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Abstract: Self-supervised method has proven to be a suitable approach for despeckling on synthetic
aperture radar (SAR) images. However, most self-supervised despeckling methods are trained by
noisy-noisy image pairs, which are constructed by using natural images with simulated speckle noise,
time-series real-world SAR images or generative adversarial network, limiting the practicability
of these methods in real-world SAR images. Therefore, in this paper, a novel self-supervised
despeckling algorithm with an enhanced U-Net is proposed for real-world SAR images. Firstly,
unlike previous self-supervised despeckling works, the noisy-noisy image pairs are generated
from real-word SAR images through a novel generation training pairs module, which makes it
possible to train deep convolutional neural networks using real-world SAR images. Secondly, an
enhanced U-Net is designed to improve the feature extraction and fusion capabilities of the network.
Thirdly, a self-supervised training loss function with a regularization loss is proposed to address the
difference of target pixel values between neighbors on the original SAR images. Finally, visual and
quantitative experiments on simulated and real-world SAR images show that the proposed algorithm
notably removes speckle noise with better preserving features, which exceed several state-of-the-art
despeckling methods.

Keywords: self-supervised; synthetic aperture radar (SAR); despeckling; enhanced U-Net

1. Introduction

Synthetic aperture radar (SAR) [1] is an active remote sensing imaging sensor that
transmits electromagnetic signals to target in a slant distance manner. Compared with
optical imaging sensors, SAR has the imaging ability of all-time and all-weather. Therefore,
SAR has become one of the remote sensors used for disaster assessment [2], resource
exploration [3], ocean surveillance [4,5] and statistical analysis [6]. Nevertheless, due to the
imaging mechanism, the quality of SAR images is inherently affected by speckle noise [7,8].
Speckle noise is a granular disturbance, usually modeled as a multiplicative noise, that
affects SAR images, as well as all coherent images [8]. The speckle noise may severely
diminish the performances of detection accuracy [9–12] and information extraction [13].
Therefore, the reduction of speckle noise is a key and essential processing step for a number
of applications.

In the past few decades, numerous researchers have attempted to reduce the speckle
noise in SAR images. Generally, the existing despeckling methods can be roughly sum-
marized as local window methods, non-local mean (NLM) methods and deep learning
(DL) methods. In the first group, local window methods are widely used, such as Lee [14],
Frost [15] and Kuan [16]. The despeckling performance of local window methods is very
dependent on the window size. The larger the size, the smoother the despeckled image and
the better the despeckling performance. However, the despeckled image will lose point
targets, linear features and textures.
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To overcome the disadvantage of local window methods, NLM methods are applied
to process SAR images, such as PPB [17], SAR-BM3D [18] and NL-SAR [19]. The NLM
methods define the similar pixel and pixel weight by measuring the similarity between a
local patch centered on the reference pixel and another local patch centered on a selected
non-local neighborhood pixel. The greater the similarity, the larger the weight. However,
the NLM methods need to use the equivalent number of looks (ENL) as a prior. In practical
applications, it is impossible to obtain the accurate ENL of SAR images. In addition, the
time complexity of the local window methods and NLM methods is very high.

Recently, benefiting from new breakthroughs of deep learning [20,21], more and more
researchers began to explore DL methods [22–33]. The essence of the DL despeckling
methods is to learn a relationship from noisy SAR images to noise-free SAR images. It
can be described as follows. Firstly, the input of the DL despeckling methods is a noisy
SAR image. Then, the noisy SAR images are encoded and decoded through convolutional
layers, pooling layers, batch normalization layers and activation function layers. Finally, a
noise-free SAR image is obtained. According to whether there are clean images as targets,
the DL despeckling methods can be distinguished into three broad categories: supervised
methods, semi-supervised methods and self-supervised methods.

The supervised despeckling methods [22–24,26] use noisy-clean image pairs to train
convolutional neural networks (CNNs) and the despeckling models are applied to reduce
speckle noise in real-world SAR images. Since there is no noise-free SAR images, the
training image pairs of the supervised methods are generated by combining regularization
RGB photos (natural images) with simulated speckle noise. The natural images contain
camera images [23] and aerial images [24]. The advantage of the generated method is that
a large number of noisy-clean image pairs can be easily obtained. A deeper CNN with
numerous parameters can be trained. But the disadvantage of the generated method is that
it ignores the peculiar characteristics of SAR images. For example, the noise distribution
of SAR images is not the same as in natural images, as well as the content, the texture, or
the physical meaning of a pixel value [27]. Compared with real-world SAR images, the
generated simulated SAR images have quite difference in content and geometry. There are
strong scattering points in real-world SAR images, but not in simulated SAR images. There-
fore, the despeckling CNNs trained with simulated images will change point targets, linear
features and textures in the real-world SAR images. Benefiting from the noise2noise [34]
method, semi-supervised methods and self-supervised methods [28–31] were proposed.
The method of noise2noise is to directly use noisy-noisy image pairs to train deep CNNs.
The semi-supervised despeckling model [27] used a small number of noisy-clean image
pairs to train CNNs. Then, the obtained despeckling model was fine-tuned on the time
series real-world SAR images. Fine-tune refers to the despeckling model obtained in the
first step for training again using the time series real-world SAR images. Compared with
the supervised despeckling methods, the semi-supervised despeckling methods can better
reduce the speckle noise from real-world SAR images. Nevertheless, the time series SAR im-
ages will have differences at different times, which will limit the despeckling performance.
The self-supervised despeckling methods directly use the extensive noisy-noisy image
pairs to train CNNs. The noisy-noisy image pairs are generated by using natural images
with simulated speckle noises [28], time series SAR images [31] or generative adversarial
network (GAN) [35], which still limit the practicability of these methods in real-world
SAR images.

