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Abstract: Clarifying species-environment relationships is crucial for the development of efficient
conservation and restoration strategies. However, this work is often complicated by a lack of detailed
information on species distribution and habitat features and tends to ignore the impact of scale and
landscape features. Here, we tracked 11 Oriental White Storks (Ciconia boyciana) with GPS loggers
during their wintering period at Poyang Lake and divided the tracking data into two parts (foraging
and roosting states) according to the distribution of activity over the course of a day. Then, a three-
step multiscale and multistate approach was employed to model habitat selection characteristics:
(1) first, we minimized the search range of the scale for these two states based on daily movement
characteristics; (2) second, we identified the optimized scale of each candidate variable; and (3) third,
we fit a multiscale, multivariable habitat selection model in relation to natural features, human
disturbance and especially landscape composition and configuration. Our findings reveal that habitat
selection of the storks varied with spatial scale and that these scaling relationships were not consistent
across different habitat requirements (foraging or roosting) and environmental features. Landscape
configuration was a more powerful predictor for storks’ foraging habitat selection, while roosting
was more sensitive to landscape composition. Incorporating high-precision spatiotemporal satellite
tracking data and landscape features derived from satellite images from the same periods into a
multiscale habitat selection model can greatly improve the understanding of species-environmental
relationships and guide efficient recovery planning and legislation.

Keywords: species distribution models; satellite tracking; multiscale model; landscape composition
and configuration; variance partitioning analysis

1. Introduction

Identifying habitat features for crucial life-history phases is more critical than ever
since habitat loss and degradation are the primary drivers of species imperilment and
extinction, especially when habitats are exposed to disturbance from climatic and anthro-
pogenic modification [1,2]. Many species rely on different resources throughout the day,
across seasons, or during different life cycle stages [3]. Species distribution models (SDMs),
which provide information on the relationships between species distributions and the
surrounding environments, is among the most important first steps in guiding imperiled
species recovery planning and legislation [4–7]. However, this work is often complicated
by the lack of detailed information on species distribution and habitat features [8].
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Species distribution data derived from traditional field investigations are prone to
identification errors and geographic biases [9]. Additionally, field investigations are time
consuming, costly, and frequently biased by accessibility, which constrains the acquisition
of sufficient occurrence data required for the study of habitat selection. This easily leads
to cognitive bias. Satellite tracking technology provides an opportunity to continuously
record precise locations of species throughout the day or during a specific period of their
life stage, which can be of great benefit for in-depth research on habitat selection strate-
gies and movement patterns [10,11]. Such fine-tuning of occurrences makes functionally
distinct SDMs a reality. Multiple partitioned SDMs may more appropriately account for
changing species-environment relationships [3], as the environmental predictors and their
importance may differ with changing behaviors [12–14], seasons [15], or life stages [16].

Furthermore, species-environment relationships can differ in terms of both magnitude
and direction when they are measured at different scales [17,18]. We do not usually
know the optimal scale for a given environmental variable and the biological response it
causes [7]. It is not surprising that the relative importance of environmental variables varies
with scale [19]. Many traditional SDM studies typically rely on empirical judgement or
hypotheses to identify the most meaningful scale [20]. However, ignoring the procedure for
identifying “which scales matter”, the cumulative effects across multiple scales may reduce
the predictive power of SDM and increase misinterpretations of species-environment
relationships [21,22]. The dependence of ecological patterns and processes on drivers acting
across multiple scales has always aroused great concern in landscape ecology [20,23,24].
An increasing number of studies have emphasized the important role of landscape ecology
in shaping species-environment relationships [25,26]. However, although the importance of
multiscale analyses has been recognized in the study of species-environment relationships,
few published habitat ecology papers address this issue [22]. There remains a significant
gap in the application of landscape ecology theories to wildlife ecology research [27–29].

