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Abstract: Mapping and monitoring the spatio-temporal variations of the Surface Urban Heat Island
(SUHI) and thermal comfort of metropolitan areas are vital to obtaining the necessary information
about the environmental conditions and promoting sustainable cities. As the most populated city of
Iran, Tehran has experienced considerable population growth and Land Cover/Land Use (LULC)
changes in the last decades, which resulted in several adverse environmental issues. In this study,
68 Landsat-5 and Landsat-8 images, collected from the Google Earth Engine (GEE), were employed
to map and monitor the spatio-temporal variations of LULC, SUHI, and thermal comfort of Tehran
between 1989 and 2019. In this regard, planar fitting and Gaussian Surface Model (GSM) approaches
were employed to map SUHIs and derive the relevant statistical values. Likewise, the thermal comfort
of the city was investigated by the Urban Thermal Field Variance Index (UTFVI). The results indicated
that the SUHI intensities have generally increased throughout the city by an average value of about
2.02 ◦C in the past three decades. The most common reasons for this unfavorable increase were
the loss of vegetation cover (i.e., 34.72%) and massive urban expansions (i.e., 53.33%). Additionally,
the intra-annual investigations in 2019 revealed that summer and winter, with respectively 8.28 ◦C
and 4.37 ◦C, had the highest and lowest SUHI magnitudes. Furthermore, the decadal UTFVI maps
revealed notable thermal comfort degradation of Tehran, by which in 2019, approximately 52.35% of
the city was identified as the region with the worst environmental condition, of which 59.94% was
related to human residents. Additionally, the relationships between various air pollutants and SUHI
intensities were appraised, suggesting positive relationships (i.e., ranging between 0.23 and 0.43) that
can be used for establishing possible two-way mitigations strategies. This study provided analyses
of spatio-temporal monitoring of SUHI and UTFVI throughout Tehran that urban managers and
policymakers can consider for adaption and sustainable development.

Keywords: Surface Urban Heat Island (SUHI); thermal comfort; UTFVI; Landsat imagery; air
pollution; remote sensing; Google Earth Engine (GEE)

1. Introduction

An Urban Heat Island (UHI; see Table A1 for the nomenclature) is a phenomenon
in which urban areas experience higher temperatures than surrounding rural areas. This
phenomenon is probably one of the most important indicators of environmental conditions
in metropolitan areas [1,2]. In particular, UHI adversely affects numerous socio-economic
and environmental factors, including urban climate [3], vegetation growth [4], quality of
drinking water [5], rain intensity [6], air pollutant concentration [7], human health [8],
and energy consumption [9]. The continuous conversions of natural land covers to urban
impervious surfaces alter the land surface energy processes and the thermodynamic prop-
erties of the surface, increasing the urban temperature and forming greater UHIs [2,10,11].
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According to the United Nations report, the urbanization rate has grown from 29% to
55% from 1950 to 2018, and it is predicted that by 2050, 68% of the world’s population
will indwell in urban areas [12]. This requires rapid urban expansions and developments,
which accelerate the temperature rise in metropolitan areas and significantly intensify the
UHI formation and intensity [13–15]. Therefore, it is of significant importance to monitor
and study the UHI patterns in metropolitan areas to adopt effective mitigation strategies
and promote sustainable cities [2,16].

Conventionally, in situ observations of air temperature data from ground stations or
radiosondes, recorded in both urban and rural areas, were employed to calculate UHI (i.e.,
at urban canopy layer or urban boundary layer) intensities for further analyses [17,18].
Although in situ observations provide the most precise data, their limited number and
spatial discontinuity restricted their usage for efficient UHI mapping [17,19]. Consequently,
it is appealing to incorporate remote sensing data, with spatial continuity, broad coverage,
and frequent data acquisition, to investigate Surface UHI (SUHI) variability in metropolitan
areas [20,21]. Notably, the possibility of recording thermal emissions of the Earth’s surface
through Thermal Infrared (TIR) remote sensing created an exceptional opportunity to
extract Land Surface Temperature (LST) products to study SUHI patterns allowing for
a more profound understanding of thermal spatial pattern and the impact of surface
characteristics of SUHI [22]. Additionally, the LST products allow calculating different
thermal comfort indices, such as Urban Thermal Field Variance Index (UTFVI), a broadly
used thermal index for assessing the environmental condition of metropolitan areas, to
manifest the impact of SUHI intensities [23–26].

