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Abstract: The extraction of building information with terrestrial laser scanning (TLS) has a number
of important applications. As the density of projected points (DoPP) of facades is commonly greater
than for other types of objects, building points can be extracted based on projection features. However,
such methods usually suffer from density variation and parameter setting, as illustrated in previous
studies. In this paper, we present a building extraction method for single-scan TLS data, mainly
focusing on those problems. To adapt to the large density variation in TLS data, a filter using DoPP
is applied on a polar grid, instead of a commonly used rectangular grid, to detect facade points. In
DoPP filtering, the threshold to distinguish facades from other objects is generated adaptively for
each cell by calculating the point number when placing the lowest building in it. Then, the DoPP
filtering result is further refined by an object-oriented decision tree mainly based on grid features,
such as compactness and horizontal hollow ratio. Finally, roof points are extracted by region growing
on the non-facade points, using the highest point in each facade cell as a seed point. The experiments
are conducted on two datasets with more than 1.7 billion points and with point density varying
from millimeter to decimeter levels. The completeness and correctness of the first dataset containing
more than 50 million points are 91.8% and 99.8%, with a running time of approximately 970 s. The
second dataset is Semantic3D, of which the point number, completeness and correctness are about
1.65 billion, 90.2% and 94.5%, with a running time of about 14,464 s. The test shows that the proposed
method achieves a better performance than previous grid-based methods and a similar level of
accuracy to the point-based classification method and with much higher efficiency.

Keywords: adaptive threshold; building extraction; density of project points (DoPP); polar grid;
terrestrial laser scanning (TLS)

1. Introduction

Building extraction is important for many applications, such as 3D reconstruction,
disaster management, urban analysis and change detection [1–4]. Laser scanning can
be used to acquire accurate and dense 3D points from a target surface and has unique
advantages when it comes to building measurement, extraction and reconstruction. As the
scanning scenes commonly contain a number of varied objects with different densities and
sizes, as well as complicated and incomplete structures, extracting building points from
laser scanning data is an important step in the utilization of building information.

Airborne laser scanning (ALS) is a widely used scanning system and has received
considerable attention in building detection [5–9], but facade information is often missed
in ALS data. As important supplements to ALS data, mobile laser scanning (MLS) and ter-
restrial laser scanning (TLS) can provide detailed scanning data from side views. Although
many building extraction methods are suitable for both types of data because of similar
scan geometry and range, those two techniques have different characteristics: MLS can
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cover a much larger area as the scanner is mounted on a vehicle, while the TLS scanner
setup is more flexible [10], e.g., it can be set up in a place where a vehicle cannot reach. In
this paper, we focus on building point extraction in TLS data.

As most buildings are mainly composed of planes, a natural line of thought is to apply
plane segmentation methods for building extraction, such as region growing algorithms
and point clustering algorithms. Pu and Vosselman [11] adopted a surface growing method
to segment TLS data into planar patches and identified building patches based on semantic
features, e.g., orientation and density. Yang and Dong [12] labeled each point in the MLS
data collected as linear, planar or spherical in type and defined specific merging rules for
each type in a region growing method. Then, the resulted segments were refined based
on the normalized cuts [13] and merged for object extraction. In [14], wall segments were
extracted by region growing and projected to form 2D wall rectangles. The buildings in
the scene were then localized with a hypothesis and selection method. At each build-
ing position, they distinguished building points from surroundings via a min-cut-based
segmentation, with both local geometric features and shape priors considered.

Building extraction methods using point-based segmentation commonly have heavy
computing costs, as the computations have to be executed point by point, e.g., feature
extraction and neighbor search. To improve the efficiency and reduce the memory require-
ment, many researchers apply the segmentation method on voxel level. Lim and Suter [15]
over-segmented TLS data into voxels and utilized a conditional random field method to
classify the voxels. Aijazi et al. [16] divided original points into voxels having different
sizes and merged the voxels with similar properties to represent different objects. The
building objects can then be identified based on the analysis of the object descriptors, e.g.,
normal vector and geometrical shape. Yang et al. [17] proposed an urban object extraction
method based on multi-scale supervoxels. Supervoxel segmentation was applied to form
larger segments and those segments were further merged into meaningful objects accord-
ing to predefined rules. Common types of urban objects can be recognized based on the
segmentation results.

The building extraction based on segmentation commonly follows a process that
converts the points or voxels to segments or objects and then assigns a specific category
(e.g., building, car and vegetation) to each segment or object. These methods can achieve
good extraction results when the predefined merging or segmenting rules are suitable.
However, the rules working well for a given scene may be inapplicable to other scenes.
Additionally, segmentation itself is still a difficult and open problem especially when it
comes to handling complex scenes [17].

Instead of utilizing point segmentation methods in 3D space, some researchers directly
design building extraction strategies based on the spatial characteristics of a building in
a horizontal 2D grid. As the projection of facade points on a horizontal plane has a more
concentrated contribution than other objects, many grid-based methods are proposed.
Li et al. [18] projected point clouds onto a horizontal grid and the quantity of projected
points for each grid is regarded as the density of projected points (DoPP). A grid with
a higher DoPP than the predefined threshold was identified as a facade object. In the
work of [19], a Hough voting space is constructed based on the points with high DoPP
and then a K-means algorithm was used to find lines corresponding to different facades.
Similarly, the DoPP was also used for building extraction in the research of [20–22]. This
method is convenient and efficient, but some high non-building objects cannot be removed
only using DoPP, such as streetlamps [23], and setting a suitable threshold always needs
much parameter tuning. To solve the problem of threshold setting, Cheng et al. [24] gave
an intuitive meaning to the threshold by calculating the DoPP when placing the lowest
building of a scene at the position of the farthest building. This parameter setting method
was also used in the work of [25] for building outline extraction. The main disadvantage
of this method is that it requires detailed prior insight into the data to get the necessary
information for threshold estimation, e.g., the perpendicular horizontal distance between
the scanner and the surface of the farthest building facade.
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In addition to DoPP, weighted average elevation was used by [26] to generate geo-
referenced feature images from point clouds, and buildings can be extracted via a size-and-
shape-constrained boundary extraction method using these images. The height information
was also used by [27] in a 2D grid for building extraction. Wang et al. [28] designed a grid
feature called horizontal hollow ratio (HHR), which is the ratio of the projected area to the
convex hull area of an object. This feature was calculated based on the cell groups projected
from 3D voxel segments, and cell groups with lower HHR than the predefined threshold
were identified as buildings. This method works well for buildings with multiples walls
but can hardly detect buildings with single walls. Compared with segmentation-based
methods, grid-based methods change the minimum primitive from point or voxel to cell
or pixel, and for this reason they have higher efficiency. As the prior assumptions are
mainly based on the characteristics of the vertical distribution of a facade, the grid-based
method usually has better generality. Its accuracy, however, is commonly lower, as a cell
may contain points from different objects at the same time.

Another line of thought utilizes the profile of the street object for building detection.
Yang et al. [29] utilized the distribution characteristics of object profiles to identify multi-
storey buildings and residential buildings. In their decision rules, the point distribution
along the z-axis is more obvious than that in the horizontal plane for a multistorey building,
while the opposite is the case for a residential building. Gao and Yang [30] detected empty
spaces between buildings through a histogram, with the x-axis corresponding to a sequence
of positions and the y-axis corresponding to the point number. Then, independent build-
ings can be detected based on those empty spaces in a street view. The histogram of point
numbers was also created by [14] to separate adjacent buildings in clusters of more than
one building. These methods commonly make detailed and specific assumptions about the
point distribution, and thus the scope of application is limited.