Through the above analysis, a simple summary can be made. Firstly, the DL despeck-
ling method is raising great interest. However, most of DL methods are focused on the new
networks [22–26,32,33,36], while ignoring the most essential problem. In our opinion, the
lack of truely noise-free SAR images is the most essential problem. Simulated SAR images
can not really solve this deficiency. Secondly, it can be found that the despeckling CNNs
are becoming more and more deeper. Meanwhile, the number of trainable parameters
is increasing. The simulated SAR images can be easily generated through the pixel-wise
product of clean natural images with simulated speckle noise [30]. When processing
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real-world SAR images, the despeckling models obtained will bring new challenges. The
despeckling CNNs trained with simulated images pairs will change point targets, linear
features and textures in the real-world SAR images. Thirdly, although noise2noise method
can directly use noisy images as targets, the despeckling performance is still affected by
natural images [29] and the performance of GAN [30]. In the previous works [27–31],
they can not really use real-world SAR data to train the despeckling CNNs. Therefore,
in this paper, inspired by noise2noise [34], a novel self-supervised despeckling algorithm
with an enhanced U-Net is proposed. This algorithm is called SSEUNet. Compared with
previous despeckling CNNs [27–31], SSEUNet can directly use real-world SAR images for
training deep CNNs. The SSEUNet is composed of generation training pairs (GTP) module,
enhanced U-Net (EUNet) and a self-supervised training loss function with a regularization
loss. The main contributions and innovations of the proposed algorithm are as follows:

• Since the noisy-noisy image pairs generated by [28,30,31] can not be used well in the
despeckling task of real-world SAR images, we propose GTP module. GTP module
can generate training image pairs from noisy images. It can make it possible to train
deep CNNs using real-world SAR images.

• Due to the poor feature extraction and fusion capabilities of U-Net [37], we design
a novel deep CNN by enhancing U-Net. The novel deep CNN is called enhanced
U-Net (EUNet).

• In order to address the difference of target pixel values between neighbors on the
original noisy image, a self-supervised training loss function with a regularization
loss is put forward.

• Visual and quantitative experiments conducted on simulated and real-world SAR
images show that the proposed algorithm notably reduces speckle noise with better
preserving features, which outputform several state-of-art despeckling methods.

The rest of this paper in organized as follows. The related work, which includes
noisy-clean despeckling methods and noisy-noisy despeckling methods, are analyzed in
Section 2. In Section 3, we detailed describe the proposed methods. Section 4 illustrates
the results of visual effect and parameter evaluation metrics. Finally, the conclusions are
drawn in Section 5.

2. Related Work
2.1. Noisy-Clean Despeckling Methods

In recent years, benefiting from deep learning, the noisy-clean despeckling methods
have been studied in depth. Inspired by denoising CNN [38], Chierchia et al. [22] proposed
the first despeckling CNN, which composed of 17 convolutional layers. The training
image pairs of SAR-CNN were generated from time series real-world SAR images. The
targets were 25-look SAR images. Zhang et al. [24] directly used dilated convolution layers
and skip connections to reduce speckle noise from SAR images. The dilated convolution
layer allows CNN to have a lightweight structure and small filter size, but the receptive
field of the CNN will not be reduced. In addition, skipping connections reduce the
problem of vanishing gradients. Similar to SAR-DRN, Gui et al. [25] proposed a dilated
densely connections CNN. After considering the bright distribution of the speckle noise,
Shen et al. [26] proposed a recursive deep convolutional neural prior model. The model
included a data fitting block and a deep CNN prior block. The gradient descent algorithm
was used for the data fitting block and the pre-trained dilated residual channel attention
network was applied in the deep CNN prior block. Pan et al. [32] combined multi-channel
logarithm gaussian denoising (MuLoG) algorithm with a fast and flexible denoising CNN
to deal with the multiplicative noise of SAR images. Li et al. [33] designed a CNN with
convolutional block attention module to improve representation power and despeckling
performance. In order to help the network retain image details, Zhang et al. [39] proposed
a multi-connection CNN with wavelet features. Because the NLM method is one of the
most promising algorithm, Cozzolino et al. [23] combined NLM method with deep CNN
to design a non-local mean CNN (NLM-CNN). The NLM-CNN used deep CNN to provide
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interpretable results for target pixel and predicted pixel. Mullissa et al. [36] proposed a two-
stage despeckling CNN, called deSpeckleNet. The deSpeckleNet sequentially estimated
the speckle noise distribution and the noise-free SAR image. Vitale et al. [40] designed
a weighted loss function by considering the contents in the SAR images. Except SAR-
CNN, the noisy-clean despeckling methods use synthetic training on the simulated SAR
images. Due to the differences in imaging mechanisms and image features between SAR
and natural images, i.e., grayscale distribution and spatial correlation [41], training on
simulated SAR images is not the best solution [30]. Compared with the most advanced
traditional despeckling methods, the deep despeckling CNNs have obvious despeckling
advantages, but the lack of truly noise-free SAR images is a major limiting factor in
despeckling performance.

2.2. Noisy-Noisy Despeckling Methods

In the real-world, it is impossible to obtain noise-free SAR images. Inspired by
noise2noise [34], the noisy-noisy despeckling methods [27–31] were studied in depth.
Yuan et al. [28] designed a self-supervised densely dilated CNN (BDSS-CNN) for blind
despeckling. In the BDSS-CNN, the noisy-noisy image pairs were generated by adding
simulated speckle noise with random ENL to natural images. Then, the generated noisy-
noisy image pairs were used to train BDSS-CNN. Finally, the obtained despeckling model
was applied on the real-world SAR images. Inspired by blind-spot denoising networks [42],
Molini et al. [29] reported a self-supervised bayesian despeckling CNN. The training
image pairs were constructed from natural images. Yuan et al. [30] designed a practical
SAR images despeckling method to reduce the impact of natural images. The method
contained two sub-networks. The first sub-network was a GAN, which used to generate
the speckle-speckle training paris. The second network was an enhanced nested-UNet,
which was trained by using speckle-speckle training paris. It can be found that the quality
of the generated speckle images by GAN will directly affect the despeckling performance of
the enhanced nested-UNet. Dalsasso et al. [27] and Ma et al. [31] abandoned the methods
of using natural images and GAN, they proposed to use time series real-world SAR images.
Whilst, the natural landscape often changes significantly at a short period in the time series
real-world SAR images. Therefore, the despeckling performance of [27,31] is still limited.

