
volcanic rocks (and contrasted with the term, plutoniclast e.g., [354,355], for grains created
from intrusive rocks). The term, volcaniclastic, now applies only to particulate material
produced by or resulting from volcanic eruptions [350,356]. Primary volcaniclastic de-
posits can include coexistent, co-located facies of reprocessed material—i.e., volcaniclasts
deposited by a non-volcanic process such as wind or wave action that occurred simulta-
neously with an eruptive event [357]. In contrast, secondary volcaniclastic deposits are,
essentially, sediments [350]. These sediments form from reworking of unconsolidated
primary volcaniclastic deposits after some period of storage [350]; they are not considered
igneous and are classified using the same terminology as other clastic sediments and
sedimentary rocks [350]. Further complicating the matter is the fact that primary tephra
deposits can undergo diagenesis including, compaction and cementation e.g., [358–360],
just like sediment.

Observations made on the Martian surface at the Spirit field site in Gusev crater,
and the Opportunity site in Meridiani Planum, illustrate the challenges of distinguishing
tuffs from sediments. At these locations, the effort to discriminate sedimentary rock
from tuff relied on rover cameras, rather than aerial and satellite images, yet, whether
all examples identified and discussed are actually tuffs remains uncertain. The very best
case that Martian tuffs exist comes from the Home Plate plateau in Gusev crater [361,362],
but even the strata exposed at Home Plate might include a volume of sand-sized clasts
that were reworked by wind to form a sediment [362]. Home Plate was considered
to be a tuff, in part, because of an apparent bomb and bomb sag [361], although the
“bomb” is only ~4 cm across. Vesicular stones identified at the Spirit site were called
scoriaceous but were generally considered to be impact-produced fragments of vesicular
basalt, rather than products of explosive volcanism [363]. Other clastic rocks observed in
Gusev, composed of sand-size and smaller particles, drape over paleo-landform surfaces
on Husband Hill [187,364]. Similar clastic rocks occur in Meridiani Planum on the ridges
of the west side of the Endeavour impact structure [365,366]. Spirit and Opportunity team
members interpreted these rocks as either airfall volcaniclastics or airfall impactites; but
they could not distinguish between these hypotheses [187,367–370]. Given the challenges
for the distinction of primary volcaniclastic deposits at the ground level, even using
31 µm/pixel images [368,370], trying to distinguish them in satellite and aerial data should
be expected to be even more difficult.

Explosive volcanism is thought to have been common on Mars because degassing of
volatile-bearing magma during ascent to the planet’s low-pressure atmosphere should be
quite vigorous [371]. However, primary volcaniclastic deposits and tuffs are very difficult
to identify using remote observations of Mars [372]. Those that have been identified are
not all universally agreed upon, but one thing they have in common is proximity to an
eruptive vent; this is the case whether considering the proposed very youthful tephra
deposits among the Cerberus Fossae [373], the thermophysical observations considered
suggestive of tephra on volcanoes such as Alba Mons [374] and Tyrrhena Patera [375], or
individual cones or rings bearing a summit depression [376–379].
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Some investigators have considered, too, the possibility that fine, Martian tephra has
been deposited far from a source vent following aeolian suspension [234,236,380]. The
most prominent and persistent interpretation of such materials is that of the yardang-
forming rocks of the Medusae Fossae Formation [303,305,380–382], which we discuss in
Section 4.2.3.

One of the more informative candidate identifications of tuff on Mars, made using
orbiter data, comes from Kremer et al. [237] and Mandon et al. [383]. Kremer et al. [237]
provided a good model as to how to attempt distinction between airfall tuff, pyroclastic
flows, lava flows, and sedimentary rock. Both investigation teams studied stratified,
olivine-bearing (some of which is also carbonate-bearing) rock exposures located along
the western and southwestern margins of the ancient Isidis impact basin. The airfall tuff
interpretation is based on several attributes of the material: (1) It is said to consist of rock
of nearly uniform thickness that drapes over preceding topography (Figure 29) of relief, in
some places, exceeding 100 m. (2) Layers within the material (where identifiable) exhibit
parallelism that also conforms to the superposed paleo-topography (Figure 29). (3) The
material is interpreted to be clastic, largely because of evidence for erodibility in the form
of yardangs, poor impact crater retention, and a model-dependent, infrared observation-
based, estimate of olivine grain sizes of ~1 mm [384]. (4) It exhibits no deformational
features—at HiRISE 0.25 m/pixel scale—that would indicate flow (e.g., pressure ridges).
(5) It occurs over a great areal extent, appears to have a uniform composition over that
extent, and retains the above characteristics over its extent. Finally, (6) it occurs within
a regional volcanic context, in this case the circum-Isidis extensional faults that were
conduits for Syrtis Major volcanism [385]. The combination features—especially the large
areal extent, draping relations, association with a region of known volcanism, and evidence
that the material is likely clastic—make these olivine-bearing rocks a strong, although not
conclusive, candidate for Martian tuffs.

The apparent overall deposit thickness, the repeated thickness of individual strata
(or stratal packages), and the uniform erosional expression of these strata in the example
in Figure 29, however, could also be interpreted as signs of sediment draped over the
paleo-topography. Although the mafic or ultramafic composition and draping of paleo-
topography make the materials in the Nili Fossae region described by Kremer et al. [237]
an attractive candidate tuff, we note that Stimson formation outcrops in Gale crater (e.g.,
Figures 17 and 20b–d) exhibit near-uniform thickness, near-uniform basaltic composition,
and drape across hundreds of meters of topography [243], yet are cross-bedded aeolian
sandstones [136,188]. The cross-bedding is not observable in HiRISE images, and Day
and Catling [251] provided a reminder that we should not expect aeolian cross-bedding
to always be visible at the highest spatial scale obtainable by HiRISE. Where the Stimson
formation and the rocks described by Kremer et al. [237] differ, besides the details of their
composition, is that the Stimson formation rocks do not occur over a large, regional extent,
and do not occur within a volcanic (or plausibly volcanic) context.
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Figure 29. Example of stratified, paleo-topography-draping rock interpreted by Kremer et al. [237] to be part of a regional
tuff deposit. This example is in the northern Libya Montes, north of Hashir crater, at the location of “Figure DR5” in the
supporting online file of Kremer et al. [237]. (a) Light-toned, stratified rock surrounds and dips away from a relatively
smooth-surfaced hill of intermediate tone; the hill is emergent from beneath the superposed, draping strata; HiRISE
ESP_016034_1835. (b) For a three-dimensional perspective, this is a stereopair anaglyph of the same scene; HiRISE
ESP_016034_1835 and ESP_017089_1835; (c,d) show a close-up view of a portion of the scene.

3.6.8. Importance of Context

Ultimately, what matters most for distinction between sedimentary and igneous rocks
on Mars is context [115,186,312,386]. For example, pyroclastic deposits generally thin with
distance from their source vents, and flows (whether lava or pyroclastic) move down-
slope from a vent or fissure. The presence of flows is not always diagnostic of volcanism;
they could be mudflows [387] and might even be mudflows that came from a vent [388].
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Another form of context is the regional setting. A flow within an impact crater, Isil, in the
region of circum-Hellas basin volcanism [385] is more likely to be a lava flow (Figure 30a)
than is a flow that is far from a known volcanic center, such as the proposed debris flows
associated with the impact event that formed Hale crater (Figure 30b) [389].
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terpreted as debris flows [389] associated with other flow and outflow features interpreted to have been a direct result of 
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increase, deformation goes from elastic to ductile until the rock breaks (fractures). Evi-
dence of deformation of Martian bedrock visible at satellite and aerial image scales in-
cludes folds, fractures, and faults. Joints are fractures at which displacement parallel to 
the surface of the rupture is imperceptible. Joint sets consist of multiple parallel, evenly 
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Figure 30. Importance of volcanic versus non-volcanic context; a lava flow and a debris flow. (a) Isil crater is located in the
vicinity of Tyrrhenus Mons and Hadriacus Mons, volcanoes associated with faulting related to the Hellas basin impact struc-
ture; topographic product of Fergason et al. [337]. (b) Given the context, the singular flow located in southwestern Isil crater is
interpreted to most likely be a lava flow; mosaic of CTX P22_009797_1527_XN_27S272W and B20_017300_1528_XN_27S272W.
(c) Flows located west of Bond crater (d) do not occur in a volcanic region; they are interpreted as debris flows [389] asso-
ciated with other flow and outflow features interpreted to have been a direct result of the impact event that created the
relatively youthful Hale crater [389]. (d) Context for the flows near Bond crater in (c); topographic product of Fergason
et al. [337].

Unknown is whether Mars has very ancient igneous landforms that are not recognized
because they were completely buried, or were so battered by impact cratering, or so
eroded in the early Martian climate, as to have retained no characteristics recognizable in
satellite and aerial images of the planet’s surface. Known Martian igneous rocks are most
commonly associated with evidence for magma conduits to the surface—for example, the
edifices in Tharsis and Elysium [300], the extensional faults of the Cerberus Fossae and
Tempe Terra regions [224,390,391], and impact-induced conduits such as those that are
semi-circumferential to the Hellas and Isidis basins [385,392]. Commonly acknowledged
volcanic landforms are largely confined to specific regions, such as Tharsis, Amazonis,



Remote Sens. 2021, 13, 4296 49 of 94

Elysium, Syria/Sinai, Solis Planum, and the circum-Isidis and circum-Hellas regions. Other
volcanoes might exit outside these regions; Xiao et al. [393] inventoried 75 landforms in
the heavily cratered terrain of Mars that various investigators have interpreted as possible
ancient volcanoes, but whether they actually are volcanoes is less certain. Interpretation
of stratified rocks in or very near these regions should trigger caution as to whether the
materials in question are igneous or sedimentary. Of course, the two rock types can coexist—
for example, consider the conduits, edifices, and flows of the San Francisco volcanic field
in northern Arizona, USA, which were cut through and superimposed upon Colorado
Plateau sedimentary rocks [394].