As buildings are a common type of object in urban scenes, they can also be extracted
by a point cloud classification method. Weinmann et al. [31] divided the point cloud
classification into four steps, which are: neighborhood selection, feature extraction, fea-
ture selection and classification. The neighborhood selection aims to find an optimal
neighborhood to describe local geometric features based on, e.g., dimensionality [32] and
eigen-entropy [33]. Sometimes, a multi-scale neighborhood is used to avoid comparison
between different scales [34,35]. Then, different types of features are extracted to describe
the characteristic of the selected neighborhood, e.g., geometric features [31,36,37], RGB
colors [38], echo features [39,40] and full-waveform features [41]. For the extracted features,
a feature selection method is applied to find compact and robust feature combinations to
reduce computational cost and improve classification accuracy [42]. Based on the feature
vector, the label of each point is commonly assigned according to a supervised classification
method, e.g., Support Vector Machines [43,44] and Random Forest [45]. In some research,
the label of each point is decided based on both the feature vector and the neighboring point
labels [46,47]. This framework can achieve high accuracy on full category identification
when features are designed properly; however, feature extraction and manual sample
selection are usually time-consuming. In recent years, deep learning (DL) has been widely
studied in various applications and many DL models have also been proposed for point
cloud classification, such as PointNet [48] and PointCNN [49]. Utilizing deep learning for
point cloud is, however, still an open problem [48], and the hardware requirement methods
based on deep learning is usually high. When a building is the main or only target of
interest, these classification-based methods may be inconvenient.

In this paper, considering both efficiency and effectiveness, we utilize the density
of projected points (DoPP) to extract buildings from TLS data, and focus mainly on
three problems:

(1) Point density variation usually has more of an effect on TLS data than MLS data. The
targets in an MLS scene are mainly located on the side of street; thus, the distances
from different buildings to the scanner or the trajectory are similar, and the point
density is relatively homogeneous. However, the case in a TLS scene can be very



Remote Sens. 2021, 13, 4392 4 of 28

different, as the ranges of different objects may vary significantly, e.g., the point
spacing may vary from 2 cm to 50 cm in a scene with the angular resolution of
0.02◦ and the largest scanning distance of 150 m. For each cell, the DoPP depends
both on height difference and point density. As point density decreases with the
increasing distance [37], it may occur in TLS data that a low but close object has a
denser distribution of horizontally projected points than a high object from a long
distance. This means that a fixed DoPP threshold may not work for data with large
density variation, which holds particularly for TLS data.

(2) It is hard to construct an intuitive and simple relation between the threshold and
the geometric characteristics of a building, making it difficult to set a reasonable
DoPP threshold [26]. Some methods partially solve this problem by calculating the
point number on the surface of the farthest buildings with the lowest height [24,25].
However, this method requires a thorough knowledge of the scene in order to obtain
necessary parameters for threshold calculation, e.g., the perpendicular horizontal
distance from the scanner to the farthest building surface and the lowest building
height. Moreover, the threshold result is still a fixed value.

(3) The roof points can hardly be recognized by a DoPP method because the roof
is visible from ground view only obliquely and has a more scattered horizontal
point distribution.

To address those problems, we propose a method for building point extraction from
single-scan TLS data based on a polar grid. The main contributions of this paper are:

(I) We utilize a polar grid, instead of the commonly used rectangular grid, to adapt to the
density variation in TLS data. The polar grid has a more balanced point distribution,
as a similar number of laser beams pass through each cell;

(II) We generate an adaptive DoPP threshold for each cell. After DoPP filtering, we
construct an object-oriented decision tree by combining different grid features to
further refine the filtering results;

(III) Our method can extract roof points with region growing based on the seed points
extracted from the facade points.

2. Methodology

The method proposed in this paper mainly consists of three steps. First, DoPP filtering
is applied on the polar gird to filter non-building cells, using an adaptively generated
threshold. The preserved points are then filtered further with a series of grid features to
distinguish the facade cells from cells consisting of high non-building objects, e.g., pole-like
objects and thick tree canopies. Finally, the filtered points in the first step are regarded
as roof candidate points and the highest point in each facade cell is used as a seed point.
Based on these seed points, region growing is applied to the candidate roof points to extract
roof points. The facade points and roof points are combined to form the final extraction
result. The process of the proposed method is shown in Figure 1. We follow the assumption
common to many previous studies [11,14,19,25] that the scanner is roughly leveled so
that the building projection shows more obvious concentration characteristics than other
objects on the x-o-y plane. Additionally, the input of our method is defaulted to the original
coordinates of single-scan TLS data. In this case, the scan position is the origin of the
scanner coordinate system.
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Figure 1. Process of the proposed method. Notice that all polygons here represent point clouds
instead of models.

2.1. Generation of Polar Grid

The ground points are first removed by Cloth Simulation Filter (CSF) [50] and the
remaining points are projected onto the x-o-y plane, with (x, y) coordinates used as pro-
jected coordinates. To divide the points into the polar grid, the (x, y) coordinates are firstly
converted to polar coordinates:

ρ =
√

x2 + y2

θ =

{
arc cos(x/ρ), y ≥ 0

2π − arc cos(x/ρ), y < 0
(1)

where ρ is the polar radius and θ is the polar angle. Then, points can be divided into polar
grids on the x-o-y plane. The bounding box of the polar grid can be determined by the
maximum and minimum polar coordinates (ρmin, θmin) and (ρmax, θmax), and the cell size
depends on two grid parameters, angular size θG and radial size ρG, as shown in Figure 2.
The radial size ρG determines the range of the data in one cell along the direction of the laser
beam. The angular size θG is set as an integer multiple of the horizontal angular resolution:

θG = N ∗ θh (2)

where θh is the horizontal angular resolution of the TLS data, which is the angle between
two adjacent laser beams and N is a positive integer, which means the angular size θG is N
times that of the horizontal angular resolution. With θG and ρG, the width and height of
the polar grid can be calculated as:

Wθ = b(θmax − θmin)/θGc+ 1

Wρ = b(ρmax − ρmin)/ρGc+ 1
(3)

where Wθ and Wρ are the angular and radius width, respectively. After the angular and
radial width are determined, the cell index of each point can be calculated:

Iθ = b(θ − θmin)/θGc+ 1

Iρ = b(ρ− ρmin)/ρGc+ 1
(4)
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where θ and ρ are the polar coordinates of one point.

Figure 2. Parameters of polar grid.

The commonly used rectangular grid makes a uniform partition of the x-o-y space.
Intuitively, the point number of a cell corresponding to a tall building is obviously larger
than other types of objects. However, the point number of each cell declines rapidly in a
rectangular grid when the distance to the origin gets larger. Simply setting a threshold of
the point number in each cell may lead to failure when it comes to separating buildings and
non-building objects. Compared with the rectangular grid, the cell size of the polar grid
becomes larger when scanning distance increases; this can compensate for the decreasing
trend of point numbers in each cell. Thus, the method can eliminate the effect of density
variation brought by the scanning characteristics in TLS data, as shown in Figure 3.

Figure 3. Comparison between a rectangular grid and a polar grid. The number in (a) is the number
of laser beams passing through each cell. In (b), different cells in the polar grid correspond to
similar number of laser beams. The comparison shows that the polar grid achieves a more even
data distribution.