Although noise2noise methods were used to solve the lack of truly noise-free SAR
images, the despeckling performance is still affected by nature images [29] and the perfor-
mance of GAN [30]. In the previous works [27–31], they can not really use real-world SAR
images to train the despeckling CNNs. Therefore, we designed a novel self-supervised
despeckling algorithm with an enhance U-Net (SSEUNet). The SSEUNet includes a GTP
module, an EUNet and a loss function. The GTP module can directly generate training
image pairs from real-world noisy images. The generated image pairs are applied to train
EUNet through the proposed loss function. When processing real-world SAR images, the
proposed SSEUNet can eliminate the influence of natural images, GAN performance and
time series images.

3. Proposed Method

In order to train the despeckling CNN directly using real-world SAR images, we
propose a novel self-supervised despeckling algorithm, which is called SSEUNet. The
SSEUNet is mainly composed of two GTP module, an enhanced U-Net (EUNet) and a loss
function. The GTP module is designed to generate noisy-noisy image pairs for training
the proposed EUNet. The EUNet is an enhanced version of U-Net, which has stronger
feature extraction and fusion capabilities. The loss function is a self-supervised training
loss function with a regularization loss, which is applied to optimal EUNet. In this section,
Section 3.1 gives an overview of the proposed SSEUNet framework in detail. The detailed
implementation of the proposed GTP module is introduced in Section 3.2. The proposed
EUNet will be illustrated in Section 3.3. Section 3.4 introduces the loss function of SSEUNet.
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3.1. Overview of Proposed SSEUNet

The proposed SSEUNet is composed of generation training pairs (GTP) module,
enhanced U-Net (EUNet) and a self-supervised training loss function with a regularization
loss. Figure 1 shows the overview of proposed SSEUNet framework, where y is the
input image of proposed SSEUNet. z1 and z2 are noisy-noisy image pair generated by
proposed GTP module. Fφ is the EUNet and φ is the parameters of the EUNet. z

′
1 and z

′
2

are the despeckled image pair generated by GTP module. L is the proposed loss function.
The proposed SSEUNet are divided into training phase (Figure 1a) and inference phase
(Figure 1b). In the training phase, a pair of noisy-noisy images ({z1, z2}) is generated from
a noisy image y. The generated masks are recorded as G1 and G2. The generated masks
come from GTP module. The EUNet takes z1 and z2 as input and target, respectively. The
input image y is fed into EUNet and the despeckled image y

′
is obtained in each training

epoch, where y
′
= Fφ(y). The depseckled-despeckled image pair ({z′1, z

′
2}) of the y

′
are

obtained by GTP module. The loss function is computed by using Fφ(z1), z2, z
′
1 and z

′
2.

In the inference phase, the despeckled SAR images are obtained by directly using the
trained EUNet.

EUNet

GTP
Module

GTP
Module

EUNet

y )(yF

1z

2z

'
1z '

2z

)( 1zF

(a) Training phase

(b) Inference phase

No Gradient

Figure 1. Overview of the proposed SSEUNet framework. (a) Complete view of the training phase.
(b) Inference phase using the trained EUNet.

3.2. Proposed GTP Module

Benefiting from noise2noise despeckling methods, we have conducted further research
on the construction of noisy-noisy image pairs. According to Goodman’s theory, the
fully developed speckle noise in SAR images is completely random and independently
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distributed noise. Therefore, we attempt to generate noisy-noisy image pairs from the
real-world SAR images y ∈ {yi}N

i=1, where N is the total number of real-world SAR images.
The height and width of y are H and W, respectively. The noisy-noisy image pair is the

{z1, z2}. The generation process of the proposed GTP module is divided into three steps.
Firstly, the y is divided into bH/kc × bW/kc patches, where the b·c is a floor operation
and k is the patch size. Secondly, we select a patch at the position (l, m), the two pixels of
the patch are randomly extracted. The extracted pixels are used as the pixel of z1 and z2
at the position (l, m), respectively. Finally, for bH/Kc × bW/kc patches, the noisy-noisy
image pair {z1, z2} is obtained by repeating the second step. The size of z1 and z2 is
bH/kc × bW/kc. Compared with the methods of using natural images and GAN, the
GTP module can directly generate noisy-noisy image pairs from real-world noisy images.
Figure 2 shows three noisy-noisy image pairs generation methods, where y is the noisy
image, and I is the clean natural image. SN1 and SN2 are two independent simulated
speckle noise. I1 and I2 are simulated SAR images. yG is the speckled SAR image generated
by GAN [35].

1z

2z

GTP

Module

GAN

1,1

1,1

1,2 1,3
2,1 2,2 2,3

3,1 3,2

3,2

3,3

3,33,1

2,1 2,2 2,3

1,2 1,3

(1,2) (2,2)

(1,3)

(2,3)

(1,1)

(2,1)

(3,1) (3,2) (3,3)

2z1z

y

(a)

1SN

2SN

1I

2I

I

y

Gy

(b) (c)

y

(l,m)

l=1,2,3

m=1,2,3

Figure 2. Comparison of different methods for generating noisy-noisy image pairs. (a) The method of proposed GTP
module. (b) The method of using natural images. (c) The method of using GAN.

In order to better explain the difference between the three generation methods, k is set
to 2. When using GTP module, the y is divided into bH/2c × bW/2c patches and the size
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of z1 and z2 is a quarter of y. In Figure 2a, the example of generating an image pair is listed
right. The original image size is 6×6. The original image is divided into 9 (b6/2c × b6/2c)
patches. Two pixels are randomly chosen and fill them with orange and blue respectively.
The pixel filled with orange is taken as a pixel of a noisy image z1 and the other pixel filled
with blue is taken as a pixel of another noisy image z2. The noisy-noisy image pair {z1, z2}
is displayed as the orange image and the blue image on the right. In Figure 2b, the clean
image I is element-wise multiplied with SN1 and SN2 to obtain the noisy-noisy image pair
{I1, I2}. The image size of I1 and I2 is H ×W. In Figure 2c, the image yG is obtained by
using GAN. y and yG are combined together to construct noisy-noisy image pair {y, yG}.
The size of y and yG is H ×W. By comparing the three generation methods, it can be seen
that the proposed GTP module directly generates the noisy-noisy image pairs from noisy
images. Meanwhile, it will not be affected by natural images or GAN performance. The
size of the noisy-noisy image pairs do not affect the despeckling performance of CNNs.