Oriental White Stork, the population of which has rapidly declined over the last several
decades and was estimated at <2500 individuals worldwide, is listed as an “endangered”
species by the IUCN [30]. In the face of the increasing impact of human disturbance and
climate change, the conservation of species and their habitats has become increasingly
urgent. Against this background, clarifying species-environment relationship is becoming
more significant and necessary. We hypothesized that the habitat selection of the storks
would vary with spatial scale. We further hypothesized that these scaling relationships
would not necessarily be consistent among different habitat requirements (foraging or
roosting) and environmental features. Therefore, in this study, our goals were twofold:
(1) to evaluate the influence of scale across a set of environmental predictors in habitat
selection and identify the scale at which each of these variables is most important and
(2) to identify the multiscale species-environment relationship and relative importance of
different environmental variables at their optimal scale for different habitat requirements.
These results can help generate explicit landscape-scale management recommendations for
stork conservation planning that may enhance the persistence and potential expansion of
the last remnants of this species’ populations.

2. Materials and Methods
2.1. Study Area

As the largest freshwater lake in China, Poyang Lake (28◦22′–29◦45′ N, 115◦47′–116◦45′ E,
Figure 1) is located on the southern bank of the Yangtze River, China. The combined
effects of inflows from five tributary rivers (the Ganjiang, Xinjiang, Fu, Rao, and Xiu
Rivers) and interchanges with the Yangtze River result in considerable seasonal fluctuations
in water levels and landscapes. In the wet season (June to September), Poyang Lake
presents a lake landscape with a water area exceeding 4000 km2, while it presents a riverine
wetland landscape with a water area less than 1000 km2 in the dry season (November to
March) [31]. The sharp decline in the water level, together with the gentle topography,
results in the emergence of a rich and diverse wetland landscape, making Poyang Lake
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an important wintering ground along the East Asian–Australasian Flyway. It is listed
on Ramsar’s List among the first seven wetlands with international importance (https:
//rsis.ramsar.org/ris/2310, accessed on 3 August 2020) and is also included in the Global
Living Lakes Network (https://www.globalnature.org/livinglakes, accessed on 3 August
2020) as the only wetland in China [32]. More than 400,000 waterbirds winter in Poyang
Lake each year, including at least 14 endangered species on the IUCN Red List, such
as the critically endangered Siberian Crane (Leucogeranus leucogeranus), the endangered
Oriental White Stork and the vulnerable Swan Goose (Anser cygnoides), which account
for 98%, 75% and 85% of each species’ global population, respectively [33]. Poyang
Lake plays an important and irreplaceable role in biodiversity conservation and regional
ecological security.
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2.2. Satellite Tracking Data

During March 2018, 11 Oriental White Storks were captured at their wintering site
in Poyang Lake on the Yangtze River Floodplain, Jiangxi Province, China, and equipped
with solar-powered data-logging GPS-GSM (Global Positioning System−Global System
for Mobile Communications) tracking devices (constructed by Hunan Global Messenger
Technology Co. Ltd., Hunan, China). These devices, with a weight that did not exceed 5%
of the storks’ body mass, were programmed to record data every 1 h. Of the collected data,
latitude, longitude, speed, precision, date and time were used in this study.

We used the locations covering the period from 3 days after the storks reached Poyang
Lake to 3 days before they left Poyang Lake as the wintering data [10,34]. Despite missing
GPS records due to satellite acquisition failure or low battery level, 16,450 records with
positioning accuracy ≤30 m (accuracy grades A (±5 m), B (±10 m), and C (±20 m)) were
collected for the 11 storks.

In designing a multistate SDM, occurrences are separated into different parts according
to time or behavior, which are hereafter referred to as states [3]. During wintering at Poyang
Lake, the state of the storks can mainly be divided into two types: foraging and roosting.
Before identifying the state, the travel distance and time between locations were calculated.
The hourly distribution of the travel distance over the course of a day was used to assess
the birds’ starting and ending activity times for a day (Figure 2). As waterbirds mostly
forage during the daytime, points recorded during the starting and ending activity times
in the daytime were labelled as a foraging state; otherwise, they were labelled as a roosting
state. If there are no missing records, there should be 15 foraging records and 9 roosting
records for a given day. This formed the original point sets, which we named Foraging A
(10,293 locations) and Roosting A (6156 locations). These two data sets were then processed
in the following two ways:

(1) Identify the research scale
If a bird had fewer than 12 foraging points in a day (out of a total of 15, i.e., less

than 80% of the maximum number), the foraging data for that day were removed to avoid
underestimating its foraging range. Similarly, cases with fewer than 8 roosting points a
day (out of a total of 9) were deleted. This approach produced the point sets Foraging B
(7665 locations) and Roosting B (4731 locations). Then, the 95% kernel isopleths based on
Foraging B and Roosting B were estimated to represent areas used in the foraging and
roosting states [14,28,35]. The mean radius of these isopleths was calculated to guide the
following scale analysis [7]: foraging radius 4.60 km (95% CI = 4.10~5.10 km) and roosting
radius 0.66 km (95% CI = 0.55~0.78 km). Finally, gradient scales of 1.5 km, 3 km, 5 km,
8 km, and 10 km for the foraging state and 0.1 km, 0.5 km, 1 km and 1.5 km for the roosting
state were selected.

(2) Form the data sets for SDM
Points with instantaneous speed and travel distance more than 1 km within an hour

were treated as dispersal points and excluded from the SDM. In addition, multiple records
for the same bird recorded within 0.5 km were pruned to minimize spatial autocorrelation.
Finally, 1076 foraging points and 490 roosting points, which were labelled Foraging C and
Roosting C, respectively, were retained for further SDM.

2.3. Environmental Variable

In the landscape ecology context, the term ‘scale’ generally has two meanings: one
refers to the grain or spatial resolution, which represents the smallest/shortest unit of obser-
vation; the second refers to the extent, indicating the spatial size or temporal duration [22].
In this study, we restrict the meaning of ‘scale’ to extent, which was represented by the size
of a ‘window’ around each focal site. Window sizes with radii of 0.1, 0.5, 1, 1.5, 3, 5, 8 and
10 km were designed according to the foraging and roosting scales [7]. Landscape features
within the window were quantified by landscape composition and configuration. Land-
scape composition considers the presence and quality of habitat features, while landscape
configuration considers the explicit spatial arrangement of habitat elements [28]. Under
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this framework, environmental data were arranged into four groups (Table 1): landscape
composition, landscape configuration, natural factors and human disturbance.
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Landscape composition and configuration were obtained from the land cover map.
Landsat Operational Land Imager (OLI) images with a path-row number of 121-040, which
were acquired on 23 January 2019, were selected to interpret the land cover map. OLI
images generated on 31 July and 3 October 2018 were also selected to assist with the
interpretation, as multitemporal features can help distinguish objects. Object-oriented
segmentation was processed on these images through eCognition 9.3 (Trimble Inc.), during
which geometry, position, texture and class-related features were generated. All these
feature layers were sent into a random forest model to classify the land cover into ten classes:
mudflat, lake, river, bare land, artificial surface, marsh, grassland, paddy field, forest and
pond. To generate training and testing samples, a field investigation was conducted during
December 2018, and 287 sampling plots and 781 unmanned aerial vehicle photos were
generated. The overall classification accuracy, which was assessed based on verification
samples from the field investigations and unmanned aerial vehicle photos, was over 92%.
Then, Fragstats 4.2 was used to calculate a number of landscape metrics quantifying
landscape composition and configuration characteristics.

Landscape composition and configuration metrics reflected the spatial pattern char-
acteristics, while natural factors were organized to address the process characteristics.
Natural factors included two parts: topography and hydrology. Climate variables were
omitted, as these data usually have a coarse resolution and are redundant with topographic
variables at the local scale [36]. Topographic variables included elevation, aspect, slope and
topographic roughness (i.e., local elevation variance), which were calculated with the Geo-
morphometry and Gradient Metrics Toolbox [37]. Hydrological variables included water
seasonality and water occurrence. The water seasonality map describes the intra-annual
behavior of water surfaces for a single year (2018 in this paper), while the water recurrence
map provides information concerning the inter-annual behavior of water surfaces and cap-
tures the frequency with which water returns from year to year [38]. Human disturbance
variables, described by density, distance and landscape metrics, were obtained through
road and waterway layers from Open Street Map (https://www.openstreetmap.org/,
accessed on 30 August 2021) and the land cover map.

https://www.openstreetmap.org/
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Table 1. Environmental variables considered for oriental white stork habitat selection analysis at the foraging and roosting
scales. All layers except the distance variables were produced at 8 different spatial scales.