Context is relatively easy to discern in regions of Mars where volcanic landforms
are indisputably present. One seeks vents, edifices, and flows that emanated from them.
One also seeks firm evidence of excavated dikes, sills, and plugs, e.g., [395]. However,
it is important to recognize that dark-toned (or dust-covered), erosion-resistant material
exposed at the present-day surface of an intercrater plain or a partly-filled impact structure—
where no unambiguous flow or vent morphologies are present—is not necessarily volcanic,
even if it has infrared spectra interpretable as mafic, and even if it is deformed by a wrinkle
ridge.

3.7. Deformation

Deformation of rock is a product of stress, a force applied per unit area. Strain is the
change in size, shape, or volume of the rock that results from stress. As stress and strain
increase, deformation goes from elastic to ductile until the rock breaks (fractures). Evidence
of deformation of Martian bedrock visible at satellite and aerial image scales includes folds,
fractures, and faults. Joints are fractures at which displacement parallel to the surface of the
rupture is imperceptible. Joint sets consist of multiple parallel, evenly spaced joints, and
joint systems consist of intersecting joint sets. Mars exhibits abundant examples of bedrock
deformation at sub-millimeter to multi-kilometer scales, e.g., [8,25,145,332,335,396–406].
These deformations are products of crustal tectonism, impact cratering, and smaller, more
localized stressors such as thermal cycling, overburden removal, hydraulic fracturing, and
gravity (e.g., fracturing of undermined rock, leading toward mass movement).

Faults, fractures, joint systems, deformation bands, and possibly folds have been
observed in satellite images of Martian materials interpreted to be sedimentary rocks,
e.g., [3,4,8,25,145,332,397,399–401,406–410]. The concern, here, is whether any deforma-
tional forms are diagnostic signals—or at least encouraging signs—of sedimentary rock.
Section 3.6.2 considered columnar jointing, which usually provides a strong signal of mag-
matism and a likely (but not unique) signal that a rock is igneous. Section 3.6.3 considered
“wrinkle ridges,” which have sometimes been cited as the only evidence for interpreting
that a given rock occurrence is igneous [326,329].

Regarding the use of deformation features for the distinction of sedimentary rock
occurrences on Mars, two observations, in particular, stand out. These are not diagnostic,
but can be considered helpful. These are the presence of polygonally fractured rock for
which the polygons exhibit similar sizes and patterns as known examples of sedimentary
rock examined at rover field sites; and the presence of convoluted structures interpretable
as post-deposition, soft sediment deformation. In the latter, deformation occurs before
lithification.

3.7.1. Polygonal Fracture Patterns

Polygonal fracture patterns visible in orbiter images of Mars are not unique to sedi-
mentary rocks and can occur in other materials including igneous rocks (Figure 31a) and
middle- and high-latitude ice-rich regolith (Figure 31b), e.g., [411–413]. Polygonal fracture
patterns occur at a wide range of scales, from centimeters to kilometers, and can form
through a variety of processes. Relevant scales, materials, and processes are reviewed
elsewhere [403,404,414].
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Joint systems, also not unique to sedimentary rock occurrences e.g., [158,179,415], 
create some of the variety of polygonal fracture patterns observed in some sedimentary 
rocks on Mars (e.g., Figure 6e) [25]. In some cases, such as in Gale crater, polygonally-
fractured rocks can become dislodged and displaced, forming boulders or megaclasts that 

Figure 31. Examples of polygonal fracture patterns in materials that are not considered to be sedimentary rock.
(a) Polygonally-fractured bedrock exposed between aeolian dunes in the Nili Patera caldera in Syrtis Major; given the
context, the rock is broadly interpreted as igneous; HiRISE ESP_049093_1890. (b) Northern plains polygonal-patterned
ground, visibility of troughs enhanced by remnant seasonal frost; viewed through thin haze in northern spring; HiRISE
PSP_007448_2475; Ls 37.9◦.

Joint systems, also not unique to sedimentary rock occurrences e.g., [158,179,415],
create some of the variety of polygonal fracture patterns observed in some sedimentary
rocks on Mars (e.g., Figure 6e) [25]. In some cases, such as in Gale crater, polygonally-
fractured rocks can become dislodged and displaced, forming boulders or megaclasts that
either remain close to where they were produced (e.g., Figure 5d), or can move downslope
if a slope is available.

Here we focus on one key aspect of polygonally fractured sedimentary rock. That is,
for locations on Mars where the rock is known to be sedimentary—or a very well-reasoned
case can be made that it is sedimentary—finding a similar polygonal fracture pattern at
another location on Mars might be a signal that the other locality has rocks of similar
physical properties as those of the known (or well-reasoned) sedimentary rock case. For
example, Figure 32 shows that the pattern and scale of polygonal fractures in rock exposed
in northern Gale crater is similar to the pattern and scale of polygons in the Vistula Valles
region, south of Chryse Planitia. The polygonally fractured rocks in Gale crater (Figure 32b)
were not visited by the Curiosity rover, but a well-reasoned (albeit inconclusive) inference is
that the material is sandstone [404]. This interpretation is based on similarity to sandstones
that the rover did visit—at its Yellowknife Bay field site [79]—and based on a facies model
that the rocks are coeval with the deposition of Peace Vallis fan (Figure 26a) sediments [344].
The inference, here, is that the fractured rocks at Vistula Valles could also be sandstones or,
at least, they may be clastic rocks of similar mechanical properties.
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Figure 32. Similar polygonal fracture patterns, sizes, and erosional expressions of rock exposed half a world away might
indicate rocks of similar physical properties. (a) Example from Vistula Valles; HiRISE ESP_035304_1950. (b) Example from
Aeolis Palus in northern Gale crater, proposed to be sandstone based on similarities to rock encountered by the Curiosity
rover; HiRISE ESP_028335_1755. (c) Map of Mars showing the locations of the examples at Vistula Valles and Gale crater;
map created from MGS MOC wide angle geodesy campaign images [416].

3.7.2. Soft Sediment Deformation

Soft sediment deformation cannot actually be used to identify an occurrence of sed-
imentary rock, because doing so entails circular reasoning. However, deformation can
occur in sediments after deposition—before lithification—and, where present, can (at least)
be used to strengthen the case that a material is sedimentary. Soft sediment deformation
usually occurs during and soon after deposition (i.e., synsedimentary) while sediments
are loosely packed and have plenty of intergranular fluids. Hence, some of the most
common environments for these structures are deep water basins under the influence of
tidal currents, river deltas, and shallow seas affected by storm currents [417]. The most
common trigger for deformation is seismicity (including those induced by impact events);
however, other triggering mechanisms are known, such as sediment loading, salt tectonics,
submarine mass movement, tsunamis, storm waves, tidal activity, and karst dissolution and
collapse [417]. Moreover, there are at least 120 different types of soft sediment deformation
forms described on Earth, of which some of the common are convolute bedding, slump
folds, flame structures, dish-and-pillar structures, load casts, and clastic injections [417].
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As might be expected on a world that has a record of aqueous sedimentation, millimeter-
to decimeter-scale soft sediment deformation examples have been interpreted to occur
in rocks outcropping at the Opportunity [57,418] and Curiosity [419] rover sites. More
surprising is the fact that much larger examples are considered to be visible in orbiter
images, particularly in the Valles Marineris [407,420] and Capen [7], Terby [421] craters.
Further, the prospect that mud volcanism may have occurred on Mars [422] underscores
the likelihood that clastic, soft sediment deformation has occurred [423].

3.8. Sedimentary Rock Landforms

Recognition of sedimentary rock occurrences—and even identification of rock type—
would be greatly assisted by a thorough understanding of the landforms that exposed,
eroded Martian sedimentary rocks produce. Over the last few decades, studies of “sand-
stone landforms” and “sandstone landscapes” on Earth have proliferated [107,113,424–427],
and the concepts have been extended to “conglomerate landforms” [109], as well. In addi-
tion, Danxia landforms in China include both sandstone and conglomerate variants [114].
These publications make the point that sedimentary rock types, when exposed at a planet’s
surface, can exhibit common erosional expressions that relate to the physical properties
and deformational states of rock at scales ranging from microscopic to entire depositional
basins.

The recognition and study of Martian sedimentary rock landforms is in its infancy.
The Martian landscape exhibits a wide variety of sedimentary rock landforms and ero-
sional expressions for which rock type is currently unknown. Shaping sedimentary rock
landforms on Mars is more than a matter of aeolian erosion in the modern, hyperarid,
setting. Many of the landforms were initially shaped more than two or three billion years
ago, when groundwater and surface runoff were more common—the fluvial canyons cut
into the sedimentary rocks of Aeolis Mons in Gale crater [20,201,428] provide examples.

Connecting sedimentary rock landform expression to rock type on Mars is presently
an imperfect prospect because not very many differing examples have been examined in
field settings (i.e., rover missions). As illustrated in Section 3.5, some sedimentary rock
landforms mimic their original clastic depositional setting. In some cases of depositional
setting mimicry, rock type can be interpreted—or, at least, speculated upon—based on
knowledge of Earth analog facies. For example, the lithified dune field near the Apollinaris
Sulci (Figure 1a) is interpreted as sandstone [52], and the detailed geomorphology of the
Eberswalde delta (Figure 1b) [1,15] can be used to infer which facies might contain con-
glomerates versus sandstones versus mudstones [429]. Here, we consider what is presently
known about landforms created in clastic sedimentary rocks and chemical sediments (to
the extent that they might exist on Mars).