In order to verify that the noisy-noisy image pairs generated by GTP module will
not change the distribution of the original noisy images, Figure 3 shows the examples of
noisy-noisy image pairs generated by GTP module. In Figure 3, µ and σ are the mean and
standard variance, respectively. The size of the original images is 256 × 256. The size of the
noisy-noisy image pairs is 128 × 128. It can be seen that the histograms, µ, σ and visual
effects are very similar.

： 126.53

： 30.45

： 126.66

： 30.48

： 126.36

： 30.37

： 146.98

： 33.61

： 147.02

： 33.58

： 146.87

： 33.68

： 75.40

： 48.57

： 75.35

： 48.41

： 75.62

： 48.63

： 75.75

： 48.00

： 75.59

： 47.69
： 75.38

： 47.96
(a) (b) (c) (d) (e) (f)

Figure 3. Examples of noisy-noisy image pairs using GTP module. (a) Original noisy images y. (b) Histograms of y.
(c) Noisy images z1. (d) Histograms of z1. (e) Noisy images z2. (f) Histograms of z2.

3.3. Enhanced U-Net

The U-Net [37] was originally proposed for medical image segmentation. It is a
fully convolutional network and can be trained with very few images by using data
augmentation. The U-Net is widely used in image denoising [43] and super-resolution [44].
At present, there are many variants of U-Net, which are used for various tasks. For example,
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the nested U-Net [45] and hybrid densely connected U-Net [46] are used for medical image
segmentation. Multi-class attention-based U-Net [47] is designed for earthquake detection
and seismic phase-picking.

As the speckle noise is modeled as multiplicative noise, the non-linear relationship
of between noise-free SAR images and speckle noise can be obtained by a deep CNN.
Therefore, an enhanced U-Net (EUNet) is designed to enhance the feature extraction
and fusion capabilities of U-Net [37]. The detailed architecture of EUNet is displayed in
Figure 4, where BN-RRDC represents the residual in residual densely connection with
batch normalization (BN-RRDC) block. SSAM1-SSAM4 are sub-space attention module
(SSAM) [48], respectively. ISC1-ISC4 denote the proposed improved skip connections,
respectively. The Conv and s mean the convolutional layer and stride, respectively. The Cat
and TConv1-TConv4 represent concat layer and transpose convolution layers, respectively.
Compared with U-Net [37], EUnet mainly has four enhancements. Firstly, we replace
the convolutional layer with the BN-RRDC blocks. The BN-RRDC block is composed
of residual in residual densely connections [49] and batch normalization layer, which
can significantly improve the feature extraction and representation capabilities of U-Net.
Meanwhile, because of the residual structure in the BN-RRDC block, the training difficulty
of the EUNet will not increase.

BN-RRDC

Conv,s=2

BN-RRDC

Conv,s=2

BN-RRDC

Conv,s=2

BN-RRDC

Conv,s=2

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

BN-RRDC

TConv1

Cat

BN-RRDC

TConv2

Cat

BN-RRDC

TConv3

Cat

BN-RRDC

TConv4

Cat

Conv,s=1

SSAM1

SSAM2

SSAM3

SSAM4

Input

Output

ISC4
Fusion modules

ISC3

ISC2

ISC1

Figure 4. The detailed architecture of EUNet.
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Secondly, for reducing features loss, the pooling layers are replaced by convolutional
layers with s = 2. Thirdly, we design improved skip connections (ISC1-ISC4) to narrow
the gap between encoder features and decoder features. In the architecture of U-Net [37],
the skip connections directly send the encoder features to the decoder. In the framework
of EUNet, the improved skip connections have different numbers of BN-RRDC blocks. In
the structures of ISC1-ISC4, the numbers of BN-RRDC blocks are 1, 2, 3 and 4, respectively.
Finally, SSAM is introduced into the feature fusion to restore weak texture and high-
frequency information of the image. SSAM is a non-local sub-space attention module,
which uses the non-local information to generate basis vectors through projection. The
reconstructed SAR image can retain most of the original information and suppress speckle
noise which is irrelevant to the basis vectors. The SSAM has been achieved state-of-
the-art denoise performance for removing noise in the natural images. The detailed
structure of BN-RRDC block and SSAM are displayed in Figure 5, where BN is the batch-
normalization layer.

Figure 5. The detailed structure of BN-RRDC block and SSAM.

3.4. Loss Function of SSEUNet

The self-supervised training method is the noise2noise method [34], which does not
require clean images as targets. The noise2noise method only requires two noisy image
pairs of the same image. Assuming the noisy-noisy image pair is the {y1, y2} from the
clean image x, the noise2noise tries to minimize the following loss function:

Lmse = ||Fφ(y1)− y2||22, (1)

where Fφ is the denoising network and φ is the parameters of the denoising network.
Equation (1) is the pixel-level loss function. Its optimization is the same as the supervised
learning CNNs. In previous noise2noise despeckling methods, Equation (1) is commonly
used loss function. Assume that the noisy SAR image is y, and the generation masks of GTP
module are G1 and G1. The noisy-noisy image pair is {z1, z2}. z1 and z2 can be written as:

z1 = G1 � y, z2 = G2 � y, (2)
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where� is the operation of GTP module. When training EUNet, Equation (1) is rewritten as:

Lmse = ||Fφ(z1)− z2||22. (3)

The despeckled image pair {z′1, z
′
2} of y

′
can be obtained by Equation (4).