Angular resolution is important to deal with density variation, e.g., relative density
is generated for the aim of ground filtering in TLS data, based on theoretical density
simulated by angular resolution and scanning range [51]. In contrast, our method adapts
to density variation by adjusting the grid size based on angular resolution. According to
Equation (2), the angular size is actually based on the horizontal angular resolution, which
is a fixed value in scanner settings. When the scanning settings are unknown, it can also be
estimated by analyzing the neighborhood of several randomly picked points in the data.
In this paper, we randomly select m points and search for the k nearest neighboring (KNN)
points for each point. The neighborhood of the i-th point can be represented by:

N(pi) =
{

pij, j = 1, 2 . . . k
}

, i = 1, 2 . . . , m (5)
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where pi is the i-th picked point and pij is the j-th point in the neighborhood of pi. The
horizontal polar angles of pi and pij can be calculated using Equation (1), labeled as θi
and θij respectively. Then we calculate the absolute value of the horizontal polar angle
deviation between pi and each point in its neighborhood N(pi):

∆θij = abs
(
θij − θi

)
, i = 1, 2 . . . , m, j = 1, 2 . . . k (6)

As the horizontal angular resolution is the angle of each rotation of the scanner
around the z-axis during scanning, the angle deviation ∆θij can represent the horizontal
angular resolution only when pij is on the adjacent vertical scanning line of pi. To find the
neighboring points located on the adjacent vertical scanning line of pi, we use the interval
∆ to show the histogram of ∆θij values and calculate the mean value of ∆θij in the interval
with the second largest point number as the current horizontal angular resolution θ∆.
Figure 4 shows an example when ∆ is 0.005◦. To weaken the effect of ∆ on the estimation
result, a series of histograms are constructed under ∆ ε (0.005◦, 0.015◦) with a step of 0.001◦.
The median value of θ∆ from different histograms is used as the final horizontal angular
resolution. In this paper, m and k are set as 100 and 10 respectively. Similarly, vertical
angular resolution can also be estimated based on the statistics for the angle between the
line from the origin to each point and the x-o-y plane.

Figure 4. Example of the histogram of ∆θij values with ∆ set as 0.005◦. There are three large inflection
points in this example. In addition to the range of (0◦, 0.005◦), the interval with the largest number of
points is the one most likely to correspond to the adjacent vertical scanning line of pi. Thus, the mean
value of ∆θij in (0.015◦, 0.02◦) is calculated as the horizontal angular resolution for this histogram.

2.2. DoPP Filtering Based on Adaptive Threshold

After polar grid construction, the number of points in each cell is calculated, which is
called the density of projected points (DoPP). The DoPP of one cell is affected by both the
object height and the point density. Intuitively, the DoPP of a facade is obviously larger
than other objects, such as cars, vegetation and pedestrians. Due to this characteristic, the
cells with a higher DoPP than a predefined threshold are commonly regarded as facade
cells. The threshold to filter non-facade cells is critical in this step, but always empirically
set as a fixed value in many previous studies. As the point density decreases with the
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increasing distance to the scanner, a fixed threshold may lead to incorrect results when
facades are under different ranges, e.g., a threshold that can distinguish a facade cell from a
canopy cell in a short range may filter all the long-range facade cells. To solve this problem,
an adaptive threshold nP is generated for each cell based on the polar grid:

nP = rocclusion ∗ N ∗ a tan
(

Hstorey ∗ nstorey/dC
)
/θv (7)

where N is the coefficient in Equation (2), Hstorey is the mean storey height in the scene
which is set as 3.5 m in this paper, nstorey is the storey number of the lowest building in the
scene, dc is the horizontal distance between the origin and the center of gravity of all the
points in the current cell, θv is the vertical angular resolution and rocclusion is the occlusion
ratio considering the holes on the facade that mainly represent windows or foreground
occlusion. Based on Equation (7), the nP of one cell will be intuitive, representing the
DoPP of the current cell when placing the lowest facade in it. Thus, a cell farther from the
origin will obtain a smaller threshold, weakening the influence of density variation on the
point number of each cell. In Equation (7), rocclusion and nstorey require predefined values.
The rocclusion value indicates what percentage of a visible facade is acceptable and is set
as 0.5 empirically. We set nstorey as 1 by default, regarding the minimum facade height as
3.5 m across all scenes, to reduce the amount of specific prior information about the scene.
Although the nstorey can be larger than 1 in some scenes, setting the nstorey as 1 by default is
usually compatible with those cases.

2.3. Facade Extraction Based on Grid Features

After the DoPP filtering, most non-facade cells can be removed, except some cells
consisting of tall non-facade objects, e.g., pole-like objects, thick tree crowns and walls.
We present an object-oriented decision tree to further filter non-facade cells based on
the combination of some grid-level features. The filtering results are reprojected into a
rectangular grid on the x-o-y plane to generate a binary image, with the grid size the same
as the ρG of the polar grid. An empty cell that has no point located in it is labeled as 0, while
others are labeled as 1. Then, connected cells are grouped into the same object in the binary
image using 8-connectivity rules and then analyzed through the proposed object-oriented
decision tree, as shown in Figure 5.

(1) Height difference. This is the difference between the maximum and minimum z-
coordinate of each object. Facades should have larger height difference than theoretical
minimum height, which is 3.5 m, as analyzed in the contents following Equation (7).
This feature is consistent with basic knowledge of the real world and easy to calculate,
so we use it to remove the objects with a higher DoPP than np but a height less than
3.5 m, such as walls, pedestrians, hardscapes, some pole-like objects and the side of a
large car.

(2) Horizontal Hollow Ratio. It has been indicated in previous studies that this feature
can be utilized for building extraction in ALS [52] and MLS [28] data. As the laser
beam cannot penetrate the facade surface and the roof cells have been filtered utilizing
DoPP filtering, the hollow regions also exist behind the facade from the bottom view
of the TLS data. In the study of [28], the horizontal hollow ratio is calculated as the
ratio of projection area to convex hull area:

HP = SP/SC (8)

where HP is the horizontal hollow ratio, SP and SC are the area of the projection and convex
hull respectively. The number of cells covered by the projection of an object is used as the
projected area, since only the ratio is required. As shown in Figure 6, the convex hull area
is much larger than the projection area when the facade contains at least two walls. In
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the proposed decision tree, the cell groups with the horizontal hollow ratio less than the
threshold TH are identified as facade projections; this is calculated as:

TH = min{0.4, TOTSU} (9)

where TOTSU is a threshold calculated by the OTSU method [53] to achieve the optimal
separation of a horizontal hollow ratio for all cell groups. In case TOTSU is too large when
only single-wall facades exist, an empirical threshold of 0.4 is involved simultaneously
in Equation (9) to ensure a reasonable range of TH. This empirical threshold means the
projection area of building points should be less than 40% of the convex hull area.

Figure 5. Facade optimization with the object-oriented decision tree.

Figure 6. Horizontal hollow ratio of multi-wall building. (a–c) show the projected points, projection
area and convex hull, respectively. The empty area after the facade forms a smaller horizontal hollow
ratio than other objects.

Theoretically, only multi-wall facades and curved facades can be detected in this step,
and the horizontal hollow ratio of a single-wall facade is similar to non-building objects,
as shown in Figure 7. Another limitation of this feature is that the facade with a long
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wall and a short wall or with small curvature may be missed, as the blank area can be
relatively small in these cases. In contrast to the mobile measurement of MLS in [28], the
terrestrial laser scanner is set in a fixed position during scanning such that many buildings
have only one visible facade from the scanner’s point of view. This characteristic limits the
effectiveness of the horizontal hollow ratio in TLS data, but it is still an efficient and useful
tool for multi-wall facade extraction. For facades that cannot be identified in this step, we
calculate the ratio of planar points for each object to make a further analysis, as described
in (4) and (5). However, before that, the circle-like objects are removed by compactness
in (3).