3.8.1. Sandstone Landforms

We begin with sandstone landforms because they are the most well-studied cases
on Earth. Sandstone exposures on our planet form a wide range of visually spectacular
landscape features [107,112–114,427], including arches [430]. Counterparts of similar geo-
morphic expression have generally not yet been identified on Mars, but Martian sandstone
outcrops do exhibit a range of morphologies, and it is likely that many candidate sand-
stones are yet to be identified. As shown in Section 3.5.1, depositional setting mimicry
in the form of whole, lithified aeolian dunes [51,52,139,140,249], and “ghost dunes” [251],
are excellent starting points, but such outcrop expressions are rare. Slightly less rare are
bedrock outcrops that exhibit a “washboard” erosional pattern (Figure 20; Section 3.5.1).
However, whether washboard patterns always indicate aeolian sandstone, or whether
some cases result from deformational structure (e.g., fracture patterns), is not yet fully
known (Section 3.5.1).

Most of the sandstones encountered by Curiosity in Gale crater are dark gray, well-
cemented, and erosion-resistant (Figures 2, 5c and 17). A few of them, however, are
recessive—these include sandstones beneath an overhang at the Cooperstown outcrop
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(Figure 33a,b) [21,431]; dipping beds between prominent, erosion-resistant strata (Figure
13b) in rock interpreted to be deltaic clinoforms at the Kimberley field site (Figure 33c,d) [80];
and an occurrence of reddish, very fine-grained sandstone bedded with mudstones the
Karasburg member of the Murray formation (Figure 33e,f). The clinoform [80] bedding is
prominently seen as a “striated unit” [80,247] in HiRISE images of the Kimberley field site
in Gale crater (Figures 13a and 18e).
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Murray formation. Among the Murray buttes (e.g., Figure 5c), the sandstones occupy the 
bulk of each butte’s volume [136]. In addition to their capping rock expression, Stimson 
formation outcrops also exhibit washboard-patterned surfaces of alternating, parallel 
ridges, and swales (Figure 20). Other erosion-resistant sandstones in Gale form cratered 
plains (Figure 3), benches that overhang recessive rocks (Figure 33a), or decimeter- to me-
ter-scale escarpments. 

Figure 33. Examples of erosion-recessive sandstones identified in Gale crater. (a) A dark gray sandstone shelf at the
Cooperstown field site (Figure 14b) overhangs a recessive sandstone; Sol 440 Mastcam-100 mosaic (sequence 001795);
azimuth 180◦ indicated. (b) The recessive sandstone at Cooperstown is consists of coarse and very coarse sand with
scattered granules); MAHLI focus merge product 0443MH0003290000200193R00. (c) Clinoforms dipping southward at
Square Top (Kimberley field site; Figure 13a,b and Figure 18d) exhibit alternating erosion-resistant and erosion-recessive
strata; Sol 580 Mastcam-34 mosaic (sequence 002407); azimuth 170◦ indicated. (d) The recessive sandstones at Square
Top consist of very coarse sand and granules; MAHLI focus merge product 0585MH0003660000202479R00. (e) Recessive
sandstones at Conda occur amid the erosion-resistant Murray buttes [136], along with mudstone strata of the Murray
formation [81]; note Curiosity rover for scale; HiRISE ESP_047416_1755, acquired 07 September 2016. (f) The sandstone at
Conda consists of very fine sand; MAHLI 1436MH0004190010503512C00.

The dark gray, erosion-resistant aeolian sandstones of the Stimson formation in Gale
crater are expressed as plateau, mesa, and butte-capping rocks (Figures 5c, 17 and 20)
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[136,145,188,432]. They are underlain by recessive rocks, largely mudstones [80,81] of the
Murray formation. Among the Murray buttes (e.g., Figure 5c), the sandstones occupy the
bulk of each butte’s volume [136]. In addition to their capping rock expression, Stimson
formation outcrops also exhibit washboard-patterned surfaces of alternating, parallel
ridges, and swales (Figure 20). Other erosion-resistant sandstones in Gale form cratered
plains (Figure 3), benches that overhang recessive rocks (Figure 33a), or decimeter- to
meter-scale escarpments.

Another sandstone visited by a Mars rover, Opportunity, is the Burns formation in
Meridiani Planum [57,58,203,204,418]. These largely aeolian and wet interdune facies sand-
stones form the light-toned bedrock beneath a regolith of dark gray, aeolian bedforms [67].
The plains-forming sandstone is considerably more erodible than the lavas explored by
Spirit at Gusev crater [137], and the dark gray, erosion-resistant sandstones in Gale crater.
The full lateral extent of the Burns formation is not known; however, rocks of similar
properties extend across the Meridiani region [168,340,433] and are exposed in northern
Meridiani as mesas, buttes, and pinnacles (Figure 5b).

Other sandstone landform configurations likely occur on Mars. Meter-scale cross-
bedding observed in mountainside outcrops of the sulfate-bearing rock unit in Aeolis
Mons, Gale crater, have been interpreted to indicate that some this material is aeolian
sandstone [191,434]; and two additional (non-sulfate-bearing) meter-scale cross-bedded
stratal packages that occur higher in Aeolis Mons stratigraphy have also been interpreted as
aeolian sandstones [22,201,435]. Similar meter-scale cross-bedding features occur in three
of the four light-toned, sulfate-bearing, layered rock exposures (two of which are mounds)
in Juventae Chasma [25]. These features, too, are suggestive of aeolian sandstones [25].
Yardang-forming rock on Mars might also include sandstones, but these do not form
exclusively in sandstones on Earth [107,156]. Polygonal fracture patterns can occur in some
Martian sandstones but can be absent from others.

3.8.2. Conglomerate Landforms

Migoń [109] recently summarized current knowledge of conglomerate landforms on
Earth. Perspectives on Martian conglomerate landforms is limited. Some of the depositional
setting mimicry cases, such as alluvial fans and deltas, likely include conglomerates
(Sections 3.5.2 and 3.5.3). Presently, the most extensive experience with in-place Martian
conglomerate comes from the Curiosity site in Gale crater. When the rover landed, its
terminal descent engines (Figure 34a) exposed conglomerate bedrock (Figure 34b) [245,436].
As viewed in MARDI descent images and HiRISE orbiter images (Figure 34c,d), the terrain
on which Curiosity landed was described as having relief elements that are “rugged” and
“hummocky” [79]. This terrain retains impact structures (Figure 34d), but not with the
abundance of the neighboring, cratered sandstone that Curiosity’s heat shield impacted
(Figures 3 and 34d). Prior to landing, no one had experience that could have been used
to predict that these observations were a sign of a conglomeratic bedrock. In general, the
conglomerate where Curiosity landed is modestly erosion-resistant and pebbles, liberated
from the rock, litter the ground (Figure 18a). As described in Section 3.4.6, another example
of conglomerate landform configuration in Gale comes from the Kimberley field site, where
terrain formed from a conglomeratic bedrock simply appears “smooth” and “hummocky”
in HiRISE 0.25 m/pixel images (Figure 18d,e).
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Figure 34. Conglomerate landscape as viewed by Curiosity from and above its Bradbury Landing field site. (a) Aerial image
acquired during descent; engine impingement removed dust to expose the conglomerate bedrock seen in (b); for spatial
reference, boulders labeled 1, 2, and 3 are identified in (a–d); MARDI 0000MD0000000000100526C00. (b) The view, looking
north, at Bradbury Landing, with two patches of gray conglomerate at the Goulburn outcrop (see inset) exposed by the
descent engines; note thin, pebbly regolith; Sol 3 Mastcam-34 mosaic (sequence 000007), azimuth 0◦ indicated; inset Sol 13
Mastcam-100 0013MR0000120070100046E01. (c) Aerial view of Bradbury Landing from a higher altitude, note “smooth”
appearance of terrain mantled by thin, pebbly regolith; note impact crater retention; location of (a) is indicated; MARDI
0000MD0000000000100501C00. (d) Satellite view of Bradbury Landing; note “smooth” and “hummocky” nature of the
conglomerate landscape and the difference in impact crater retention between it and the cratered sandstone (Figure 3) at the
lower right; HiRISE ESP_034572_1755, acquired 11 December 2013.
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3.8.3. Finestone Landforms

Finestones are clastic rocks that consist largely of grains smaller than sand size. The
term is not used on Earth, but is preferred here to discuss rocks that encompass a range of
clastic sedimentary rock types that consist of particles finer than sand: siltstones, mudstones
(also known as shales), loessites, and duststones. Finestone is also a term that could be
applied to very fine to extremely fine tuffs, where they cannot be distinguished from their
sedimentary counterparts.

The terms siltstone, mudstone, loessite, and duststone are applicable to cases for
which data are available to unambiguously determine the depositional conditions of the
sediment. For example, to call a rock a mudstone requires knowledge—from sedimentary
structures, facies, context, etc.—that the clasts were wet (i.e., mud) at the time of deposition.
Identification of loessites requires knowledge that the materials consist of silt-sized grains
deposited by wind [437,438]. The presence of loess or loessite does not require that the silt
was produced by glacial processes [439], nor that they are composed of quartz. Duststone
is a term coined specifically for Mars by Bridges and Muhs [440] that refers to knowledge
that the material was deposited by settling out of suspension from the Martian atmosphere.
Duststone is a term less restrictive than loessite with regard to particle size distribution,
as long as the particles are generally of sizes transported in suspension in the Martian
atmosphere. Particles that can travel in long-term aerial suspension [441] on Mars generally
consist of silt- and clay-sized particles [442]. No loessite or duststone has been definitively
identified at a rover field site on Mars.