Group Variable Abbreviation(unit) Description

Landscape Composition Percentage of focal Land
cover type PLAND (%) Percentage the landscape comprised of

the corresponding patch type.

Landscape
Configuration

Mean path size AM(ha) Mean patch area of focal land cover type.

Largest patch index LPI (%) Percentage of total landscape area
comprised by the largest patch.

Edge density ED (m/ha) Edge length on a per unit area basis.

Mean patch shape index SHAPE_MN (-) Mean perimeter-area ratio of focal land
cover type.

Aggregation index AI (%)

The number of like adjacencies involving
the corresponding class, divided by the

maximum possible number of like
adjacencies involving the corresponding

class.

Interspersion and
juxtaposition index IJI (%)

The observed interspersion over the
maximum possible interspersion for the

given number of patch types.

Patch cohesion index COHESION (-) Physical connectedness of the
corresponding patch type.

Shannon’s diversity index SHDI (-) Diversity in a landscape.

Patch density PD (n/100 ha) The number of patches in the landscape,
divided by total landscape area.

Distance to particular land
cover types

Eucd_marsh, Eucd_mudflat,
Eucd_lake, etc. (m)

Euclidean distance to mudflat, lake, river,
marsh, grassland, paddy field, forest or

pond.

Natural features

Focal mean of Elevation,
Aspect, Slope and

Roughness

Elevation (m), Aspect (◦),
Slope (◦) and Roughness (-)

Derived from the DEM using Evans et al.
2014 ArcGIS Geomorphometric &

Gradient Metrics Toolbox.

Water seasonality Seasonality (-)
Intra-annual behaviour of water surfaces
for a single year (2018). It is the number

of months water was present [38].

Water recurrence Recurrence (%)

The frequency with which water returns
from years to year expressed as a

percentage. It is a measurement of the
degree of inter-annual variability in the

presence of water [38].

Human disturbance

Road density Roaddensity (m/m2)
Derived from road layer that is created

from Open Street Map.

Waterway density Waterwaydensity (m/m2) Derived from waterway layer that is
created from Open Street Map.

Distance to road, water
way and other artificial

surfaces

Eucd_road, Eucd_waterway,
and Eucd_artificial (m)

Euclidean distance to road, water way
and other artificial surfaces.

Landscape composition
and configuration of

artificial surfaces

PLAND_artificial,
AREA_MN_artificial,

AI_artificial, etc.

Landscape metrics that describe the
characteristic of artificial surface.

2.4. Univariate Model for Best Scale Selection and Variate Preselection

As one of the most popular tools for species distribution and environmental niche
modelling, the MaxEnt software package was selected to identify the environmental drivers
for determining the storks’ habitat suitability [39,40]. MaxEnt, which estimates the proba-
bility distribution of species occurrence based on constraints from environmental factors, is
a robust technique that performs well against similar methods even with data limitations
and biases [41–44].

To identify the scale that most influenced habitat selection, we used the MaxEnt model to
predict relative habitat suitability at four scales for each pair of states based on each variable.
For each focal variable, we ran univariate models at four scales (i.e., radii) for each two states.
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Each model was run in 50 replicates with 1000 maximum iterations, and at each run, 75% of the
records were randomly selected to train the model, while the remaining 25% were used as test
records. The area under the curve (AUC) of the receiver operating characteristic (ROC) plot, the
most frequently used method in SDM, was selected to evaluate the models. The scale at which
a univariate model produced the highest AUC was retained to create a multivariate model with
all variables at their best performing scale (Tables S1 and S2) [20].