Figure 7. Limitation of the horizontal hollow ratio in single-wall facade detection. The left three
figures show that the projected points of a single-wall facade in (a), the corresponding projection in
(b) and the convex hull in (c) have similar areas. Thus, the horizontal hollow ratio of the single-wall
facade in (a) is similar to that of the stem and canopy projections in (d).

(3) Compactness. After horizontal hollow ratio filtering, some facades are still mixed
with non-building objects, such as trees and pole-like objects. Many of those objects
are commonly isolated and the corresponding projections appear as circular shapes,
while facades have a long and thin shape. The geometry difference can be measured
by compactness [54], which is calculated as:

C = 4πSP/P2
P (10)

where SP and PP are the area and perimeter of the projection, respectively, and a larger
C value means a more compact shape. The compactness of a circle is 1 while that of a long
and thin object is close to 0, as the perimeter is relatively large compared with area. Then,
the compactness threshold is generated to remove the non-building objects:

TC = max{0.65, COTSU} (11)

where COTSU is calculated using the OTSU method. The larger value of COTSU and 0.65,
which is an empirical value, is used as the threshold of compactness TC, to avoid a very
small threshold when there are only facade cells. The object with larger compactness
than TC will be removed as a non-facade object. Isolated small objects can be filtered out
efficiently through compactness filtering.

(4) Model-based planar ratio. The objects preserved by compactness in the last step
will show a long and thin shape, just like the usual shape of a building. But the
objects formed by several connected compact targets are also preserved, e.g., the
projection of a series of connected thick tree crowns may be recognized as a facade
object only based on compactness. Considering the limitation of compactness, we
add information about the remaining objects. A plane model is estimated for each
cell group based on the RANSAC method [55]. A cell group is labeled as representing
a building when the ratio of the points on the plane model is larger than 80%, which
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is the same setting as used in [38]. By checking the global geometric characteristics
of the whole points in one cell group, the model-based planar ratio can distinguish
the single-wall facade from other objects satisfactorily. A possible problem of this
feature, however, is that the planar ratio may be smaller than 80% when the facade is
not planar or consists of a long wall and a short wall. As a result, this kind of facade
may still be recognized as a non-facade object even after filtering with the horizontal
hollow ratio and the model-based planar ratio.

(5) Point-based planar ratio. To extract the remaining facades after the aforementioned
processing, we make a point-level insight for the cell groups left in the previous steps,
following the knowledge that most parts of a common building surface are planar
and have a smooth shape. The local geometry of the neighborhood of one point can
be described using dimensionality features [31], which are calculated based on the
eigenvalues of the local covariance matrix:

M =

 p1 − p
...

pk − p


T p1 − p

...
pk − p

 (12)

where pi = (xi, yi, zi), i = 1,2,...,k represents the k neighboring points of one point p. As M is
a symmetric positive definite matrix, three eigenvalues of M can be calculated utilizing
eigenvalue decomposition and ordered as λ1 ≥ λ2 ≥ λ3. Then, the dimensionality features
of p can be calculated as:

al =

√
λ1 −

√
λ2√

λ1
, ap =

√
λ2 −

√
λ3√

λ1
, as =

√
λ3√
λ1

(13)

where al, ap and as represent the linear, planar, and scatter behaviors of the neighborhood
of p. Points will be labeled as of planar type when ap is the largest among the three
dimensionality features. The cell groups with a ratio of planar points larger than 80%
are recognized as facade while others are filtered out. Many studies commonly extract
dimensionality features coupled with a neighborhood selection method [12,31,32,37] to
obtain an optimal scale and highlight the main geometric behavior in the neighborhood.
The main concern of this study, however, is the geometric type of each point and the ratio
of planar points in each object rather than the theoretically optimal dimensionality feature
values; thus, a fixed neighborhood size is used with k set as 10.

The dimensionality feature calculation requires point-level calculation, including KNN
search and a matrix operation, which are more time-consuming than grid-based processing.
However, as most cell groups have been processed in previous steps, the number of points
involved in this step is significantly reduced. Meanwhile, the fixed neighborhood can also
improve the operation efficiency.

2.4. Roof Points Extraction

Oblique roofs are commonly visible from terrestrial viewpoints and can provide
important building structure information. Roof points cannot be preserved in DoPP
filtering, however, because roof projection is more scattered than facade projection. As a
roof is always spatially connected with a facade, we select the highest point in each facade
cell as a seed point after facade extraction in the last section. Then, region growth is applied
based on the seed points to search for roof points in the removed points of DoPP filtering,
which we refer to as roof candidate points.

For each seed point, we remove it from the seed point set and find its k nearest
neighboring points within the radius of cell size ρG in the roof candidate points. The
parameter k is set as 10, which is the same with the k value used when calculating point-
based planar ratios. If a neighboring point has not been labeled and its ap value is the
largest among the dimensionality features in Equation (13), it is labeled as a roof point,
otherwise it is labeled as a non-roof point. The aim of this constraint is to avoid non-roof
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objects being connected with the facade (e.g., vegetation and wires) and therefore being
recognized as part of the roof. After one point has been labeled as a roof point, it is put into
the seed point set and the same growing process is performed with it. The growing process
will stop once the seed point set is empty. The points labeled as roof points are combined
with the facade points to form the final building extraction result.

3. Experimental Results and Discussion
3.1. Datasets

Two datasets are used to validate the proposed method. The first is captured on a
square by a Riegl-VZ400 scanner with the horizontal and vertical angular resolution of
0.02◦, as shown in Figure 8, and the point density range of non-ground points is roughly
(4 mm, 1.2 dm). This dataset contains about 53 million points and the main objects
include buildings, vegetation, cars, streetlamps and pedestrians. The distances of the
closest and farthest buildings to the scanner are about 60 m and 360 m, respectively. The
second dataset is the Semantic3D dataset, which is a benchmark dataset for point cloud
classification [56]. The testing data in Semantic3D contains more than 1.65 billion points
and covers a wide range of outdoor scenes, including churches, streets, railroad tracks,
squares, villages, soccer fields and castles. The point number of a single scan varies from
about 20 million to more than 400 million, and each scanning position is freely chosen with
no prior assumption of point density and class distributions. For example, a building may
be the dominant object in a street scene but only occupies a small part of a village scene.
We compare the proposed method with several grid-based methods on the first dataset in
terms of the performance in the scene with large variations of scanning distance and point
density. Although the distance variance of the buildings is smaller than it is in the first
dataset, the Semantic3D dataset covers much more complex outdoor scenes; thus, we test
the performance of the proposed method in complicated scenes from the second dataset.
The proposed method is implemented with C++, with no parallel programming strategy
adopted. The main parameter and threshold settings in the tests are summarized in Table 1,
together with setting basis.

Figure 8. The first data set rendered by height.
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Table 1. Main threshold and parameter settings.

Notation Description Value Basis

N Number of laser beams in one
cell to calculate angular size

1: First dataset and parameter test:
5∗n with n = 1, 2, ...10
2: Second dataset: 10

1: For test purpose
2: Empirically based on parameter

test result

ρG Radial size
1: First dataset and parameter test:
(0.1 m, 2 m) with interval of 0.1 m

2: Second dataset: 0.5 m

1: For test purpose
2: Empirically based on parameter

test result

np DoPP threshold Automatic Equation (7)

- Height difference threshold 3.5 m Basic knowledge of real world

TH Threshold of HHR Min{0.4, OTSU result} 0.4: to avoid a very large threshold in
case only single-facade buldings exist

TC Threshold of Compactnee Max{0.65, OTSU result} 0.65: to avoid a very small threshold
in case only facade cells exist

- Threshold of planar ratio 80% Previous work in [38]

3.2. Comparison with Other Methods on the First Dataset

Firstly, we compare the polar grid-based DoPP filtering in our method with the original
DoPP filtering [18], which is based on a rectangular grid. Completeness and correctness
are used to quantitatively evaluate the performance of the two methods

Completeness = TP
TP+FN

Correctness = TP
TP+FP

(14)

where TP is the number of correctly extracted building points, FN is the number of unde-
tected building points and FP is the number of non-building points recognized as building.