A minor finestone facies was observed in the Burns formation at Meridiani Planum [443].
However, most of what is known about finestone landforms comes from examination of
the mudstones of the >350-m-thick Murray formation in Gale crater [79,80,189,190,405]. In
the highest spatial resolution satellite and aerial images acquired to date, layering in the
Murray formation is not readily apparent (Figure 10a). Images acquired from the ground,
however, show that the rocks are finely laminated at sub-millimeter to millimeter scales
(Figure 10b,c). Polygonal fracturing and local displacement of fractured blocks—visible
in HiRISE 0.25 m/pixel images—are common in some parts of the Murray formation
(Figures 5d and 33e). Aeolian erosional forms (kharafish) are generally not evident in
the existing satellite and aerial image data set, but millimeter- and centimeter-scale forms
caused by aeolian abrasion are common in rover camera views [165,444]. One possible
exception regarding aeolian erosion at scales visible in satellite images is a suite of parallel
ridges interpreted as periodic bedrock ridges [445], which would have formed in Murray
formation rocks as saltating grains abraded inter-bedform substrates between former (now
gone) aeolian megaripples [255,256].

Murray formation finestones generally have a recessive erosional expression [80,446].
Areas with abundant, erosion-resistant veins can locally increase resistance to erosion and
influence outcrop appearance. Although generally recessive, finestones, such as the Murray
formation, can occur in positive-relief landforms in cases where an erosion-resistant cap
rock has broken down and its debris removed at a pace that exceeded that of the gradation
of the finestone beneath it. Further, the Vera Rubin ridge literally stands out as an exception
to the recessive nature of the Murray formation (Figure 16). The rocks exposed on Vera
Rubin ridge experienced diagenetic changes that differ from most of the other Murray
formation mudstones; these changes might have rendered the rock more resistant to
erosion [190,218,219,447]. Alternatively, Vera Rubin ridge was previously protected from
erosion by a capping rock or coarse debris; this possibility is suggested by the fact that a
similar ridge, capped by an erosion-resistant material, occurs west of Vera Rubin ridge
(Figure 16d). It is actually possible that both things are true; that the ridge was protected
from erosion by a previous capping material and its resistance to erosion was enhanced
by late diagenetic alterations that occurred beneath, or at the interface with, this capping
material. Surfaces that appear to be “smooth” in HiRISE 0.25 m/pixel images occur in the
recessive Glen Torridon valley immediately south of Vera Rubin ridge; rover images show
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(Figure 18b,c) that this smooth appearance results from a regolith that consists of abundant,
pebble-sized mudstone fragments produced by the breakdown of the local bedrock [246].

3.8.4. Chemical Sediment Landforms

Earth has landforms and landscapes influenced by differential erosion of chemical
sediment occurrences—and clastic materials cemented by chemical sediments—that formed
in surface/near-surface environments in contact with meteoric waters [129]. For example,
duricrusts can resist erosion and help leave former streams and ponds standing as inverted
topography [177,448]. Whether similar chemical sediments occur on Mars is uncertain, but
appears to be likely. The sulfate-bearing sandstones of the Burns formation [57] of Meridiani
Planum were, for example, interpreted to consist (at least in part) of sand-sized aggregates
of sulfate-bearing muds (containing detrital silicates) formed in ancient, evaporative playa
settings [449]. In addition, an apparently stratified, clast-bearing, calcium sulfate pebble
was found in a conglomerate boulder at the Curiosity rover site [61]. It was tentatively
interpreted as a chemical sediment rock fragment [61]. However, the stratal package that
the fragment came from is unknown.

Beyond the Burns formation in Meridiani Planum, and that one, mysterious pebble—
and its less-well observed counterparts in the same boulder [61]—in Gale crater, the next
best candidates for chemical sediments on Mars occur at the locations identified, using
satellite-borne near-infrared or thermal-infrared remote sensing instruments, as having
chlorides [310,450,451] or carbonates [29,384,452,453] present. It is unclear whether remote
detections of sulfate-bearing rocks, beyond Meridiani Planum, are necessarily indicative of
chemical sediments (e.g., evaporites) or diagenetic fluids.

Bridges et al. [454] provided a recent review regarding Martian carbonates. In gen-
eral, most occurrences are not considered to be sediments [384,452,453,455], but might
result from various rock alteration pathways (e.g., weathering, diagenesis, hydrothermal,
serpentinization), particularly involving alteration of olivine. “Comanche Class” rocks
studied using the Spirit rover in Gusev crater were interpreted as clastic [370] and to
contain Mg-Fe carbonates [455]. These carbonates might have formed under hydrothermal
conditions [455] or precipitated among silicate clasts in a lacustrine setting [369]. A promis-
ing candidate carbonate sedimentary rock occurrence lies at the crater wall/floor interface
in western Jezero crater [29]. These Jezero crater examples occur in close proximity to
fluvial and lacustrine landforms, including a remnant delta at the terminus of Neretva
Vallis [29]. These carbonate-bearing rocks—whether a sediment or not—exhibit low surface
relief, are light-toned, fractured, retain some (but not abundant) impact structures, and are
described as having “blocky,” and “ridge-forming” morphologies (Figure 35a) [29,31]. Such
descriptions are not likely diagnostic of carbonate chemical sediments; appropriate near-
or thermal-infrared spectroscopy remains highly recommended to make such detections.
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PSP_009318_1465. (c) Buttes and erosional-remnant hills composed of light-toned material (proposed chloride-bearing 
sediment [450]) capped by a darker-toned, more erosion-resistant rock; HiRISE PSP_007649_1575. (d) Light-toned, ridged 
rock exposure, with polygonal, open-fractures, in material proposed to be chloride-bearing sediment [450]; HiRISE 
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As with carbonates, we recommend that satellite or aerial near- or thermal-infrared 
spectroscopy is best employed to detect chloride sites. However, because there are hun-
dreds of them, we can comment on some of their geomorphic elements in the context of 
chemical sediment landforms. As noted, they usually occur in localized topographic lows 
in inter- and intracrater settings in the Martian heavily cratered terrain [450]. The chloride 

Figure 35. Example landforms associated with proposed carbonate and chloride-bearing sediments. (a) Terrain (resembling
outcrops of Murray formation mudstone in Gale crater; e.g., Figures 5d and 33e) described by Horgan et al. [29] as an
erosional expression of candidate lacustrine carbonate in western Jezero crater; HiRISE PSP_002387_1985. (b) Fluvial ridges
marking the location of former stream courses [450]; although mantled with a dark-toned material, the light-toned rock
exposed in the ridges was proposed by Osterloo et al. [450] to be chloride-bearing sediment; HiRISE PSP_009318_1465.
(c) Buttes and erosional-remnant hills composed of light-toned material (proposed chloride-bearing sediment [450]) capped
by a darker-toned, more erosion-resistant rock; HiRISE PSP_007649_1575. (d) Light-toned, ridged rock exposure, with
polygonal, open-fractures, in material proposed to be chloride-bearing sediment [450]; HiRISE ESP_045383_1470.

The first satellite-based chloride salt detections resulted from observation by the
ODY THEMIS-IR, a multispectral thermal infrared imaging instrument that images Mars
at ~100 m/pixel [310]. Additional detections have been made using the near-infrared
hyperspectral capabilities of the ~18 m/pixel MRO Compact Reconnaissance Imaging
Spectrometer for Mars (CRISM) instrument [451,456]. Hundreds of locales have been
identified [450]. They generally occur throughout the heavily cratered terrain in local
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topographic lows with areal extents ranging 0.33 to 1300 km2 [450]. In some cases, channels
or fluvial ridges (inverted channels) converge on the low area [450,456–458], and in some
of these cases, chlorides are detected in the channels or on the ridges [450]. The chlorides
occur in association with silicic mineral fines (primary rock-forming minerals and/or clay
minerals [310,450,459,460]). Colleagues have argued for and against the ideas that these
chloride deposits record ancient groundwater upwellings, playas, or deeper lakes that
lasted decades or more [310,450,456–461]; the convergence of fluvial channels and ridges
at some of these locations argues strongly that some of them, at least, resulted from runoff
of surface water (brines).

As with carbonates, we recommend that satellite or aerial near- or thermal-infrared
spectroscopy is best employed to detect chloride sites. However, because there are hun-
dreds of them, we can comment on some of their geomorphic elements in the context
of chemical sediment landforms. As noted, they usually occur in localized topographic
lows in inter- and intracrater settings in the Martian heavily cratered terrain [450]. The
chloride occurrences are usually light-toned rocks; Figure 35b–d shows some of the va-
riety of geomorphic expressions of chloride-bearing materials identified on Mars. Some
occurrences are found in channel bottoms or compose sinuous ridges (Figure 35b) inter-
preted as topographically inverted channels [310,450]. Some occurrences include small
buttes or hills capped by a more erosion-resistant material (Figure 35c) [450,456] some
surfaces are ridged (Figure 35d) [450]; and some are emergent from beneath other rock
strata (Figure 35c) [450]. Whether the materials are internally stratified (as best as can be
determined in 0.25–6 m/pixel satellite images) has rarely been noted. About 75% of the
occurrences are fractured meaning that about 25% are not [450]. Those that are fractured
typically display intersecting, open (or aeolian sand-or regolith-filled) fractures that break-
up the outcrop into polygonal patterns (Figure 35d) [450,459,461]. However, some polygo-
nal patterns result from erosion-resistant ridges, rather than open fractures [450,459,461].
Polygonal patterns have received considerable attention with regard to interpretations of
the desiccation of lake muds or playas [450,459,461], although little or no comparison with
the plethora of other polygonally fractured sedimentary rock occurrences on Mars have
been made.

4. Discussion

As the preceding section emphasizes, distinction of sedimentary rock occurrences
in satellite and aerial images of Mars can be easy, in some cases, and very challenging in
others. Presently unrecognized occurrences most certainly exist. In this section, we explore
two remaining concerns: (1) the depth of burial at which Martian clastic sediment becomes
rock, and (2) the global distribution of Martian sedimentary rocks. Both of these matters
are unresolved and important to discuss because they point the way toward future work.