Then, environmental variables with a test AUC ≤ 0.5 were excluded from further anal-
ysis, while the remaining variables were checked for multicollinearity. Collinear variables
(Pearson correlation of 0.6 or greater) were pruned by retaining those with higher test AUC
scores [19,20,45] and more ecological relevance [14]. This resulted in the inclusion of 17 out of
the 90 initial variables for the foraging state and 20 for the roosting state (Figures S1 and S2).

2.5. Multiscale Model for Habitat Selection

All predictors and response variables were standardized using the Z-score to interpret
parameter estimates on a comparable scale. Models with all combinations of the remaining
scale-optimized variables were compared via the corrected Akaike’s information criterion
(AICc), and only those with ∆AICc < 2 of the top ranked models were selected as final
models (Tables S3 and S4). Then, model averaging was performed based on AICc weights
when multiple models were selected [25]. These procedures were performed using the
function dredge in the R package MuMIn. Variables contained in the averaged model were
labelled as final multiscale-optimized variables. To evaluate the relative importance of
these variables, we calculated the relative effect of the parameter estimates for each of the
variables compared with that of all parameters [46]. The following four variance fractions
were also examined: (1) landscape composition, (2) landscape configuration, (3) natural
factors, and (4) human disturbance. This method is similar to variance partitioning analysis.

Then, to gain insights into how the probability of occurrence (habitat suitability)
changes with environmental variables (habitat selection process), we ran a multiscale SDM
using these scale-optimized variables contained in the averaged model [47]. Response
curves, generated by the MaxEnt model that uses only one variable each time, were used
to show how the occurrence depends on the corresponding variable.

3. Results
3.1. Univariate Model

Univariate scaling analysis was used to interpret the substantial sensitivity of the
relationship between the storks’ habitat suitability and the scale of analysis for all variables.
The scale at which the highest AUC was obtained for the focal variate was identified as
its optimized scale. For roosting habitat selection, almost all variates, except mudflats,
achieved their highest AUC values at the scale of 1.5 km, which was the largest scale
selected in this study for roosting states. For mudflats, the configuration metrics describing
aggregation in space (IJI, AI and COHESION) presented the highest AUC values at fine
scales (0.5 km or 1 km), while the metrics describing landscape fragmentation (ED, LPI
and SHAPE_MN) expressed the best performance at a larger scale (1.5 km). For foraging
habitat selection, stork occurrence was mainly affected by metrics at a moderate scale
(5 km), except for road density and waterway density of human disturbance, roughness
of natural factors and aggregation of forest, which presented best performing models at a
broader scale (8 km or 10 km). Further details of the optimal scale of each variable can be
found in the Supplementary Materials (Tables S1 and S2).

3.2. Multiscale Habitat Selection for Foraging

The averaged model (based on all best models with ∆AICc < 2, Table S3) that included
all of the final multiscale-optimized variables explained up to 67.6% (adjusted R2) of
the total variation observed in foraging habitat selection (Figure 3a). Landscape metrics
describing composition and configuration accounted for 71.5% of the explained variance,
which was greater than that explained by human disturbance (14.5%) and natural factors
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(14.0%). The percentage of the landscape covered by paddy fields at the 5-km scale
(PLAND_paddyfield_5km) alone accounted for 17.6% of the explained variance, albeit
negatively. The percentage of total landscape area comprised the largest patch of lake at
the 5-km scale (LPI_lake_5km) and surface roughness at the 8 km (roughness_8km) scale
also had significant negative effects on habitat selection for foraging, while the distance to
artificial surface (Eucd_artificial) was the most positive variable. Slope, water seasonality
and distance to the waterway were never significant predictors of habitat selection for
foraging. Storks prefer landscapes with paddy field cover lower than 5% and mudflat
coverage of approximately 32% at the 5-km scale. Storks prefer to forage near small lakes
or large rivers (Figure 4). In addition, storks prefer to forage far from the artificial surfaces
and where the surface roughness is not high at the 8-km scale.
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3.3. Multiscale Habitat Selection for Roosting