As the filtering threshold in our method is generated adaptively using Equation (7),
the parameters that need manual settings are all related with polar grid construction: N is
used to calculate the angular size θG in Equation (2) and the radius size ρG. In the test, N is
set as 5∗n with n = 1, 2,...,10, corresponding to the range (0.1◦, 1◦) of θG, and the range of
ρG is set as (0.1 m, 2 m), with an interval of 0.1 m, resulting in 200 groups of parameters.

The key parameters for the original DoPP filtering are cell size and the threshold T of
the point number used to label a cell as belonging to a building. The size of the rectangular
grid is set to (0.1 m, 2 m), with the interval of 0.1 m, and the range of the threshold T is set
to (100, 1500), with an interval of 100. Based on the above parameter settings, 300 groups
of filtering results can be obtained. In addition, an empirical parameter setting is generated
for the original DoPP filtering based on previous studies. The grid size is set as 0.15 m
according to the work of [57]. The T value is set as 80 based on the work of [24], this figure
having been obtained by calculating the point number when placing the lowest facade in
the position of the farthest building.

The DoPP filtering performances are shown in Table 2. The completeness values
of the two methods are similar, while the correctness of our method is about 20% better.
In addition, the empirical threshold set by adding information about the scene does not
obviously improve the performance of the original DoPP, when compared with the mean
performance of the 300 groups of results. By examining the filtering results in our method,
it can be seen that most missing building points belong to indoor points and have little
effect on building outline extraction, as shown in Figure 9. This indicates that most of
the building facade points representing the main geometric features can be preserved by
our method.
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Table 2. Comparison of the proposed and original DoPP filtering. For the two methods, 200 and
300 groups of parameters are generated respectively. The corresponding results are in the form of
mean ± standard deviation of all runs. The empirical parameter of the original DoPP filtering is set
according to [24,57].

Method Threshold Completeness Correctness

Proposed method Adaptive threshold 89.95% ± 8.71% 80.74% ± 10.73%

Original DoPP Fixed threshold 88.42% ± 4.47% 58.74% ± 6.22%
Empirical threshold 91.65% 64.82%

Figure 9. Example of the DoPP filtering results of our method from an indoor perspective with θG

and ρG set as 0.2◦ and 1 m. Points are colored by the filtering result: preserved (gray) or filtered (blue).
Most filtered points are indoor points, which are in front of the building points from the indoor view.

As many parameter settings may achieve rather poor results, and lower the mean
result in Table 2, we select specific filtering results among different runs for a detailed
comparison based on the F1 measure, which is calculated by:

F1 =
2 ∗ Completeness ∗ Correctness

Completeness + Correctness
(15)

where the F1 measure is a balance of the completeness and correctness values in Equation (14).
The selected results are shown in Figure 10. The manually picked building points are
shown in Figure 10a as ground truth. The result in Figure 10b corresponds to the median F1
value among the 200 results of the proposed method, with the θG and ρG set as 0.2◦ and 1 m,
respectively. In Figure 10c, the result with the best F1 value is selected among the 300 results
of the original DoPP filtering, with the cell size and T value set as 0.2 m and 300. Figure 10d
shows the result of the original DoPP filtering using the empirical parameters, with the cell
size and T value set as 0.15 m and 81. The black frames in Figure 10c,d mark two groups
of missing buildings by the original DoPP filtering, of which the average distances to the
origin are more than 330 m (box 1) and 200 m (box 2), respectively. In contrast, those distant
buildings are preserved by our method, as shown in Figure 10b. However, as the point
number on the distant building surface is relatively small, the elimination of those points is
hardly reflected on the completeness value in Table 2.

The comparison in Figure 10 shows the disadvantage of the original DoPP—that
the point number in a cell decreases rapidly with the increasing distance to origin. In
Figure 10c, the distance of the farthest building which can be detected is about 180 m. When
the distance is larger than 180 m, the DoPP of a facade cell becomes smaller than most close-
range non-facade objects (e.g., crown and car), and thus a threshold that can preserve long-
range building points will keep most points in the scene. In other words, the low density
of distant facade points reduces the significance of their projection features. Although the
results based on empirical parameters in Figure 10d are superior with respect to identifying
distant building points, most close-range objects are preserved simultaneously, which is
almost equivalent to no filtering having been made. Compared with original DoPP filtering,
the proposed method achieves higher correctness, and the main reason lies in the reduction
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of the influence of decreasing point density on the DoPP. As the cell size of the polar grid
increases with the scanning distance, which is consistent with the trend of beam divergence
from the scanner center, a similar number of laser beams will pass through each cell on
the x-o-y plane without considering foreground occlusion. Thus, the DoPP in the polar
grid is mainly related to the object height. The point number on the vertical direction also
decreases when the scanning distance increases. With our method, the adaptive threshold
is calculated by placing the lowest building in each cell, and this works better than the
fixed threshold.

Figure 10. Comparison of the filtering results of our method and the original DoPP filtering. (a) shows
the manually extracted building points; (b) the result of our method corresponding to the median
F1 value among the 200 runs; (c) the result of the original DoPP filtering, with the highest F1 value
among the 300 runs; and (d) the result of the original DoPP filtering with the empirical parameters
based on the methods of [24,57]. Our method performs better when it comes to distinguishing
long-range buildings points (boxes 1 and 2) from close-range crown points.

Following the comparison of DoPP filtering results, the object-based evaluation is
made to evaluate the final extraction results. In our test, each cell group is simply recognized
as one building object after facade optimization, as all the buildings in the first dataset
are independent. Similar evaluation indexes to Equation (15) are used, and the difference
is that the TP, FN and FP are the number of correctly detected buildings, undetected
buildings and non-building objects in the result, respectively. We use the same rule as
in [28] to decide whether an extracted building object is correctly detected. If the ratio of
the overlapping area is larger than 70% when the extracted and reference building data
are put together, the detected building object is recognized as of TP type, otherwise it will
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be marked as FN type. We compare the proposed method with three grid-based methods,
including the original DoPP method [18] and the methods in [26,28].

θG and ρG in the proposed method are set at 0.2◦ and 1 m, following the setting in
Figure 10b. The parameters of the original DoPP method also follow the result in Figure 10c,
which are 0.2 m and 300. As a detailed post-processing method for the original DoPP
filtering results is not proposed by [18], the proposed decision tree is used to obtain the final
extraction result. The method in [26] needs three parameters: the thresholds of perimeter,
compactness and area, which are set as 120 pixels, 0.5 and 20 m2, respectively. The grid
size of the method in [28] is set as 1 m and the threshold used in this method is calculated
by the OTSU method.

The building-based results of the four methods are shown in Table 3 and Figure 11. The
result of the method in [26] is illustrated in Figure 11a. The completeness and correctness
are 67% and 40%, respectively. The errors mainly come from the connected tree crowns
(the elliptical frame) and the crowns near the buildings (the elliptical frame). Buildings
and nearby crowns are easily recognized as the same object in this method while the other
three methods can deal with this problem based on the low point density at the boundary
between the crown and the building. The projection of connected crowns may also show a
long and thin shape and thus resemble a building from the perspective of compactness.
That means the method in [26] is more suitable for the scene containing only single trees.