z
′
1 = G1 � y

′
, z

′
2 = G2 � y

′
, (4)

where y
′
= Fφ(y). Thus, the regularization loss can be defined as:

Lreg = ||Fφ(z1)− z2 + z
′
2 − z

′
1||22, (5)

Meanwhile, z
′
1 and z

′
2 also can be obtained by the despeckling network Fφ, which can

be written as:
z
′
1 = Fφ(z1), z

′
2 = Fφ(z2). (6)

In an ideal state, F∗φ (z1) and z2 are exactly the same. F∗φ is the optimal despeckling

network. Meanwhile, z
′
1 and z

′
2 are also exactly the same. Therefore, Lreg should be equal to

0. Equation (5) provides a regularization loss that is satisfied when a despeckling network
Fφ is the optimal network F∗φ . The regularization loss can narrow the gap of target pixel
values between neighbors on the original noisy image. In order to exploit the regularization
loss, we do not directly optimize Equation (3), but add Equation (5) to the Equation (3).
Finally, the loss function of SSEUNet is defined as:

L = Lmse + λLreg, (7)

where λ is the hyper-parameter.

4. Experiments and Analysis

We evaluate the effectiveness of the proposed SSEUNet on simulated and real-world
SAR datasets. Firstly, we report the implementation details. Secondly, the training and
inference datasets, a simulated SAR dataset and a real-world SAR dataset, are introduced
in detail. Thirdly, according to the fact of simulated and real-world SAR images, different
evaluation metrics are selected. Finally, we present the experimental results and analysis of
the simulated and real-world SAR datasets.

4.1. Implementation Details

The proposed SSEUNet does not require a pre-trained model, and it can be trained
end-to-end from scratch. In the training phase, the initialization method of the network
parameters is He [50]. The optimizer is Adam algorithm [51] and its momentum terms are
β1 = 0.9 and β2 = 0.999. The initial learning rate of SSEUNet is set to 0.00001 for the real-
world experiments and 0.0001 for the simulated experiments. The learning rate reduces by
reduce-on-plateau strategy and the decay ratio is 0.5. 64 × 64-sized images are used and
10 instances stack a mini-batch. The training epoch is set to 100. The hyper-parameter of
λ in the loss function can control the strength of the regularization term. Empirically, the
λ is set to 2 in the simulated SAR experiments and the λ is set to 1 in the real-world SAR
experiments. In the inference phase, the input size of the trained ENUet is 256 × 256. All
experiments are conducted on a workstation with Ubuntu 18.04. The hardware is an Intel
Xeon(R) CPU E5-2620v3, a NVIDIA Quadro M6000 24GB GPU and 48 GB of RAM. The
deep learning framework is PyTorch 1.4.0.

4.2. Datasets

We use UC Merced Land-use (UCML) dataset [52] as a simulated dataset and it is
widely used for land-use classification. The UCML dataset is a optical remote sensing
dataset. The UCML dataset contains 2100 images, which are extracted from United States
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Geological Survey (USGS) National Map of the US regions. The resolution is 0.3 m and the
size of each image is 256 × 256 × 3. To generate the simulated SAR images, we convert
each image to grayscale image. Then, similar with [53], we generate simulated SAR images
by multiplying simulated speckle noise to clean grayscale images. The simulated speckle
noise follows Gamma distribution. In our experiments, we only considered single-look
SAR images. Because of the high intensity of speckle noise in single-look SAR images,
processing single-look SAR images is a very challenging case. The mean and variance of
simulated speckle noise are 1. We randomly divide 2100 images into training set (1470),
validation set (210) and testing set (420). In the training phase, data augmentation is used to
train SSEUNet. The method of data augmentation is cropping and the crop size is 64 × 64.
Finally, the augmented training set contains 213,175 patches. The size of training image
pairs generated by GTP module is 32 × 32. The validation set and testing set do not use
data augmentation. In Figure 6, we displays the examples of the generated simulated
SAR images.

(a)

(b)

(c)

Figure 6. Examples of simulated SAR images. (a) RGB images. (b) Grayscale images. (c) Simulated SAR images.

In order to validate the practicability of SSEUNet, seven large-scale single-look SAR
images are used. They were acquired by the ICEYE SAR sensors [54]. The details of
each SAR image are listed in Table 1, where the Pol., Level, Mode, Angle and Loc. are
polarization type, image format, imaging mode, look angle and imaging area, respectively.
The SLC, VV, SL, SM, Asc. and Des. represent the single look complex image, vertical
vertical polarization, spotlight, stripmap, ascending orbit and descending orbit, respectively.
We convert SLC SAR data (ISLC) into amplitude SAR images (y). The generation method
are as follows. Firstly, the amplitude SAR data (IA) of SLC SAR data is obtained through
Equation (8).

IA =
√

I2
Real + I2

Imag, (8)



Remote Sens. 2021, 13, 4383 12 of 22

where IReal and IImag are the real data and imaginary data of ISLC, respectively. Secondly,
the obtained amplitude SAR data (IA) is normalized. The normalized method is defined as:

Inorm
A = 10log10(

IA
Max(IA)

), (9)

where Max(·) means the maximum function. Finally, the normalized SAR data (Inorm
A ) is

encoded for obtaining an amplitude SAR image (y). The encoding method is defined as:

y =
Inorm
A −Min(Inorm

A )

Max(Inorm
A )−Min(Inorm

A )
× (2B − 1), (10)

where Min(·) represents the minimum function and B is the encoded bit. In our experi-
ments, B is set to 8.

Table 1. Acquisition parameters for the ICEYE-SAR sensors.