Up to now, many scholars have dedicated research studies to derive SUHI pat-
terns/maps from remote sensing LST data for further spatial analyses. For instance,
Guha et al. [23] employed Landsat-8 data to map the SUHI patterns and UTFVI maps
in Naples and Florence, Italy. Their results revealed that more than 75% of SUHIs were
formed within Bare Land (BL) and Built-Up (BU) areas, which were also demarcated as
ecologically stressed zones. In another study, Bokaie et al. [27] employed Landsat Thematic
Mapper (TM) data to map the SUHIs of Tehran in 2010 and investigate its relationship
with the Land Use/Land Cover (LULC) map and Normalized Difference Vegetation Index
(NDVI) image. They reported full compliance between average LST values and LULC
classes and a moderate negative correlation between LST and NDVI values, which was
also in accordance with other studies [28]. Likewise, several other scholars incorporated
multi-temporal remote sensing data to map the spatio-temporal variability of SUHI pat-
terns [29–31]. For example, de Faria Peres et al. [32] explored the trend of SUHI evolution
over 30 years and compared the results with LULC maps. The results suggested that the
main reason for the 2 ◦C rise of SUHI intensity in Rio de Janeiro was associated with urban
expansion due to the significant growth of LST in urban areas. Additionally, Nadizadeh
Shorabeh et al. [33] employed five Landsat images between 1985 and 2017 to study the
SUHI variations in Tehran. Later, they applied the Cellular Automata-Markov (CA-M) and
Artificial Neural Networks (ANN) model to predict the LULC of 2033 to model the future
surface SUHI intensity.

Tehran is the largest and most populated metropolitan in Iran, and as the central hub
(i.e., political, economic, social) of the country, it has experienced enormous population
growth and extensive urbanization [34]. Several studies were carried out to study and
monitor SUHI and LST variations throughout the city [35–41]. However, the SUHIs were
still extracted by a single image in these studies, so that they could not be considered
as a thorough description of annual or seasonal SUHI. This is because Utilizing time-
series remote sensing images produces a more detailed and persuasive understanding
of the complexity of SUHI in comparison with analyzing this phenomenon with limited
images [42,43]. Moreover, the thermal environmental condition of Tehran has not been
analyzed in previous studies. To the best of our knowledge, no comprehensive study was
dedicated to investigating three decades of SUHI and UTFVI patterns in Tehran through
time-series data. Furthermore, Tehran is suffering from severe air pollution [44], and thus, it
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is required to appraise the relationship between air pollutants and SUHI intensities, which
has not been conducted in Tehran. In fact, the contradictory reports of the relationship
between air pollutants and SUHI intensities in different locations necessitate performing
these analyses for Tehran [45–48]. These investigations would provide profound informa-
tion about the environmental condition of Tehran, leading to effective decision-making for
a sustainable city.

Considering the foregoing, this paper aims to extend previous studies and provide
relevant information from new aspects by investigating the spatio-temporal variability
of SUHI and thermal comfort and appraising the relationship of SUHI intensities and air
pollutant concentrations in Tehran. Specifically, the present study follows three objectives:
(1) Investigating the SUHI changes over the past three decades and examining its intra-
annual variations, providing the SUHI magnitudes and footprints; (2) exploring the spatial
changes of the environmental condition of Tehran over the last three decades using the
UTFVI; and (3) identifying the relationship between SUHI intensities and different air
pollutants concentration for Tehran.

2. Study Area and Data

This section covers three subsections, namely the study area, satellite remote sensing
data, and ground data.