Table 3. Building-based evaluation and comparison between different grid-based methods.

Method TP FP FN Completeness Correctness

Method in [26] 10 15 5 67% 40%
Method in [28] 11 2 4 73% 85%
Original DoPP 9 6 6 60% 60%

Proposed method 14 2 1 93% 88%

Figure 11. Extraction results for four grid-based methods. (a) shows the compactness-based method,
(b) the horizontal hollow analysis, (c) the original DoPP, and (d) the proposed method.
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The horizontal hollow analysis in method [28] achieves a better result than [26], and
the completeness and correctness are 73% and 85%, respectively. As shown in Figure 11b,
four building objects are missed by this method, of which one is divided into two objects
marked by the circlular frame and the other three contain only one facade marked by the
rectangular frame. This shows the disadvantage of the horizontal hollow ratio when it
comes to detecting single-wall facades. Sometimes single-wall facades can be preserved, as
the indoor points behind the facade increases the blank area of the convex hull projection,
but it is still unreliable to extract single-wall facades based on the horizontal hollow ratio.

The completeness of the original DoPP method is the lowest among the four methods.
The missed buildings are mainly more than 180 m away and have been removed by DoPP
fitering, as shown in Figure 11c. As a comparison, both the completeness and correctness
of our method are the highest, which are 93% and 88%. As the post-processing for the
two methods are both based on the proposed decision tree, the reason for the difference
in the completeness and correctness relies on the result of DoPP filtering. Both the FP
and FN errors of our method are due to the farthest building, which is divided into two
objects, as shown in the black frame of Figure 11d. Most points of this building are
correctly extracted but wrongly clustered, and those points are actually of TP type from
the perspective of point-based evaluation. Notice that the object-based evaluation is made
mainly to compare and analyze the performances of different grid-based methods. The
correctness and completeness are sensitive in terms of building instances. As resolving
discrete building points into different instances is a difficult problem, especially in complex
urban scenes, the result means that a single building object cannot always be correctly
identified by our cell grouping method.

As shown in Figure 12, some details of our results are compared with the original
DoPP method. Figure 12a–c shows that our method can preserve the protruding parts of
the facade, which are easy to filter out because of their relatively small projection density.
It should be noted that in theory the seed points should be on the top of the facade, but
some are actually located in the middle part of the facade, as the scanner is not strictly
vertical. These seed points can help with the extraction of the protrusion points. Besides
the protrusion points, the region growing in the step of roof extraction can recover some
facade points removed in the DoPP filtering, as shown in Figure 12d.

Besides the detailed comparison of two DoPP filtering results, we also provide into the
results obtained in different steps of the decision tree in our method, as shown in Figure 13.
Among non-facade points, most single stems (green points) preserved after DoPP filtering
are removed by height difference and compactness, and all connected tree crowns (blue
points) are filtered by planar ratio in the last two steps. For facade points, nine, three
and three facades are recognized by horizontal hollow ratio, model-based ratio and point-
based ratio, respectively. The side view and top view of the three facades recognized by
point-based ratio at the last step are shown in Figure 14. Although the object in Figure 14a
is a curved facade, its horizontal hollow ratio is 0.44 and not identified as facade in the
second step, due to the existence of indoor points. The model-based and point-based
planar ratio of this object are 27.5% and 98.5%, thus it is preserved in the last step. The
object in Figure 14b contains a long wall and a short wall, together with a large number of
indoor points (see the circle in Figure 14e). Its horizontal hollow ratio, model-based and
point-based planar ratios are 0.52, 63.3% and 90.9%, respectively. Consequently, one plane
model cannot include more than 80% of all points. The object in Figure 14c contains one
long and two short walls, as shown in Figure 14f. As the hollow region is not large enough,
the horizontal hollow ratio is 0.41 and it cannot be preserved in the second step. In the
third step, as the left wall is not on the same plane with the others, the model-based planar
ratio is only 69.5%. This object is identified as a facade in the last step, with the point-based
ratio of 96.9%.
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Figure 12. Comparison of result details. Left in (a–c): our results; right in (a–c): results of the original
DoPP. The facade in (d) is removed by the original DoPP and only our result is shown. Gray points
are facade points, green points are seed points for roof extraction and blue points are results of the
roof extraction.

Figure 13. Results of different steps in the decision tree, including two classes: (1) points filtered by
height difference (red), compactness (green) and planar ratio (blue); (2) points preserved by horizontal
hollow ratio (gray), model-based planar ratio (maroon) and point-based planar ratio (black).
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Figure 14. Facades recognized at the last step of the decision tree. (a–c) show the side view and
(d–f) show the top view. The points marked by the ellipses in (d,e) are indoor points.

In the building-based evaluation, one building which is correctly preserved but di-
vided into several objects may increase the FP and FN errors simultaneously. Thus, the
evaluation result may be similar to the case in which several non-building objects are
preserved. Recognizing nonadjacent facade objects as the same building commonly re-
quires predefined a shape hypothesis [14]. As the main focus of our study is extracting
the building points under different distances, the result of the proposed method shown in
Figure 10d is also evaluated on the point level and compared with a point cloud classifica-
tion method presented in [31], as shown in Table 4. This method is also one of the three
baseline methods in the Semantic3D dataset [56]. We use the 3D, 2D and projection features
to describe the geometric property of each point and the random forest as the classifier. The
execution time for the classification method includes sample selection, feature extraction,
sample training and point labeling. The completeness, correctness and F1 measure of the
classification method are calculated based on the building category.

Table 4. Comparison with classification method [31] in terms of point-based evaluation.

Method Completeness Correctness F1 Time/s

The proposed method 91.8% 99.8% 95.6% 970
Classification method 93.1% 95.3% 94.2% >3600

It is shown in Table 4 that the completeness of the proposed method is 1.2% lower
than the classification method, while the precision is 4.5% higher. The results of the two
methods are similar in terms of the more balanced F1 measure, but our method is more
efficient. Although the classification method can achieve full-class recognition, the sample
selection for each class is manually operated and time-consuming. Thus, when the main
target of interest in the scene is a building, our method will be more practical than the
classification method.
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3.3. Parameters Test

Two parameters, θG and ρG, are needed in our method. In the evaluation of the final
extraction result, θG and ρG are fixed to 1 m and 0.2◦, which correspond to the median F1
values among the 200 groups of parameters. We analyze the influence of different parameter
settings on extraction results, within the ranges of θG and ρG used in the previous section.
The range of θG is (0.1 m, 2 m), with an interval of 0.1 m, and the range of θG is (0.1◦,2◦),
with an interval of 0.1◦. The F1 measure, completeness and correctness values of different
parameter combinations are shown in Figure 15.

Figure 15. F1 measure (a), completeness (b) and correctness (c) of the proposed method under different parameter settings.

Both the F1 measure and completeness values increase while θG decreases and ρG
increases until they reach the plateau of the mesh in the middle of the ρG range and the
edge of the θG range. The N value in Equation (2) is 5 for the minimum θG, which means
that θG is five times the angular resolution. As there is little space to reduce the N value,
0.1◦ is set as the minimum angular resolution in this test. The completeness is less than
90% when ρG is less than 0.5 m. The main reason is that when ρG is set to a relatively small
value, cells belonging to the same facade may not be grouped as the same object and many
isolated facade cells will be removed by the object-based decision tree. The correctness
remains more than 98% for most parameter settings but decreases sharply at the edge of
the range of ρG. The reason is that when ρG is set to a relatively large value, the facade
and adjacent trees may be connected and recognized as the same object. The result in
Figure 15 indicates that a smaller θG is usually better than a larger one, while the case is
more complicated for the ρG and we regard (0.5 m, 1.5 m) as a suitable range for ρG in the
first dataset.