Images Sensor Pol. Level Mode Angle Oribit Pixels Loc. Data

Image1 X7 VV SLC SL 19.87◦ Asc. 4096 × 3840 Airport 23 December 2021
Image2 X7 VV SLC SL 27.22◦ Asc. 4096 × 3840 Oman 23 December 2021
Image3 X4 VV SLC SM 23.61◦ Des. 4096 × 2560 Brawley 22 December 2021
Image4 X4 VV SLC SM 25.46◦ Des. 4096 × 2560 Copeland 2 January 2021
Image5 X4 VV SLC SM 27.00◦ Des. 4096 × 2560 Corpus 9 August 2020
Image6 X4 VV SLC SM 25.50◦ Des. 4096 × 4096 Mississippi 3 September 2020
Image7 X4 VV SLC SM 21.66◦ Asc. 3072 × 4096 Strait 19 February 2021

Each amplitude SAR image (y) is cropped to 256 × 256 with a stride equal to 64. The
total number of cropped images is 19,440. They are randomly divided into training set
(12,800), validation set (1520) and testing set (5120). The training set uses the same data
augmentation as the simulated image. The final training data has 473,600 patches. The
examples of testing images are displayed in Figure 7, where the white boxes are selected
regions, which are used to compute the no-reference evaluation metrics. R1–R4 are the
homogeneous regions. R5–R8 are the heterogeneous regions. R9 and R10 are the whole
images. These regions are excluded from training set.

R6
R7

R8

R9 R10

R1
R2

R3
R4

R5

Figure 7. Real-world SAR images for evaluating.
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4.3. Evaluation Metrics

For the simulated SAR experiments, the classic evaluation metrics, peak signal-to-
noise ratio (PSNR, as high as possible) [55] and structural similarity index (SSIM, as closer
to 1 as possible) [56], are used. The PSNR and SSIM are defined as follows:

PSNR = 10 log10

Max2
g

MSE(p, g)
, (11)

SSIM =
(2µpµg + c1)(2σpg + c2)

(µ2
p + µ2

g + c1)(σ2
p + σ2

g + c2)
, (12)

where the p and g are the despeckled image and the clean reference image, respectively.
Maxg is the maximum signal power, i.e., 255 for grayscale images. MSE is computed
between the clean reference image and its despeckled image. The µp, σp, µg and σg
represent the mean and standard variance of p and g. The σpg is the co-variance between p
and g. The c1 and c2 are constants.

For the real-world SAR experiments, the equivalent number of looks (ENL, as high as
possible) [57], and the edge-preservation degree based on ratio of average (ER, as closer to
1 as possible) [58] are used. The ENL and ER are defined as:

ENL =
µ2

d
σ2

d
, (13)

ER =
∑m

i |Id1(i)/Id2(i)|
∑m

i |Io1(i)/Io2(i)|
, (14)

where the µd and σd are the mean and standard variance of despeckled image. The i is the
index set of the SAR image. The m is the total pixels of the SAR image. The Id1(i) asn Id2(i)
represent the adjacent pixel values in the horizontal or vertical directions of the despeckled
image, respectively. The Io1(i) and Io2(i) are the adjacent pixel values in the horizontal or
vertical directions of the noisy image, respectively.

4.4. Results and Discussion

In order to demonstrate the effectiveness of SSEUNet, we compare it qualitatively
and quantitatively with Lee [14], Frost [15], SAR-BM3D [18], PPB [17], MuLoG [59], SAR-
CNN [22], SAR-DRN [24] and SSUNet. Lee and Frost are the local window filters. The
windows are set to 5 × 5. SAR-BM3D, PPB and MuLoG belong to the class of NLM
methods. The publicly available Matlab codes of SAR-BM3D, PPB and MuLoG are used
and the parameters are set as suggested in the original papers. SAR-CNN and SAR-DRN
are machine learning methods. We implement and train SAR-CNN and SAR-DRN from
scratch on noisy-noisy dataset, following the specifics given by the authors in the original
papers. The noisy-noisy dataset is generated by using natural images. Therefore, SAR-CNN
and SAR-DRN are unsupervised (noise2noise) methods. SSUNet is a self-unsupervised
method and the training dataa is generated by GTP module. The network of SSUNet is the
U-Net [37].

4.4.1. Experiments on Simulated SAR Images

For the simulated SAR image despeckling experiments, a combination of quantitative
and visual comparisons is used to analyze the effects of the different methods.

In Table 2, we show the average quantitative evaluation results obtained on simulated
single-look SAR images with the best performance marked in bold and the second-best
marked in underlined. Times and Param. are the inference average speed and the number
of parameters, respectively. GFLOPS represents gigabit floating-point operations per
second. Param. and GFLOPS are not marked the best and the second-best. The reason
is that the values of Param. and GFLOPS can not reflect the performance of despeckling
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methods. The results are computed as the average over the 420 testing images. The
local window methods and NLM methods are grounded on the middle part of the table,
while noise2noise methods are listed in the lower part. The difference between SSUNet
and SSEUNet is the network. The network of SSUNet is the U-Net [37]. The network of
SSEUNet is the proposed EUNet. The results of SSUNet and SSEUNet are to verify that
EUNet has better despeckling performance than U-Net.

Table 2. Numerical results on simulated single-look images.

Method MSE PSNR SSIM Times(s) Param. GFLOPS

Noisy 0.0512 13.1933 0.1961 - - -

Lee 0.0135 19.2929 0.4892 0.0237 1 -
Frost 0.0119 19.7729 0.5402 0.0862 1 -
PPB 0.0117 19.8064 0.5445 9.0554 5 -
SAR-BM3D 0.0118 20.2733 0.6156 15.5699 1 -
MuLoG 0.0138 20.1007 0.6119 7.8607 1 -

SAR-CNN 0.0104 20.4939 0.6170 0.0165 557,057 36.51
SAR-DRN 0.0153 19.9947 0.6238 0.0150 185,857 12.18
SSUNet (Ours) 0.0097 20.7164 0.6369 0.0166 698,017 4.62
SSEUNet (Ours) 0.0087 21.1912 0.6692 0.0996 84,390,753 156.28

As can be seen from Table 2, the proposed SSEUNet outperform other methods on
the MSE, PSNR and SSIM. Looking at the PSNR and SSIM metrics, noise2noise methods
appear to have the potential to provide a clear performance gain over conventional ones.
Indeed, although the performance of SAR-CNN is similar to that of the advanced NLM
method, SSEUNet is about 1 dB and 0.0536 higher than the best method (SAR-BM3D). But
the time it takes to process a image with 256 × 256 is approximately 157 times faster. By
comparing the results of SAR-CNN and SAR-DRN, the more layers of the network, the
better the despeckling performance. However, the network with dilated convolution layer
(SAR-DRN) can improve the details of the despeckled image. In addition, compared with
the second-best results (SSUNet), the proposed SSEUNet achieved a 0.5 dB and 0.0323
improvement, respectively. From the results of SSEUNet and SSUNet, we can find that our
improvement to U-Net is effective and the increase of parameters does not significantly
reduce the inference speed.