4.1. Clastic Sediment Diagenesis and Depth at which Sediment Becomes Rock

The settings in which clastic sediment lithification occur are very important to deci-
phering the geological history of Mars. Was a given sediment buried, compacted, cemented,
and later returned to the surface as rock, or was it cemented in the surface/near-subsurface
environment and never deeply buried? For example, was the delta in Eberswalde crater
(Figure 1b) deeply (hundreds of meters to kilometers) buried and then exhumed? How
deep was it buried? How much overburden had to be removed before the deltaic form
was visible? Where did the overburden go? Alternatively, was the Eberswalde delta never
buried, or only buried to a shallow depth, with its clasts cemented in the presence of
meteoric waters by materials analogous to Earth’s ferricretes, silcretes, gypcretes, and
calcretes?

4.1.1. Perspectives on Burial Diagenesis from Gale Crater

The Salsberry Peak sandstone is a dark gray, erosion-resistant, plateau-forming
rock (Figure 2) that occurs within the Pahrump Hills member of the Murray forma-
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tion [74,80,189]. The Pahrump Hills member outcrops on the lower north flank of Aeolis
Mons, the 5-km-high mountain in Gale crater. A boulder produced by breakdown of the
Salsberry Peak sandstone was accessible to the Curiosity rover (Figure 2). Named Kanosh,
MAHLI images of the boulder surface (Figure 2c) show 130–500 µm-sized sand grains that
were cut across by either the fracturing that produced the boulder, aeolian abrasion, or
both. The sandstone is very well-cemented; pits occur where grains were removed during
diagenesis or weathering, but intergranular pore space is not visible. Rocks coeval with this
sandstone, and the other sandstones and mudstones of the Pahrump Hills member [80,189]
project southward into lower Aeolis Mons. Above these rocks lies ~4.5 km of additional
strata. Thus, the sediments of very well-cemented Salsberry Peak sandstone, and the
Pahrump Hills mudstones, are known to have been buried to at least ~4.5 km depth.

In contrast, a stratal package of boulder-producing layered rock occurs at the summit
of Aeolis Mons (Figure 36), ~4.5 km above the Salsberry Peak sandstone [16,48]. These rocks
are exposed at an elevation ~2.2 km above the crater’s north rim, and lie ~800 m below the
highest elevation on its south rim (Figure 36a). Because the layered materials at the summit
of Aeolis Mons are lithified, does that mean that they were also, like the Salsberry Peak
sandstone, once buried at several kilometers’ depth, so as to become lithified? Knowing
whether rocks exposed at the summit of Aeolis Mons in Gale crater were once at some
depth below ground would have profound implications for the geological and hydrological
history of the region, particularly if all of Gale crater—and the areas around it—were mostly
buried.
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Figure 36. Stratified rock at the top of Aeolis Mons in Gale crater produces boulders as it erodes. (a) Context topographic
map of Gale crater and Aeolis Mons, showing location of (b) at the summit; note the key elevations, with a low of −2.7 km
on the northwest crater rim, +1.3 km on the south rim, and +0.5 km—higher than the north rim—at the mountain summit;
daytime THEMIS-IR mosaic [336] combined with the Fergason et al. [337] topographic product. (b) Stratified rocks—
expressed in cliff-bench form and likely coated by aeolian dust—at the summit of Aeolis Mons; inset shows rock fractures
and dislodgement that produced boulders as escarpments retreat; HiRISE PSP_009927_1750.

4.1.2. Burial and the Transition of Clastic Sediment to Rock

The scientific literature on clastic sediment diagenesis on Earth is vast, in part because
of the value of this information (particularly regarding porosity and permeability) to the
exploration for oil and gas e.g., [126,462–465]. Less common, however, are observations that
show the transition of sediment to rock as a function of depth and diagenetic conditions.
One such example comes from a submarine setting captured in a 1927-m-long core extracted
off the east coast of South Island, New Zealand [466]. It showed fine-grained siliciclastic
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and calcareous marine sediments transitioning from uncompacted sediment to rock. In the
first ~50 m below the ocean floor, the sediment only exhibited signs of early diagenesis.
As depth increased, a transition occurred between ~50 and ~350 m toward sediment
compaction. Compacted sediments began to appear at 347 m depth; porosity loss due
to compaction became more pronounced below 1300 m, and stylolites (jagged pressure
solution features; see example in Figure 37) began to appear around 1600 m depth [466]. Of
course, in detail, burial diagenesis involves more than just the pressures imposed by burial.
Studies of the sediments deposited in the Gulf of Mexico, for example, provide insight
into the complexities regarding the roles of pressure, temperature (which increases with
depth), fluid chemistry, and the porosity and permeability of layered sediment of varied
compositions and particles sizes, e.g., [130,467].
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Figure 37. Example of a stylolite (pressure solution feature) observed on Mars. (a) Sharpened view of a stylolite exposed
on a white rock surface near a pit created by Curiosity’s ChemCam Laser-Induced Breakdown Spectroscopy (LIBS)
instrument [468]; MAHLI focus merge product 0512MH-0001630000200884R00. (b) Unsharpened view; in both cases
(a,b) the figure is an expansion from the original image size. (c) Context; yellow box indicates location of (a,b); this
MSL Sol 512 target, named Clinton, is a stone encountered along Curiosity’s drive toward Aeolis Mons. MAHLI image
0512MH0001900010200841C00. No other stylolite examples have been identified in MAHLI images (as of January 2021).

4.1.3. Forming Clastic Sedimentary Rock with Little or no Burial

While most clastic sedimentary rocks on Earth were formed during deep burial
diagenesis, some were not. This is an important consideration for Mars. A key example to
contrast with deep burial on Earth is the quartz beach and dune sands of the Oligocene
Fontainebleau grés (sandstone) in France [172–175]. The sands are overlain by limestones
and their maximum burial depth was ~100 m. Although emergent from beneath younger
rock, most of the Fontainebleau sands are uncemented, except in very tightly-cemented
lenses 2–8 m thick located at various levels and sites within the sand body [172–174]. These
lenses are so well-cemented that they have sometimes been called quartzite [172]. These
lenses do not result from the temperature and pressure effects of deep burial diagenesis
but, instead, from silicification associated with the influences of climate, geomorphology
(e.g., stream and pond locations), groundwater levels, and the geochemistry of meteoric
fluids [172–174].

Other examples of earthly clastic sedimentary rocks that form or begin to form without
deep burial diagenesis include aeolian beach sands cemented by carbonates in the subaerial,



Remote Sens. 2021, 13, 4296 62 of 94

littoral environment [469,470], aeolian gypsum sands that begin to cement in the presence of
meteoric waters [128], and clastic sediments cemented by ’crete-forming (silcrete, ferricrete,
calcrete, dolocrete, gypcrete) mineral or amorphous materials [129]. For example—and
although further field investigations are needed to confirm many details—it appears that
nearly 60% of the clastic sediments in Earth’s known fluvial ridges (inverted channels)
were cemented in surface and near-subsurface environments [177]. Chemical precipitate
sediments (e.g., evaporites, tufa, and travertine)—which can, in some cases, contain clastic
sediments—also form rock in surface and near-subsurface aqueous settings e.g., [471,472].

4.1.4. Martian Clastic Sedimentary Rock Formed under Conditions of Little to no Burial?

Until analyses from new and on-going exploration at the Perseverance and Zhurong
rover sites are reported in the scientific literature, Mars offers at least one additional,
important data point regarding sediment diagenesis and depth of burial, the Burns for-
mation studied via the Opportunity rover in Meridiani Planum. There, the rover science
team’s interpretation was that sandstones of the Burns formation are largely aeolian dune
sediments [57,203,204] with some water-lain (wet interdune) facies [57,58,418]. The wind-
transported clasts were considered to be aggregates of basaltic, and perhaps clay-mineral-
bearing [473], playa muds cemented by sulfates [449]. Subjected to multiple diagenetic
episodes involving groundwater [57,449], the rocks might not have been buried more than
~80 m [474]. This depth assessment is based on the proposed erasure of Hesperian-aged
impact craters [474]. Whether the Burns formation was more deeply buried at the time of
lithification is not known, but the interpreted setting is consistent with the idea of a shallow
or surface/near-surface diagenetic setting.

4.1.5. Clastic Sediment Diagenesis on Mars, Looking Forward

Martian clastic sediment diagenesis, the distinction of diagenetic from weathering
influences on sediment composition, and the depths of burial involved, are at the frontier
of Mars geoscience. To become lithified, clastic sediments must first be retained. Sediment
deposited on a dry hilltop is less likely to be retained than sediment deposited in a wet basin
setting. Earth instructs us, and—through Gale crater and Meridiani Planum—Mars has
begun to inform us, that the planet likely has a continuum of clastic sediment burial depths
and lithification conditions. We should not expect a single “depth of burial” that leads to
clastic sediment lithification on Mars. A minimum depth of burial can be known for Martian
sediments that are exposed on slopes for which overburden rock remains intact (e.g., the
Salsberry Peak sandstone; Figure 2). However—and unlike the submarine core sample
extracted near South Island, New Zealand [466]—these Martian burial depths do not tell us
about the actual depth at which the sediment first became rock. In addition, identification
of clastic sedimentary rocks lithified in the surface/near-subsurface environment—such as
the nearly 60% of fluvial ridges on Earth [177]—will likely remain challenging for years to
come, although colleagues are trying (and should continue to try) to identify such examples
using relevant remote sensing techniques and understanding of Earth analogs [177,276].

4.2. Global Distribution of Martian Sedimentary Rocks

Early maps indicating where sedimentary rocks occur on Mars [48–50,115,475] have
not been updated to reflect newer observations made over the last decade [476]. Indeed,
based on the results presented here—and the general challenges of distinguishing sed-
imentary rocks from tuffs (Section 3.6.7) [72,312]—mapping the global distribution of
sedimentary rocks exposed at the Martian surface is likely to be challenging and take many
years to accomplish.