2.1. Study Area

Tehran, covering an area of about 730 km2, is the capital of Iran, located between
34◦35′–35◦50′N and 51◦02′–51◦36′E in the northern part of Iran (Figure 1). Tehran is
surrounded by the Alborz Mountains to its north and the country’s central desert to its
south, with a significant impact on the formation of a semi-arid climate. The climate is
mild in spring and autumn, hot in summer, and cold in winter, especially at night. With
a high elevation range between 900 and 1800 m above sea level, Tehran includes diverse
annual temperatures, reaching 42 ◦C in July [49]. Tehran is the central economic, political,
and recreational hub of Iran that attracts the most internal immigrants. Being the first
immigrant destination, the city population has grown from 6 million in 1985 to over 8.5
million in 2017 [33]. Consequently, the city has undergone significant urbanization and
urban expansion, leading to several environmental issues, such as air pollution, heavy
traffic, and high energy consumption demands [50,51]. Furthermore, the widespread
conversion of natural land covers and Green Space (GS) areas to BU and impervious surface
areas, such as altering the thermodynamic characteristics of the surface [10], resulted in
an increase in urban temperature and formation of SUHIs with higher intensities [52].
Therefore, profound research should be dedicated to studying and monitoring long-term
SUHI patterns and the thermal comfort of Tehran to promote a sustainable city through
adaptation and mitigation strategies.
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Figure 1. The geographical extent of Tehran in Iran, along with ground stations providing air
pollutant concentrations.

2.2. Satellite Data

TIR and optical (i.e., visible, infrared, and shortwave infrared) bands of Landsat-5 and
Landsat-8 satellite datasets were utilized for LULC, SUHI, and UTFVI mapping. Landsat-
5 and Landsat-8 are the fifth and eighth satellites of the Landsat Program, which were
launched as a joint cooperation between the United States Geological Survey (USGS) and
the National Aeronautics and Space Administration (NASA).

Time series data from 1989, 1999, 2009, and 2019 were utilized for a thorough anal-
ysis of SUHI and UTFVI throughout the year. These satellite data were collected from
the Google Earth Engine (GEE) cloud computing platform, which provides efficient and
rapid data access for geospatial data processing and prototyping [53,54]. Here, the sur-
face reflectance of Landsat-5 and Landsat-8 data within GEE through ImageCollection
IDs of (LANDSAT/LT05/C01/T1_SR) and (LANDSAT/LC08/C01/T1_SR), respectively, were
employed.

In total, 47 Landsat-5 scenes (i.e., Path 164 and Row 35), with less than 25% cloud
coverage, between 1989 and 2012 were used for LULC mapping and generating SUHI
and UTFVI maps in 1989, 1999, and 2009. Additionally, 21 Landsat-8 scenes (i.e., Path
164 and Row 35) with less than 25% cloud coverage were also used to derive LST images
and map SUHI and UTFVI in 2019 and to produce LULC maps between 2013 and 2019.
Table A2 provides brief specifications of the satellite images used in this study, and the
ImageCollection IDs are provided in Table A3.

2.3. Ground Data

In the present study, field observations from pollutant monitoring stations were em-
ployed to investigate the relationships between SUHI intensity and different air pollutants.
The hourly measured variables from 20 stations (see Figure 1) were provided by the Tehran
Air Quality Control Company. In this regard, the concentration values of air pollutant
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variables, including NO2, O3, and PM with aerodynamic diameters of 2.5 and 10 microns
for the year 2019, were downloaded from (https://air.tehran.ir accessed on 10 January
2020). Downscaled daily average concentration values were utilized for further analyses.
Table 1 provides average and Standard Deviation (SD) values of different air pollutants
throughout Tehran in 2019.

Table 1. Average and Standard Deviation (SD) values of air pollutants concentration in 2019 across Tehran in (µg
m3 ).