Visual evaluation is another way to qualitatively evaluate the despeckling performance
of different methods. To visualize the despeckling results of proposed SSEUNet and other
methods, Figure 8 shows the despeckled visual results of a simulated SAR image. The Ours
is the result of using SSEUNet. It can be seen from the visual results that all despeckling
methods can remove speckle noise to a certain extent. But the best despeckling results is
achieved by the based on noise2noise methods. The results of the local window methods
are too smooth, which causes the image to be blurred, so that the despeckled images lose
the boundary information of the image. Compared with the local window methods, the
effect of the NLM methods is significantly improved. However, looking at the results of
PPB, there is a ringing effect at the boundary, which distorts the image boundary. In the
noise2noise methods, as the network depth deepens, the better the despeckling effect, the
clearer the image. It can be seen that proposed SSEUNet (Ours) shows the best ability to
reduce speckle noise and retain texture structure.

4.4.2. Experiments on Real-World SAR Images

In order to further illustrate the practicability of the proposed method, the real-
world SAR images are used for the experiments. The real-world SAR images are detailed
introduced in Section 4.2. Table 3 lists the quantitative evaluation results of ENL over
the selected regions. These selected regions are shown in Figure 7, where R1–R4 are
homogeneous regions.
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Clean Noisy Lee Frost PPB

SAR-BM3D MuLoG SAR-CNN SAR-DRN SSEUNet (Ours)

Figure 8. Visual results of simulated images.

Table 3. ENL results on real-world SAR images.

Method R1 R2 R3 R4 Average

Noisy 16.82 48.74 78.66 225.81 92.51

Lee 159.19 169.99 245.66 1542.82 529.42
Frost 145.10 169.42 246.17 1539.16 524.96
PPB 136.27 171.74 253.36 1515.63 519.25
SAR-BM3D 155.51 190.93 238.98 1995.89 645.33
MuLoG 160.39 202.61 236.39 1561.18 540.14

SAR-CNN 165.13 175.43 232.72 1820.80 598.52
SAR-DRN 163.46 167.19 233.23 1597.36 540.31
SSUNet (Ours) 170.60 198.84 254.92 1999.08 655.86
SSEUNet (Ours) 180.70 209.07 261.34 2070.20 680.33

Clearly, as listed by the ENL values in Table 3, the noise2noise methods show better
despeckling performance in homogeneous regions. In the local window methods, the Lee
and Frost algorithms show similar despeckling performance. In the NLM methods, the
PPB algorithm has the worst despeckling ability. The despeckling ability of SAR-BM3D
and MuLoG is similar. Although SAR-DRN and SA-CNN show subtle advantages over
NLM methods, the proposed SSEUNet has improved 20.31, 6.46, 24.95 and 509.02 in the
four regions over the MuLoG method, respectively. Since the SAR-DRN and SAR-CNN
methods use training image pairs generated from natural images, they cannot learn the
relationship between speckle noise and noise-free SAR images. Compared with SAR-CNN
and SAR-DRN, the despeckling performance of SSUNet is significantly improved. The
results SSUNet is obtained through using GTP module to generate noisy-noisy image pairs.
In addition, comparing the results of SSUNet and SSEUNet, the EUNet has a stronger
despeckling ability than U-Net. In general, the proposed SSEUNet can better process
real-world SAR images.

Generally, ENL can reflect the effectiveness of the algorithm, to some extent, but
perfectly homogeneous regions are rare in the real-world SAR images. Therefore, an
no-reference estimated approach, which is called the ENL map, is used to demonstrate
the effectiveness of the proposed SSEUNet. The ENL map involves calculating small
ENLs by using a sliding window (set to 3 × 3) until the whole SAR image is covered [60].
Figures 9 and 10 show the ENL maps of R9 and R10, which are listed in Figure 7. We only
show the ENL maps of the NLM and noise2noise despeckling methods. The reason is that
the results of local window methods are too smooth, resulting in a very average ENL value
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of the despeckled images. The ENL value should have a small change in the heterogeneous
region, or even zero. However, it should have a greater improvement in the homogeneous
region. This point is proven and shown in Figures 9 and 10. The ENL maps also show
that the ability of details losses. From the ENL maps, the most details losses are PPB and
MuLoG. Compared with SAR-BM3D, the noise2noise methods can not only better protect
the image details, but also better remove the speckle noise. In the noise2noise methods, the
proposed SSEUNet has the best despeckling and detail protection ability.

Table 4 displays the numerical results of ER metric on the R5–R8 regions, where V and
H are the vertical and horizontal results of the ER metric. It can be seen that the proposed
SSEUNet have obvious advantages in protecting horizontal and vertical structures. In the
noise2noise methods, the proposed GTP module and EUNet can better process real-word
SAR images. The proposed GTP module can use real-world SAR images to construct
noisy-noisy image pairs to train deep CNNs, so that the network can better learn the
relationship of speckle noise and noise-free SAR images.

Table 4. ER metric on real-world SAR images.