Here, we explore four key questions that, if addressed through new research, would
greatly impact understanding of where Martian sedimentary rocks occur and the depth
and breadth of the record of past environments available for study: (1) how much of the
bedrock of the upper crust of Mars in its heavily cratered terrains consists of sedimentary
rock? (2) Are there sedimentary rocks among the strata exposed in the walls of the Valles
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Marineris? (3) What percentage of the rocks composing the Medusae Fossae Formation [82]
consist of sedimentary versus igneous facies? (4) Are there sedimentary rocks beneath the
northern lowland plains of Mars?

4.2.1. Sedimentary Rocks of the Martian Heavily Cratered Terrain?

Mariner 4, 6, and 7 Mars flyby images acquired in the 1960s showed that some fraction
of the Martian surface is heavily cratered, like the moon, but (as compared with the
moon) many of the impact craters were shallowed by material deposited in them and
by widening of their walls and lowering of their rims by erosion [477,478]. Even back
then, some impact structures appeared to contain fill materials that had been subsequently
eroded [479] (p. 19).

The interface between the Martian surface and atmosphere on early Mars would have
been a fragment production factory—impact cratering would create rock fragments and
solidified melt droplets [294], volcanism would include volcaniclast production [480], and
weathering processes would have broken down exposed rock surfaces, altered primary
minerals, and carried ions away in solution [481]. Weathering would also have extended
into the subsurface in the presence of groundwater, as occurs in cavernous and fractured
rock (even siliciclastic rock [240,427]) on Earth. Once produced, the clasts of early Mars
would have been subjected to (and, in some cases, sorted by) transport and deposition in
aeolian, fluvial, lacustrine, mass movement, and perhaps glacial [233,482] environments.
Impact craters, intercrater lows, and tectonically-formed depressions, would have served
as depositional basins for these sediments [48,49,324,326].

Large portions of the bedrock of the Martian heavily cratered terrains are likely ob-
scured by regolith, mantled by aeolian dust [483], mantled with presently or previously
ice-bearing regolith or dust [484,485], or buried beneath south polar layered deposits
and ices [121,486,487]. However, some regions do exhibit exposures of intercrater and in-
tracrater rock [12,72,312,488–490]. Among these, and in particular, are portions of western,
central, eastern, and northeastern Arabia Terra.

Arabia Terra is an important gift to Mars science. Despite considerable aeolian dust
cover [68,483,491], the landscape is one that has been eroded in a manner that reveals the
nature of the upper crust of the Martian heavily cratered terrain. Western Arabia Terra was
so deeply eroded that it retains few valley networks [492] and impact structures once filled
and buried have been excavated and returned to the surface [493]. Fluvial ridges, also
known as inverted channels, are common across Arabia Terra [26,292], further attesting to
the erosion of this landscape. Erosion throughout Arabia Terra has revealed the layered
nature not only of materials deposited in impact structures [17,18,28,49,251,410,494], but
also in the intervening, intercrater terrain [9,12,48,68,493,495–497]. Some percentage of
the stratified rock that composes the upper Martian crust in Arabia Terra is sedimentary
(Figure 19e, Figure 22a, Figure 23a,d, and Figure 25b–f) e.g., [12,26,27,292,493], although
full understanding of the percentage awaits future study. In general—and modulated by
proximity to volcanic regions [312]—the stratified inter- and intra-crater rocks of Arabia
Terra could be representative (although specific lithologies may vary) of what lies beneath
the surface in all of the other, less deeply eroded, heavily cratered terrains of Mars [185].

4.2.2. Sedimentary Rocks Exposed in the Walls of the Valles Marineris?

Stretching ~4160 km across the southern low-latitudes of Mars, the walls, intra-chasm
ridges, and plateaus of the Valles Marineris, and associated Hebes and Juventae chasms,
expose (laterally) more than 27,400 km of pre-chasm, Martian upper crust to depths that
exceed more than 8 km, in places. The surrounding terrain includes wrinkle-ridged
plains, lavas and volcanoes, impact craters, filled and partly filled impact structures, and
heavily cratered terrain [327,498–502]. As implied by the very first geologic maps of the
region [498,503], where the uplands surrounding the Valles Marineris are not heavily-
cratered, the stratigraphy argues that ancient, heavily-cratered bedrock lies beneath the
present surface and has been cut and exposed in the chasm walls.
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Orbiter images of the walls of the Valles Marineris and associated chasms show that
they are stratified [347,349,504]. This is known despite the fact that vast portions of the
Valles Marineris walls are covered with material that obscures the bedrock. Some of this
obscuration is talus, landslide debris [505], alluvial fans [506], aeolian bedforms, light-
toned aeolian dust, and dark-toned mantling deposits of uncertain origin (tephra falls?
aeolian silt and sand?). Some sections exhibit packages of erosion-resistant “strong” layers
and erosion-recessive “weaker” layers (Figure 28) [349]. Some of the chasm walls at the
east end of the Valles Marineris exhibit stratal packaging of layered rocks overlying dark-
toned, poorly-layered or structureless (“massive”) boulder-producing materials, which,
themselves, overlie lighter-toned, fractured, structureless rock of proposed magmatic
origin [504]. These lower rocks are cut by mafic dikes [507,508] and the country rock
adjacent to them has been subjected to visible alteration by contact metamorphism [507].

The layered rocks exposed in the Valles Marineris walls are mostly dark-toned and
often interpreted as lavas, sometimes with a caveat that some amount of regolith, tephra,
impact ejecta, and sediment could be interbedded with these materials [347,509]. Except
where Valles Marineris walls intersect and cut through lava flows expressed at the present
Martian surface, the case for lava deeper in chasm wall stratigraphy seems to have been
a “looks like” argument—that some of the outcrop expressions resemble those of escarp-
ments cut into flood basalt strata on Earth [510]. More evidence would be helpful. For
example, a key signal of the likelihood of lava or intrusive magma is columnar joint-
ing (Section 3.6.2). However, no columnar joints, or column-shaped boulders shed from
columnar-jointed outcrops, have yet been identified in the strata of the Valles Marineris and
associated chasms [24,502]. Of course, columnar joints too small to be identified in HiRISE
0.25 m/pixel images could be present, and candidate columnar jointing has been observed
in some of the dikes exposed in the Valles Marineris [508]. Others have suggested that some
of the layered rocks in the Valles Marineris might be crystalized, layered plutons [511], and
still others suggest some of the “weaker” strata might be tuffs [480].

The distinction of stratified (and structureless at observable scales) sedimentary rocks
from lavas, tuffs, sills, buried impact melt rocks, and paleosols (paleo-regoliths) exposed in
the walls of the Valles Marineris is not easy and, thus, no examples of dark- or intermediate-
toned sedimentary rock have yet been definitively identified [504]. Given the likelihood
that, based on observations of Arabia Terra (Section 4.2.1), the sedimentary rocks may be
common in the heavily cratered regions of Mars, and that the walls of the Valles Marineris
(and associated chasms) had to have cut through heavily cratered terrain bedrock, it
seems plausible that some of the rock exposed in the chasm walls has to be sedimentary.
Observations from the Curiosity rover site in Gale crater show that sedimentary rocks
exposed in the Valles Marineris walls need not be light-toned, can be dark-toned, can even
be mafic, and can be sufficiently resistant to erosion so as to resemble the erosion resistance
of lavas, sills, and impact melt rocks. In that case, both the “weak” and “strong” layers of
Beyer and McEwen [349] have the potential to be sedimentary.

In addition to the darker-toned wall rocks, there is the question of whether light-toned,
stratified rocks are exposed in various places in the walls of the Valles Marineris, and
whether these are records of very ancient sediments (or tuffs) deposited before the chasms
opened up, or deposited in the chasms after they opened up, or were deposited in precursor
basins at various stages as the chasms slowly began to open. Based on a survey of the sci-
entific literature, the latter hypothesis is generally favored [10,512–518]. However, some in-
vestigators have concluded that there do exist examples of light-toned rock—generally con-
sidered to be sedimentary, but could in some cases be tuffs—emergent from within Valles
Marineris chasm wall strata [24,25,49,185,407,519,520]. The most frequently accepted occur-
rence is at “mound A” in southwestern Juventae Chasma (Figure 38a) [24,25,407,519,520].
Additional candidates have been identified in the ridge that separates north-central Candor
Chasma from southwestern Ophir Chasma (Figure 38b–d) [49,185], a feature in Ganges
Chasma called “Ganges 5” [342], a light-toned rock exposure called “feature D” in Juven-
tae Chasma [24,25], occurrences in the lower walls of northwest Candor Chasma [519],
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southern Melas Chasma [519], Hebes Chasma [519], southwestern Candor Chasma [185],
the upper walls in a portion of Ganges Chasma [185], and on the Nectaris Montes in Co-
prates Chasma [185]. Light-toned, stratified rock in the Coprates Montes ridge in Coprates
Chasma has been variously interpreted as an exposure of pre-chasm sedimentary rock [185]
or as sediments deposited and lithified in a precursor depression that formed during a
proposed multi-stage opening of Coprates Chasma [516]. A light-toned, wind-eroded, strat-
ified rock occurrence “perched” [514] in an alcove above northwestern Coprates Chasma
has also been variously interpreted as pre-chasm rock [185]—such as sediment filling
a buried impact structure—or the eroded remnants of sediment deposited and lithified
within a precursor depression during the period of the opening of the chasms [514,521].
In the former model, the alcove exists because of the pre-chasm presence of light-toned
rock of relatively poor erosion resistance; as it was exposed by the extensional faulting
and mass movement that opened the chasms, the more erosion-resistant overburden was
undermined, broken-down, and removed by erosion, forming the alcove.
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Figure 38. Example candidate cases of light-toned rock outcropping in Valles Marineris walls. (a) Example from southwest-
ern Juventae Chasma; the light-toned mound is stratified rock that appears to be partially emergent from within wall rock
spurs [24,25,407,519,520]; inset shows example (slope is toward lower right); CTX B20_017279_1751_XN_04S063W; inset is
from HiRISE PSP_005557_1755. (b) The ridge (with an axial trough) that separates southwest Ophir Chasma from northern
Candor Chasma contains various patches of light-toned rock [49,185]; sketched green pattern indicates light-toned rock;
blue indicates candidate occurrences; the locations of (c,d) are indicated; mosaic of CTX P12_005676_1746_XI_05S073W,
P13_006243_1746_XN_05S073W, P03_002208_1748_XN_05S072W. (c) Example light-toned, slope- and scarp-forming rock
that outcrops from a spur in the wall of Ophir Chasma; downward slope is toward bottom; sunlight from the right; HiRISE
ESP_033393_1750. (d) Example light-toned, stratified, wind-scoured rock that outcrops below a spur in the wall of north
Candor Chasma; note overhang and tumbled-down boulders; HiRISE ESP_012018_1750.
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There has been a general resistance to acceptance of evidence that light-toned, stratified
rocks outcrop at some locations in the walls of the Valles Marineris. That resistance discour-
ages investigation of this model and leads to a bias, which assumes that all such occurrences
must be erosional remnants of sediment or tephra deposited in the chasms after they opened
up, or during successive episodes of their opening and widening [10,498,499,512–518,522].
The resistance might stem, at least in part, from a misinterpretation of the Malin and
Edgett [49] model, which viewed the rocks exposed in the Valles Marineris walls as het-
erolithic in both a lateral and vertical sense, reflective of the heterolithological appear-
ance of the deeply-eroded terrains of western Arabia Terra [9,12,18,493]. Imagine, for
a moment, what western Arabia Terra looked like before the deep erosion that erased
some—and topographically inverted other—valley networks [292,492], and exhumed filled
and buried impact structures [493]. Now, imagine using some earthmoving equipment
to cut a several-kilometers wide and several-kilometers deep trench across that western
Arabia paleo-landscape. What would be seen in the walls of that trench? Evident would be
the same lateral and vertical lithological diversity, including dark- and light-toned strata of
differing resistance to erosion, which we see exposed planimetrically in the region today.
Now, imagine what lies buried beneath the terrain cut by the Valles Marineris. Should the
walls of the Valles Marineris, and associated chasms, not also reveal a similar lithological
diversity that includes rocks of differing tone and resistance to erosion, as well as various
filled and buried impact structures and former intercrater terrain?