Similarly, the averaged model, based on all best models with ∆AICc < 2 (Table S4), showed
high explanatory power (adj. R2 =0.696) for roosting habitat selection (Figure 3b). Landscape
composition and configuration accounted for 83.0% of the explained variance. The percentage
of the landscape covered by marsh at the 1.5-km scale (PLAND_marsh_1.5km) explained the
most significant and positive effect (38.4%) on habitat selection for roosting, while distance
to the lake (Eucd_lake) was the most negative predictor (9.8%). In contrast, the percentage
of landscape covered by rivers, paddy fields and ponds at the 1.5-km scale; the mean
patch area of grassland and forest at the 1.5-km scale; the distance to waterways; and the
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slope and aspect were never significant predictors of habitat selection for roosting. Storks
prefer areas with 50% marsh or mudflat cover (Figure 5). Areas near the lake, which were
not adjacent to other patch types, also tended to be used as roosting habitats. Similar to
foraging habitat selection, storks prefer areas with low artificial surface proportions and
surface roughness.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

scale; the distance to waterways; and the slope and aspect were never significant predic-

tors of habitat selection for roosting. Storks prefer areas with 50% marsh or mudflat cover 

(Figure 5). Areas near the lake, which were not adjacent to other patch types, also tended 

to be used as roosting habitats. Similar to foraging habitat selection, storks prefer areas 

with low artificial surface proportions and surface roughness. 

 

Figure 5. Response curves of top ranked variables for roosting. (a) PLAND of mudflat at the 1.5-km scale, (b) PLAND of 

marsh at the 1.5-km scale, (c) IJI of lake at the 1.5-km scale, (d) distance to lake, (e) PLAND of artificial surfaces at the 1.5-

km scale and (f) surface roughness at the 0.5-km scale. 

  

Figure 5. Response curves of top ranked variables for roosting. (a) PLAND of mudflat at the 1.5-km scale, (b) PLAND of
marsh at the 1.5-km scale, (c) IJI of lake at the 1.5-km scale, (d) distance to lake, (e) PLAND of artificial surfaces at the 1.5-km
scale and (f) surface roughness at the 0.5-km scale.



Remote Sens. 2021, 13, 4397 11 of 16

4. Discussion
4.1. Landscape Features Are Necessary for Understanding Habitat Selection

Clarifying the habitat selection characteristics of storks in terms of land cover types,
landscape composition and landscape configuration is essential to developing a more com-
plete and comprehensive understanding of habitat selection mechanisms and formulating
more targeted recovery or protection strategies. In general, our findings are consistent with
those of previous studies [48,49], indicating that storks prefer areas covered by mudflats or
marshes. However, these traditional studies usually focus habitat selection on land cover
types, which we treated as habitat selection at the point scale (Figure 6), and previous
studies tend to ignore the effects of landscape composition and configuration. In our study,
we detailed habitat selection by using landscape metrics to describe landscape features.
Our results indicate that landscape composition and configuration are determinant drivers
affecting storks’ habitat selection, both for foraging and roosting, highlighting the impor-
tance of landscape features. However, it is worth noting that landscape configuration was
a more powerful predictor for foraging habitat selection, while roosting was more sensitive
to landscape composition.
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Focusing on the top influential factors (greater than 10% explanation of the explained
variance), we found that the four factors that had the greatest influence on the foraging
of the storks fell into exactly four different categories, while the most influential factor
affecting the habitat selection for roosting was the percentage of the landscape covered
by marsh, i.e., a landscape composition variable (Figure 3). This variable alone explained
38.4% of the explained variance, which was higher than that explained by the combination
of all variables belonging to the landscape configuration group. This result suggests that
the factors affecting the foraging of storks are more extensive and complex, which may be
related to the wide spatial distribution of food and the complexity of the environment in
which the food is located. This result further suggests that only marshes or mudflats in the
right locations are more likely to be selected, the correctness of which is highly dependent
on landscape composition and configuration.
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4.2. Satellite Tracking Technology Facilitates the Study of the Scale of Effect

Combining enviro-anthropogenic variables measured at their best-performing scale in
multivariate and multiscale models has been proven to be more accurate and realistic than
traditional single-scale methods [20,23,50]. It is not surprising that the relative importance
of variables usually changes with scale, as different processes may operate at different
scales [19,21–23]. Therefore, variables need to be measured across several scales to identify
the optimal scale that yields the strongest species-environment relationship, which is the
so-called scale of effect [23].