Method
R5 R6 R7 R8

V H V H V H V H

Lee 0.9430 0.9478 0.9876 0.9490 0.9487 0.9563 0.9051 0.9038
Frost 0.9501 0.9544 0.9877 0.9490 0.9587 0.9563 0.9052 0.9117
PPB 0.9565 0.9612 0.9874 0.9688 0.9590 0.9563 0.9054 0.9139
SAR-BM3D 0.9586 0.9613 0.9879 0.9893 0.9579 0.9560 0.9062 0.9043
MuLoG 0.9585 0.9603 0.9879 0.9881 0.9585 0.9557 0.9048 0.9041

SAR-CNN 0.9707 0.9618 0.9706 0.9611 0.9549 0.9578 0.9061 0.9132
SAR-DRN 0.9627 0.9631 0.9707 0.9611 0.9531 0.9575 0.9062 0.9133
SSUNet (Ours) 0.9567 0.9709 0.9876 0.9883 0.9584 0.9592 0.9043 0.9136
SSEUNet (Ours) 0.9923 0.9941 0.9910 0.9912 0.9609 0.9588 0.9086 0.9176

42  ENL

Noisy PPB SAR-BM3D MuLoG

SAR-CNN SAR-DRN SSUNet(Ours) SSEUNet(Ours)
1ENL 21  ENL 8ENL84  ENL

Figure 9. ENL maps of different despeckling methods on R9.
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42  ENL

Noisy PPB SAR-BM3D MuLoG

SAR-CNN SAR-DRN SSUNet(Ours) SSEUNet(Ours)

1ENL 21  ENL 8ENL84  ENL

Figure 10. ENL maps of different despeckling methods on R10.

It is worth carefully studying different methods of despeckled SAR images.
Figures 11 and 12 shows the details of homogeneous and heterogeneous regions in the
real-world SAR images, respectively. It can be seen from the results that the local window
methods are too smooth to lose the contrast. Loss the contrast means that the despeckled
images structure using local window filters becomes smooth, and the structural contrast
between edges and non-edges becomes blurred. In addition, many strong points and linear
structures are lost in the NLM despeckling methods. The result of PPB can also cause a
ringing effect at the boundary. Compared with other traditional methods, the result of
SAR-BM3D performs best and provides an acceptable balance between smoothing and
details preservation. Among SAR-DRN, SAR-CNN and SSEUNet methods, the result of
SSEUNet is the best. Figure 13 shows the visualization despeckling results of different
scenes. It can be seen from the despeckled results that the proposed SSEUNet can deal with
real-world SAR images in different scenes.

Noisy Lee Frost PPB SAR-BM3D

MuLoG SAR-CNN SAR-DRN SSUNet(Ours) SSEUNet(Ours)

Figure 11. Visual results of homogeneous regions on real-word SAR images.
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Noisy Lee Frost PPB SAR-BM3D

MuLoG SAR-CNN SAR-DRN SSUNet(Ours) SSEUNet(Ours)

Figure 12. Visual results of heterogeneous regions on real-word SAR images.

(a)

(b)

(c)

(d)

Figure 13. The despeckled results of the SSEUNet in real-world SAR images. (a,c) Real-world SAR
images. (b,d) Despeckled results.
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To gain insight about how the learned SSAM on the real-world SAR images, we pick
8 sample images and inspect the output features of SSAM. As can be seen from Figure 4,
the input features of SSAM1 are the output features of ISC1 and TConv1. The inputs of
SSAM2 are the outputs of ISC2 and TConv2. The outputs of ISC3 and TConv3 are fed
into SSAM3. The input features of SSAM4 are the outputs of ISC4 and TConv4. The
output features of SSAM1-SSAM4 are extracted from the projection layer in the SSAM1-
SSAM4. The structure of SSAM1-SSAM4 are exactly the same. The detailed structure of
SSAM is shown in Figure 5. The output feature sizes of SSAM1-SSAM4 are 256 × 32 × 32,
128 × 64 × 64, 64 × 128 × 128 and 32 × 256 × 256, respectively. In the process of visual-
ization, we perform averaging operations on the output features of SSAM1-SSAM4. Each
visualization feature is the mean features of all channels. The sizes of visualization features
are 32× 32, 64× 64, 128× 128 and 256× 256 in the SSAM1-SSAM4, respectively. Figure 14
shows the visualization features of SSAM1-SSAM4. It can be seen that the details of weak
texture and structure are gradually restored from noisy SAR images.

(a)

(b)

(c)

(d)

(e)

Figure 14. Visualization features of SSAM1-SSAM4. (a) Original SAR images. (b–e) The visualization features of
SSAM1-SSAM4.

5. Conclusions

In this paper, we propose a novel self-supervised despeckling algorithm with an
enhanced U-Net (SSEUNet). The proposed SSEUNet is composed of generation training
pairs (GTP) module, enhanced U-Net (EUNet) and a self-supervised training loss function
with a regularization loss. The proposed SSEUNet has the following advantages. Firstly,
unlike previous self-supervised despeckling works, the noisy-noisy image pairs are gen-
erated from real-word SAR images through a novel generation training pairs module,
which makes it possible to train deep convolutional neural networks using real-world
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SAR images. The GTP module can eliminate the effects of natural images, time series
images and the performance of GAN. Secondly, the EUNet is designed to improve the
features extraction and fusion capabilities of the U-Net. Compared with U-Net, we in-
troduce BN-RRDC blocks, convolutional layers with s = 2, improved skip connections
and SSAM. Although the EUNet has more parameters and more complex structure, the
training difficulty will not increase. The reason is that there is the residual structures in the
BN-RRDC block. Thirdly, a self-supervised training loss function is designed to address
the difference of target pixel values between neighbors on the original noisy image. The
loss function includes a reconstruction loss (MSE) and a regularization loss. Finally, visual
and quantitative experiments on simulated and real-world SAR images show that the
proposed SSEUNet notably reduces speckle noise with better preserving features, which
exceed several state-of-the-art despeckling methods.

However, the inference speed of proposed SSEUNet needs to be improved. The
proposed SSEUNet uses complex feature extraction block and sub-space attention modules,
which leads to a longer time for evaluating an image. At the same time, the despeckling
results of different data augmentation methods also need to be verified on the SAR images.
In the future, we plan to explore two works. Firstly, we will explore a lightweight network
to replace EUNet for improving inference speed. Secondly, the despeckling effects of
different data augmentation methods will be verified.
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