3.4. Test on the Second Dataset

We use the Semantic3D dataset to test the performance of the proposed method in
different types of outdoor scenes. The N in Equation (2) is set as 10 to calculate θG and the
radial size ρG is set as 0.5 m. The evaluation measure used in Semantic3D is Intersection
over Union (IoU), which is calculated here as:

IoU =
TP

TP + FN + FP
(16)

where TP, FN and FP are the number of correctly extracted building points, missing
building points and falsely detected building points, respectively. The IoU of our result
is 85.7%, with completeness and correctness of 90.2% and 94.5%, and the running time
is 14,464 s. As we focus on both the effectiveness and efficiency and most methods do
not report their running time, the comparison is made between our method and the 3D
covariance baseline method, which utilizes the same classification framework as [31]. The
IoU and running time of the 3D covariance baseline method for Semantic3D are 87.6% and
38,421 s. The result is similar to the comparison in Table 4—that our method achieves a
similar extraction result within a much shorter time. Additionally, the time for sample
point labeling in the classification method is not included.
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As many urban scans are similar and three rural scans have few buildings (no more
than three) in Semantic3D, we select four scans for the overview of the extraction results,
as shown in Figure 16. The distance variation of the buildings in Semantic3D is about
1.5 m to 130 m, which is smaller than the first dataset, but some scans have larger density
variation, e.g., the density variations of the marketsquarefeldkirch7 scan are about 2 mm to
2.9 dm. It can be seen that most points of the building can be correctly distinguished from
the surroundings, including many small pieces of the facade at a distance.

Figure 16. Extraction results of four selected scans in Semantic3D. (a) shows the original data for
marketsquarefeldkirch7, sg27_10, sg27_8 and stgallencathedral1 colored by intensity. (b) shows
corresponding extraction results (gray: facade points; blue: roof points; green: seed points on the top
of each facade cell).

Some extraction details are illustrated in Figures 17 and 18. Figure 17 shows that
many building components with a small DoPP can be extracted satisfactorily, such as
the roof (Figure 17a,b), porch (Figure 17c) and corridor (Figure 17d). As the point cloud
captured from ground view is commonly regarded as a data source for facade structure,
previous grid-based studies of building extraction mainly focus on facade extraction, and
roof extraction has been rarely discussed. In the work of [26], the feature value of each cell
is generated based on the height, and the roof points can be preserved together with facade
points. However, this method has a problem in filtering connected high tree crowns, as
shown in Figure 11a. Many objects which do not belong to the roof are detected in roof
extraction, e.g., the porch in Figure 17c and the corridor in Figure 17d. Similarly, indoor
objects connected with a facade may also be detected, such as a ceiling. We follow the class
label setting in [56], that all indoor points are classified as buildings, so the detection of such
objects can increase accuracy in building extraction and preserve more geometric details.

Figure 18 shows some extraction results for separating buildings from non-building
objects. In Figure 18a, the pedestrians near the buildings can be filtered effectively by
height difference. One bucket in Figure 18b is under the eave and removed together with
the eave points above it at the DoPP filtering stage. However, the filtered eave points can
be preserved in roof extraction, while the bucket points are finally removed. The case
is similar in Figure 18c—that DoPP filtering removes the left corner of the eave together
with vegetation below, though the eave points are preserved in the roof extraction. In
Figure 18d, the vegetation points nearby the building are separated well. Figure 18e,f show
the elimination of plane-like objects. The van in Figure 18e and the wall in Figure 18f are
very similar to facades from the point of view of projection shape, but they can be easily
distinguished from facades by height differences.
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Figure 17. Extraction details of building components with a small DoPP in Semantic3D. (a,b) show
extraction results of roofs; (c,d) show extraction results of porch and corridor. For each sub-figure,
on the left is shown the original points rendered by intensity, on the right the extraction result with
facade points colored gray and roof points colored blue.

Figure 18. Extraction details of separating building points from non-building points in Semantic3D.
Separated targets are (a) pedestrian, (b) bucket, (c,d) vegetation, (e) van and (f) wall. For each
sub-figure, the left side shows the original points rendered by intensity, while the right shows the
extraction result with facade points colored gray and roof points colored blue.

Figure 19 shows two main types of falsely extracted points (FP errors). The first type is
brought by the non-building points located in a facade cell (Figure 19a,b). In Figure 19a, the
building is surrounded by dense and close vegetation. Although most vegetation points
have been filtered, some points close to the facade are located in the same cell as facade
edge points and recognized as building. Reducing the cell size can separate these two
groups of points but may divide one facade into several cell groups. Then, those small
cell groups may be filtered because of too large compactness. In Figure 19b, the landscape
vegetation is directly fixed to the guardrail on the terrace. Thus, it is impossible to separate
those vegetation points from building points on a grid level in this case.
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Figure 19. Different types of FP errors with falsely extracted points marked in the rectangle.
(a,b) show the case that non-building points are located in a facade cell; (c,d) show the case of
vertical overlap of building and non-building points. For each sub-figure, the left side shows the
original points rendered by intensity and the right side shows the result of DoPP filtering (gray) and
roof detection (blue).

The second error is caused by the vertical overlap of different objects. In Figure 19c,
the tree crown points right above the facade are mistaken as building points. The case in
Figure 19d is very similar to that in Figure 18b, but the vehicle under the eave is falsely
recognized as building, despite the minimum horizontal distance between vehicle and
facade being 1.2 m. The main reason is that, in Figure 19d, the cells containing both vehicle
and eave points have a higher DoPP than the threshold and are connected with nearby
facade cells.

The point number of the FP errors is usually small compared with the number of
building points and has little effect on building information preservation. One potential
way to remove those points is to segment the building points into small clusters for further
analysis. Building reconstruction or parsing commonly includes the step of recognizing
basic geometric primitives by a segmentation or decomposition method [11,58,59]. Thus, it
is possible to exclude those falsely extracted points in further applications.

The missed building points (FN errors) can be classified into four classes, as shown
in Figure 20. The first error is due to ground filtering, as shown in Figure 20a. Points at
the bottom of buildings are commonly filtered as ground points by the CSF method. The
second type is due to isolated indoor points. The third error is a result of the building only
having roof points (Figure 20b). This situation commonly appears for a long, low building,
the facade of which is easily occluded by foreground objects. The fourth error occurs when
the incident angle is very large, as shown in Figure 20c. In this case, the point spacing
increases significantly and a large area of wall may be filtered out.

Since the first type of error often occurs at close-range to buildings with a relatively
large point density, it covers the highest proportion of missing detections. However,
considering that the points near ground are usually regarded as unreliable for building
model reconstruction because of complex environment and foreground occlusion [11], this
error has little influence on building structure preservation. Indoor points scanned from
outside are usually discrete and can hardly represent the shape of an object. Thus, the first
two types of errors have little effect on the application of building scanning data. Although
the last two error types correspond to very few points, they usually cover relatively large
area and may cause the missing detection of continuous facade areas or a single building.
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Figure 20. Different types of FN errors (missing detection). For each sub-figure, the left side shows
the original points rendered by intensity. The right side in (a) shows the ground filtering result of a
selected area (left). Real ground points are colored orange and building points recognized as ground
points are colored gray. (b) shows a building with few facade points. In (c), the right side shows the
extraction results (gray) of the original point cloud on the left.