The question of Valles Marineris (and associated chasms) wall rock lithologies remains
unresolved. Many excellent observations have been documented [24,324,347,349,396,502,
504,505,507,519,523], but work remains to be done to decipher whether it is true that
intrinsically-light-toned rocks of relatively poor erosion resistance are exposed in various
patches and locations in these walls, whether “weak” or even “strong” stratal packages
include sedimentary rocks, whether columnar joints (other than in magmatic dikes [508])
occur in any of the rocks, and whether filled and buried impact structures and filled, former
valleys or channels can be identified in the rocks.

4.2.3. Sedimentary Rocks in the Medusae Fossae Formation?

Like the walls of the Valles Marineris, the Medusae Fossae Formation (Figure 39)
presents additional challenges to identifying sedimentary rock occurrences on Mars [48],
in part because of four decades of interpretation and assumption that the material is
tuff [82,303]. The Medusae Fossae Formation is a suite of yardang-forming [524] and
butte-, mesa-, and fractured-plateau-forming [305] rock units that occur in a discontinuous
zone that stretches along the equator between western Tharsis and southern Elysium
Planitia (Figure 39a) [82]. The rocks are stratigraphically younger than, and partly strad-
dle [327,328], the Martian topographic dichotomy boundary [525]. Most of these rocks
occur on the northern, lowland side of the boundary. Where they occur south of the
boundary, they unconformably overlie bedrock previously heavily cratered and cut by
fluvial valleys. Outlier remnants occur both north and south of the main bodies of the unit,
suggesting that it was once more extensive [526,527]. In the northern lowlands, Medusae
Fossae Formation rocks in some areas overlie, and in others are embayed (and buried)
by, lava flows [224,303,528–531]. Fluvial sediment and sedimentary fan deposits, exhibit-
ing depositional setting mimicry, occur in terrain adjacent to or emergent from beneath
Medusae Fossae Formation rocks in the south-central (e.g., Figure 39d) [301] and western
(e.g., Figure 39e), e.g., [13,19,532,533] parts of the region.
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Figure 39. Medusae Fossae Formation extent and example features. (a) Map showing regional extent (in green) of the
Medusae Fossae Formation based on Kerber and Head [528]; locations of (b–e) are indicated in white; MGS MOC wide
angle geodesy campaign mosaic [416] overlain on shaded relief map created from MGS MOLA data [534]. (b) Example of
typical Medusae Fossae Formation yardangs; HiRISE ESP_041929_1675. (c) Example of a typical attribute of the Medusae
Fossae Formation, the burial, exhumation, and—in some cases—inversion (to form circular mesas) of impact structures; CTX
J06_047018_1919_XI_11N158W. (d) One of several examples [301] of ridges composing a fluvial sedimentary fan exposed in
the south-central Medusae Fossae Formation region. (e) One of many examples e.g., [13,19,270,532,535] of fluvial ridges
among the yardangs of the western portion of the Medusae Fossae Formation.

In most areas, Medusae Fossae Formation rocks lie beneath a mantle of aeolian
dust [483,536] and—in some areas—the rocks are covered by dust-coated or (less com-
monly) dust-free aeolian sand [528,537,538]. The materials retain some impact craters,
but few enough that the rocks were considered for several decades to be Amazonian in
age [301,327,328,539]. Later analyses, focused on impact crater counts and embayment or
interbedding of Medusae Fossae Formation rocks with lavas, suggested that deposition
might have begun during the Hesperian [302,528,540].

Because wind eroded some of the material to create yardangs (Figure 39b,c), and
yardangs on Earth usually consist of clastic materials [156], Medusae Fossae Formation
rocks have long been considered to be clastic [303,381]. The formation is not, however,
monolithic [82]; in some analyses, these rocks have been subdivided into lower, middle,
and upper stratigraphic members based on erosional expressions that are, reasonably,
assumed to be connected to rock stratigraphic and physical properties [327,328]. High
spatial resolution orbiter images show features that suggest these rocks can be further
subdivided into more specific units and facies [304,305,528], including some that may be
fluvial (e.g., Figure 39e) [13,19,70,235,541]. Whether the fluvial materials are properly part
of the Medusae Fossae Formation, or a preceding formation, is debatable; certainly, some
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of the fluvial sediments, expressed as ridges, might have become ridges before they were
buried beneath yardang-forming material (Figure 39e).

A vital question regarding the Medusae Fossae Formation is whether it exhibits a
lithological diversity commensurate with the observed geomorphic diversity [304,305],
and whether some percentage of the materials are sedimentary rock [48]. A variety of
interpretations for the origin of the materials have been proposed over the last > 4 decades,
including pyroclastic flows (ignimbrites) [303,305,381], airfall tephra [304,381], aeolian
sediment [328,542], marine-rafted pumice [543], marine carbonate platforms [544], and
paleo-polar dust and ice mixtures [545].

Interpretations that the Medusae Fossae Formation consists of primary volcaniclastics
have generally dominated the discussion [82,303]. The proximity of the rocks to the
volcanoes and lava flows of the Tharsis, Amazonis, Elysium, Apollinaris, and Cerberus
Fossae regions provide the necessary volcanic context (Figure 39a). Further, models of
possible tephra dispersal patterns [236,380] suggest that a relation between the volcanoes
and the Medusae Fossae Formation is possible. However, the interpretation that the rocks
consist of primary volcaniclastic material conflates two topics that should be considered
separately: (1) the depositional processes and settings recorded by the rocks, and (2) the
genesis of the clasts that compose the rocks. Interpretations regarding the relatively low
density of the rocks [382,546,547] conflate a third topic: (3) the porosity of the rock, which
is a product of the physical nature of the primary deposits and their diagenesis, including
fracturing. Although the low density was interpreted by some [382,547] as an indicator of
primary volcaniclastics, density is not a signal of clast genesis.

As noted, the presence of yardangs in the Medusae Fossae Formation is a signal
that the materials are likely clastic [381,524], but interpreting the material as clastic says
nothing of clast genesis. Aeolis Mons (Mt. Sharp) in Gale crater illustrates the point. A
few investigators have interpreted the yardang-forming rocks—and the other rock units
exposed at and just below the mountain summit—to be erosional outliers of the Medusae
Fossae Formation [301,302,527]. More recently, investigations of these rocks show that
most of them, except the uppermost rock unit (Figure 36) [16,48], exhibit meter-scale
cross bedding in rover and orbiter images, suggesting the materials were deposited as
aeolian dunes [22,191,434,435]. Other depositional structures observed in some of these
rocks might actually be fluvial [434]. Whether the yardang-forming rocks—and other rock
units high in the stratigraphy on Aeolis Mons—are truly outliers of the Medusae Fossae
Formation, or not, they certainly display depositional structures reflective of sedimentary
environments and exhibit no evidence as to clast genesis or any relation to volcanism.