In traditional studies involving the scale of effect, the optimal scale is usually identified
by enumerating a series of scales [19,23], which is steady but time-consuming. Miguet et al.
(2016) proposed that the scale of effect should depend on species traits, especially those
associated with individual mobility, such as dispersal distance and home range size. Taking
advantage of the high spatial-temporal resolution satellite tracking data, we minimized
the search range for the optimal scale by identifying the daily foraging and roosting scales.
Then, the process of identifying the optimal scale of each variable was carried out around
the calculated scale for foraging and roosting. Finally, multiscale and multistate habitat
selection models were built with scale-optimized and collinearity-free variables. Although
satellite tracking data collected from a limited number of waterbirds cannot represent
general conditions at the population level, this approach may be the only currently avail-
able method to track fine-scale, large-extent and time-continuous movement [51], which
facilitates the study of habitat selection and the scale of effect.

4.3. Habitat Selection Research Should Be Detailed According to Habitat Requirements

Simply unifying predictions by using all the occurrence data without distinguishing
the differences among them may lead to misinterpretation, as species may rely on different
resources across days, seasons, and behaviors [3]. In this study, the habitat requirements
of Oriental White Storks during the wintering period at Poyang Lake were divided into
two types: foraging and roosting, the characteristics of which were analyzed from the
perspectives of landscape pattern and configuration, disturbance, and natural factors.
Combined with the results of point-scale habitat selection that are commonly used in
traditional studies, we find that storks prefer areas covered by mudflats, lakes or marshes
for both foraging and roosting states (Figure 6). Moreover, the rate of habitat use declines as
the distance to these areas increases (Figures 4 and 5). This result supports the central-place
foraging hypothesis, which states that species often forage around their roosting sites
during a period of the day to rest (Figure 7) [52]. Storks prefer roosting on mudflat, marsh
or lake areas with a large proportion of marsh and mudflat areas positioned close to lakes
with fewer other forms of land cover. Although they prefer to forage on the same land
cover types with roosting, they prefer areas with fewer paddy fields, more mudflats, and
close to scattered lakes. Furthermore, although the optimal scale for most of the influencing
factors for foraging was 5 km, the scale for topography was larger, at a scale of 8 km. This
result suggests that storks tend to perceive terrain on a large scale when foraging, which
may be due to the influence of terrain on the dispersal ability or the spatial distribution and
allocation of food. However, the opposite was true for roosting. The fine-scale sensitivity
to topography probably reflects a tendency of storks to associate topography and cover.
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5. Conclusions

The application of satellite tracking and remote sensing technology makes it possible
to record detailed information on the characteristics of occurrence sites and their surround-
ing environments, thus facilitating the study of species-habitat relationships. Applying
univariate and multiscale models, the optimized scale of each variable and its relative
importance for different habitat requirements were identified in this paper. Our results
confirm that storks’ habitat selection varied with spatial scale and that these scaling rela-
tionships were not consistent among different habitat requirements (foraging or roosting)
and environmental features. Landscape configuration was found to be a more powerful pre-
dictor for storks’ foraging habitat selection, while roosting was more sensitive to landscape
composition. The percentage of landscape covered by marsh and mudflat at the 1.5-km
scale mainly determines the suitability of a site as a roosting area, while factors affecting the
foraging of storks are more extensive and complex. Given these differences in responses to
habitat requirements, scale and landscape structure, a multiscale and multistate approach
should be a mandatory process in conservation planning.
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