4. Discussion

The proposed method aims to extract building points from single-scan TLS data with
most processing executed at the grid level. After the test on two datasets containing more
than 1.7 billion points and a comparison with other grid-based and classification methods,
the advantages of our method can be summarized as follows.

Our method is easy to use, mainly for two reasons. First, our method does not rely on
parameter tuning to set a suitable DoPP threshold. The rectangular grid is often used with
a fixed threshold to extract a vertical facade in previous studies [18–20,25]. Our conclusion
about DoPP filtering on a rectangular grid is similar to [14]—that it is difficult to set a
suitable threshold at the beginning, as the threshold has no intuitive meaning. Thus, much
parameter tuning is necessary. Cheng et al. [24] calculate the threshold as the point number
when placing the lowest building in the position of the farthest building, but the generated
threshold is still a fixed value. The test in Figure 10 shows that it may be impossible to
set a suitable fixed threshold to preserve buildings more than 180 m away and remove
close-range tree crowns simultaneously. Compared with previous studies, our method
handles this problem using the adaptive threshold based on a polar grid. We place the
lowest building in each cell and calculate the corresponding point number as the adaptive
threshold. Theoretically, the height of the lowest facade in a scene requires prior knowledge
of the scene, but our method sets the minimum facade height at 3.5 m by default, setting
nstorey in Equation (7) as 1. Although the minimum height can be larger than 3.5 m and
fixing nstorey to 1 may preserve more non-facade points in DoPP filtering in this case, our
test has shown that the final results are for the most part satisfying and setting nstorey as 1
by default can accommodate cases where nstorey is larger than 1. Thus, the DoPP threshold
in our method can be generated automatically. Second, the memory requirement of our
method is not high. Most processings in our method are carried out at grid level. Besides
the original points, only grid features are stored in the memory, such as the point number
in each cell. In general grid construction, a small cell size may result in very large number
of cells and increase memory consumption significantly. However, cell size cannot be
set too small in grid-based building extraction, because it should be at least larger than
the thickness of a facade projection and a small size may divide façade projection into
several cells. It is also supported by our parameter test result—that F1 and completeness
decrease rapidly when cell size is smaller than 0.5 m. If the point cloud is obtained by
panoramic scanning with the largest horizontal range of 400 m, the number of cells is
2,880,000, with θG and ρG set as 0.1◦ and 0.5 m. This is usually a very small memory cost
for current computers. However, in a point-based method, multiple features are generated
for each point and these features commonly require much more memory space than storing
original points. Although original data can be sampled to reduce memory cost, point-based
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methods usually still require much more memory than grid-based methods. For example,
the method using 21-dimensional features in [31] will have a similar memory cost only
when the point number is about 5% of the number of cells in our method.

Our method is balanced in terms of effectiveness and efficiency. The comparison
with the first dataset suggests that our method has a better performance on TLS data with
large density variation than other methods using grid features, such as DoPP [18,19,21,25],
compactness [12] and horizontal hollow ratio [28]. Furthermore, those methods have dealt
poorly with roof extraction, while our method can extract roof points well, as shown in the
test on Semantic3D. As analyzed by [25], the time complexity of the DoPP method is O(N),
and their method has almost the same efficiency. The efficiency is not discussed in [28],
but the time complexity is much higher than DoPP, as much voxel grouping processing is
required before 2D projection. Our method is essentially a combination of DoPP filtering
and post-processing. The time complexity of different stages in our method is shown in
Table 5. The first three stages have linear time complexity, so the complexity of the whole
method largely depends on the last two stages. Commonly, only a small proportion of the
original points are actually processed in the stage of point-based planar ratio calculation,
e.g., only 10% of the original points are processed in the first dataset (the blue and black
points in Figure 13). As a result of the large incident angle and foreground occlusion, the
number of roof points is relatively small compared with other objects, e.g., the proportion
of the extracted roof points in dataset 1 is only 0.2%. In general, our method is slower
than [18,26], but faster than [28]. On the other hand, when compared with the point-based
classification method [31], which is also a baseline method in the Semantic3D dataset,
our method can achieve similar accuracy levels on a building class with much higher
efficiency. Similar performance to the baseline method means that the result of our method
is worse than most submitted results of the DL methods on Semantic3D homepage. Our
focus is to find an efficient and simple way to extract the main building structures with
acceptable accuracy; thus, a balance of effectiveness and efficiency is the aim. Considering
the complexity of parameter tuning and the high demands on computing resources and
professional knowledge in deploying a DL model in practical applications, DL is not
suitable for the application scenario in our research. However, notice that point-based
classification and DL can achieve multiple class recognition, including both big and small
targets, while our method is designed for building extraction.

Table 5. Time complexity of different stages in the proposed method.

Stage Complexity Meaning of the Symbols

DoPP filtering O(N1) N1 is the number of non-ground points.

Facade extraction (not including planar
ratio calculation) O(N2) N2 is the number of points after DoPP filtering; N2 < N1.

Facade extraction (model-based planar
ratio calculation) O(N3)

Theoretically, N3 is the rough point number of long and
thin non-facade objects and facades which are not

multi-wall type; N3 < N2.

Facade extraction (point-based planar
ratio calculation) O(kN4log2 N4 + N4)

Theoretically, N3 is the rough point number of long and
thin objects, which cannot be fitted with one plane; k is the

nearest neighbor; N4 < N3.

Roof extraction O(kN5log2 N5 + N5) Theoretically, N5 is the rough point number of roof points;
N5 < N1–N2.

The test indicates that there are several error types found in our method, as shown
in Figures 16 and 17. The major limitation of our method is that the area with a large
incident angle is easily missed because of sparse point distribution. This may cause the
loss of a large facade area, despite the missed point number being relatively small. Another
limitation comes from the buildings with only the roof visible. As the wall outline can be
recovered by projecting the upper contour lines to the ground [11], many buildings with
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only roof points may provide enough information for reconstruction. Misdetection of these
buildings causes information loss in terms of building reconstruction.

In summary, in a case where a building is the main target of interest, our method will
be a more practical choice with little prior knowledge and manual intervention required
compared with a segmentation or classification method. If a more detailed building instance
is needed, our result can also provide quick and accurate information for post-processing,
such as the localization information in [14].

5. Conclusions

In this paper, we propose a grid-based building extraction method for single-scan
TLS data. The main focuses of our method are the problems due to density variation and
threshold tuning in previous grid-based methods using DoPP. The polar grid is utilized
to adapt to the decreasing density with the increase of distance and generate an adaptive
threshold. Facade points are extracted with DoPP filtering on the polar grid. Then, cell
groups from the filtering result are used as the primitives for facade refinement. In the
test on two datasets with more than 1.7 billion points, the proposed method outperforms
previous grid-based methods, especially on the extraction of distant buildings (more than
180 m in our test). Compared with the point-based classification method, our method
achieves similar accuracy with much higher efficiency. The result of the first dataset is
95.6% (our method) versus 94.2% (point-based classification) and that of the second is 85.7%
versus 87.6%. Our running time, however, is less than half of the point-based classification.
Additionally, our method can extract roof points which are ignored by most previous
grid-based methods. Thus, when a building is the main target in the use of TLS data, our
method is a suitable and practical choice in terms of the balance between efficiency and
effectiveness. Our method has difficulty in detecting buildings with large incident angles
or without facade points. Thus, future work will focus on the extraction of facades with
sparse point distribution and buildings with only the roof visible.
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