Unless the rocks reflective of fluvial sedimentation in the central and western areas
of the Medusae Fossae Formation (e.g., Figure 39d,e) [13,19], and the upper stratigraphic
units of Aeolis Mons in Gale crater, are part of the Medusae Fossae Formation, then no
one has yet (or otherwise) performed the necessary, detailed analyses of depositional
and deformational structures in the majority of the formation. Such studies are now
possible with 100% orbiter image coverage at 0.25–6 m/pixel. If some rock units in the
formation are ignimbrites [303] then such analyses would help pinpoint vent locations,
a key concern regarding the ignimbrite hypothesis [548]. Such mapping would help
discern the various depositional facies recorded in the Medusae Fossae Formation. In
lieu of such detailed work, Figure 40 shows some features observed in various parts of
the formation that appear to be depositional structures; these include an example of an
erosional unconformity (Figure 40e). In the end, the degree to which the Medusae Fossae
Formation includes sedimentary rocks, versus tuffs, remains to be deciphered, but it is
possible that considerable amounts of sedimentary rocks are present.
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Figure 40. Example depositional structures in Medusae Fossae Formation materials. (a) Map showing location of (b–e)
in the Medusae Fossae Formation (green); MGS MOC wide-angle geodesy campaign mosaic [416] overlain on shaded
relief map created from MGS MOLA data [534]. (b) Example sharp, hairpin-curved cross-strata; compare with cross-strata
described by Rubin and Carter [549] (pp. 60–62); HiRISE ESP_014079_1715. (c) Cross-strata (e.g., arrows) in rock unit
beneath a prominent yardang-forming facies (top); HiRISE ESP_026409_1750. (d) Cliff-bench and overhanging erosional
expressions of strata in yardang-forming rock; HiRISE ESP_045172_1895. (e) Yardangs exhibiting differing orientations
occurring at different stratigraphic levels; these indicate an erosional unconformity, with the earlier (lower; yellow lines
indicate orientation) yardang fleet having been buried by the material in which the younger ones (orientation indicated by
blue lines) formed [550] (p. 354); CTX G05_020196_1868_XI_06N140W.

4.2.4. Sedimentary Rocks Beneath the Northern Plains?

Evidence for sedimentation in the northern lowlands of Mars—especially from the
circum-Chryse outflow channels [500]—has been observed and discussed ever since receipt
of images from the orbiter missions of the 1970s [551–554]. Whether the northern lowlands
also served as an oceanic sedimentary basin has, likewise, been discussed and debated for
several decades [555–559]. Landforms interpreted as mud volcanoes [422,423,560] attest
to the possibility of fluid expulsion events over large areas of the proposed sedimentary
deposits [561,562]; various flow-like forms and flow fronts suggest intrabasinal sediment
transport [552,553,555,563]; and intersecting troughs forming “giant” polygon patterns
are suggestive, to some, of compaction of fine-grained sediment resulting from loss of
subsurface material such as water or ice [564,565].

The presence of sedimentary deposits in some (or all?) parts of the northern low-
lands [566] leads to the question of whether sedimentary rocks are present beneath these
landscapes. Burial diagenesis can involve compaction, alone, or compaction and cementa-
tion [126]. In addition, the other element of clastic sediment lithification—time—has been
plenty; for example, several billion years have elapsed since the circum-Chryse outflow
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channel sediments were deposited [566]. Salvatore and Christensen [562,567] proposed
that fine-grained, light-toned, stratified sediments deposited in the Chryse and Acidalia
basins by outflow channel flood events can be identified in the walls of many impact
craters in the region. These layered materials exhibit depositional structures suggestive of
sedimentation, such as lenses and pinch-outs, and infrared spectra suggest they contain
hydrated minerals [562,567]. Geomorphic evidence for fluid expulsion associated with
these sediments (e.g., giant polygons and proposed mud volcanoes [561,562]) strengthen
the case that compacted sediments are present [567]. Elsewhere in the northern lowlands,
Gross et al. [568] identified stratified rocks containing phyllosilicates, exposed in northern
plains impact structures; these, they suggested, could be northern plains sediments or
could be much older, sub-basin (e.g., buried, heavily cratered terrain) sediments.

As currently understood, we should expect sedimentary rocks to occur beneath the
northern lowland plains of Mars, and Salvatore and Christensen [567] have identified
excellent candidate examples. Exposures of northern plains sedimentary rocks are likely
to be limited to impact structures, boulders and megaclasts in impact ejecta, and perhaps
areas where regolith has been removed by aeolian or fluvial erosion, exposing bedrock, if
such surfaces exist. There is also value in recalling the surprisingly “hard,” vesiculated,
salt-bearing mudstones produced in near-vacuum conditions in a laboratory forty years
ago [569]; these were considered among the various candidate explanations for the vesicu-
lated rocks at the northern lowland Viking 2 lander site [570]. On today’s Mars, we also
recognize that ice occurs beneath some of the northern lowland plains [571–573]. The role
of ice in terms of contribution or inhibition of Martian sediment diagenesis is unknown.

4.2.5. Additional Challenges

Most recognized Martian sedimentary rock occurrences are found at equatorial to
middle latitudes, but this might be a bias with regard to their visibility. There is no
reason to expect, for example, that heavily cratered terrain at middle and high latitudes
have fewer sedimentary rock occurrences. For instance, the bedrock beneath most of the
troughs of the mid-latitude fretted terrain (sensu [398]) north of Arabia Terra is obscured by
materials that have been variously interpreted as ice-bearing or as previously ice-bearing
“lineated valley fill” e.g., [574–577], but there are areas in the Nilosyrtis Mensae fretted
terrain in which such landforms are absent and stratified, likely sedimentary rocks, are
observed (Figure 41a) [578]. Sedimentary rocks also occur in a similar setting, in the
opposite hemisphere, among the mountains and valleys on the west side of the Argyre
impact structure (Figure 41b).

Additional challenges to global identification (and mapping) of sedimentary rock
occurrences at and very near the surface of Mars include: (1) middle and high latitude
mantling deposits that obscure bedrock [484,485]; (2) the aforementioned blanket of aeolian
dust over much of Arabia Terra [483,491]; (3) seasonal frost and the fogs and dust storms
that accompany seasonal polar cap retreat and limit frost-free viewing opportunities during
parts of late winter and spring at middle to high latitudes; and (4) low image contrast at 50◦

to 70◦ south latitude during frost-free periods, interpreted to be a result of dust coatings
on surfaces, and subsequent vigorous, spaghetti-like streaking of these surfaces by dust
devils, that challenge bedrock visibility and identification.
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bedrock is obscured by overburden. (a) Example in the Nilosyrtis Mensae region, where much of the bedrock is hidden by
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(b) Example in a valley between the mountains that bound the west side of Argyre Planitia; HiRISE ESP_021947_1300.

5. Concluding Statements

Geology is the pursuit in which all of the sciences meet to tell the history of worlds. It
is also the pathway for identification and management of rock, mineral, and geochemical
resources. Both of these notions apply to efforts to locate sedimentary rocks on Mars,
Venus, Titan, and other bodies, now and in the future. Two decades after the seminal
publication regarding the observation of sedimentary rocks on Mars [49], identification of
occurrences exposed at the planet’s surface remains challenging and incomplete. In some
cases, care must be taken to develop certainty that a feature observed is truly observed, and
that one’s hidden assumptions are identified and addressed. Overreliance on previously
published interpretations is rarely wise; one should continuously question one’s certitude,
and investigators should clearly separate observations from interpretations (and label
speculations as such).

We have been careful in this contribution to not use the words, criteria, and criterion, in
the context of identifying Martian sedimentary rock occurrences. There is not—and should
not be—a checklist of criteria that guarantee identification (indeed, use of a checklist
would be an oversimplification). We hope that what we have done here is to provide
some guidance and made it clear that the light-toned, stratified occurrences, the less-
common intermediate-toned and “dark mesa-forming” materials [49], and the examples
of depositional setting mimicry identified before 2012 [48,69], were a sub-set of a greater
whole. We hope we have made it clear that:

1. Some Martian sedimentary rock occurrences have physical properties that permit
them to resist erosion and retain small impact craters in a manner similar to lava
plains;

2. Tone (e.g., light-toned rocks) can be a property intrinsic to the rock, intrinsic to a
coating or weathering rind, or can be a function of rock surface roughness and aeolian
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sediment (light-toned, dust; dark-toned, sand) accumulation on its skyward-facing
surface;

3. Pebble-sized clasts can be liberated from conglomerates and breccias, or produced
from the breakdown of erosion-resistant, fine-grained rocks, and these pebbles can
form lags that give the terrain a “smooth” appearance at image spatial resolutions of
(at least) 0.25–6 m/pixel;

4. Martian sedimentary rocks include examples that are dark-toned and have primary
igneous rock compositions (e.g., containing glass, plagioclase, pyroxene, olivine), and
remote detection of such rock compositions (e.g., basaltic) should not automatically
be interpreted as tuffs or lavas; and

5. Distinction of sedimentary from igneous rock is not always easy, even when viewed
by landed payload cameras at sub-millimeter scales; for cases in which making the
distinction is not possible, it is important to acknowledge the observational reason(s)
as to why.

A key concern going forward is to separate questions of clast genesis from the pro-
cesses of clast deposition and depositional setting. The > 4 decades of dialog regarding
the Medusae Fossae Formation, for example, teaches us to worry less about clast genesis
before being concerned with the geological record of depositional conditions. Over the
1979–1982 period, cases were made on the basis of erosional expression that the Medusae
Fossae Formation rocks must be clastic. Most of the discussion, since then, focused on
whether the large volume of clasts was produced by explosive volcanism. However, the
proposed clasts cannot be seen without in situ investigation, and, thus, their genesis cannot
actually be known. There is presently a higher value in encouraging renewed study of the
large CTX, HiRISE, and CaSSIS data sets to consider (or reconsider) the depositional (and
diagenetic, if present) structures in the Medusae Fossae Formation (e.g., Figure 40) and
interpret the depositional facies present.

Although obscured by regolith, aeolian dust, or mid-latitude landforms and materials
in some regions, sedimentary rocks might be quite common throughout the Martian heavily
cratered terrain—in impact structures, in the spaces between them, and in buried examples
of the same. Sedimentary rocks could also have formed from sediments deposited in the
northern lowland plains of Mars. With impact events, volcanism, weathering, and erosion
making the interface between the early Martian lithosphere, hydrosphere, cryosphere, and
atmosphere a clast production factory, and with the wider variety of sedimentary rock
landforms now recognized, it is reasonable to anticipate that the upper crust of Mars has
a considerably more voluminous sedimentary rock record than previously realized. This
record awaits further exploration.
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