Air Pollutant

Season

Spring Summer Autumn Winter Annual

Mean SD Mean SD Mean SD Mean SD Mean SD

NO2 64 8.26 78.07 15.8 63.12 19.73 65.64 16.41 69.79 14.68
O3 49.22 14.57 76.68 33.7 36.81 6.83 22.44 13.46 52.97 31.95

PM2.5 49.25 13.12 59.18 10.64 66.27 12.76 44.98 13.56 54.2 14.01
PM10 61.43 20.22 70.18 20.11 73.17 22.54 64.25 21.89 66.52 20.61

3. Methodology

Figure 2 presents the flowchart of the proposed method for monitoring and mapping
the SUHI and UTFVI patterns. The proposed methodology includes four subsections,
which are described separately in detail. In this regard, first, the satellite data preprocessing
is explained. The LULC and SUHI mapping are described in the two next subsections,
followed by the UTFVI explanations in the last subsection.
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3.1. Satellite Data Preprocessing

As mentioned earlier, Landsat-5 and Landsat-8 surface reflectance datasets were
employed. Several preprocessing steps were initially applied to Landsat series satellite
images by the GEE developers. Regarding the initial preprocessing, the Landsat Ecosystem
Distribution Adaptive Processing System (LEDAPS) and the Land Surface Reflectance
Code (LaSRC) algorithms were respectively applied to Landsat-5 and Landsat-8 images for
atmospheric correction. Afterward, the C Function of Mask (CF Mask) was performed to
identify cloud, shadow, water, and snow masks for each pixel [55].

In this study, only cloud-free satellite data over the study area were used for further
processing. The surface reflectance optical data were directly used to produce LULC
maps and NDVI images of the study area, while other preprocessing steps, including
surface emissivity estimation (Equations (1) and (2)) [56] and emissivity correction to
derive LST images, were applied. It is worth noting that the emissivity correction increases
the reliability of the LST data [57,58] and, thus, improves the reliability of SUHI and UTFVI
analyses.

ε = 0.004× Pv + 0.986 (1)

Pv = ((NDVI−NDVImin)/(NDVImax − NDVImin))
2 (2)

where ε and Pv are surface emissivity and vegetation cover density, respectively, and NDVI
values were calculated based on Near Infrared (ρNIR) and Red (ρRed) surface reflectance
bands. Subsequently, estimated surface emissivity, along with brightness temperature
images, are employed to calculate the LST images by Equation (3).

LST =
Lλ{

1 +
[(
λ. Lλ

α

)
∗ ln ε

]} (3)

where Lλ is brightness temperature in kelvin, and λ is the effective wavelength of the
emitted radiance. Moreover, α is calculated based on h.c/k, in which k is the Stephan
Boltzmann constant (1.38× 10−23 J/K), h is the Planck’s constant (6.626× 10−34 J.s), and c
is the velocity of light (2.998× 108 m/s).

3.2. Land Cover/Land Use (LULC) Mapping

Optical surface reflectance images from both Landsat-5 and Landsat-8 satellites were
employed to generate four class LULC maps with 30 m spatial resolution from 1989 to 2019.
The produced LULC maps were used to investigate the urbanization trend during the last
three decades and also to examine their relationship with the spatio-temporal patterns
of SUHI and UTFVI maps for the years 1989, 1999, 2009, and 2019. The Support Vector
Machine (SVM) classifier with the Radial Basis Function (RBF) kernel implemented within
GEE was utilized to produce LULC maps. SVM is a non-parametric classification algorithm,
which is based on fitting optimal separating hyperplanes between different classes by
focusing on the training samples that lie at the edge of the distribution of the classes in
the features space, called support vectors [59]. It is worth noting that the RBF kernel was
used since it provides accurate LULC maps [60], and its necessary tuning parameters were
determined based on several trial and error attempts to achieve satisfactory classification
results. The generated LULC maps include four classes, namely Water Body (WB, including
artificial lakes), Green Space (GS, including urban parks, urban forests, trees, croplands,
and grasslands), Bare Land (BL, including unused lands with soil cover), and Built-Up
(BU, including human residents, industrial sites, and urban infrastructure). The required
reference samples to support the supervised classification tasks were collected by precise
visual interpretation of each image, and then they were randomly split into two halves of
training and test samples [61]. On average, 248 polygons with an area of about 4.7 km2,
including four LULC classes, were collected for each period, and Table A4 provides the
number of polygons and area of each land cover for the years 1989, 1999, 2009, and 2019.
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3.3. Surface Urban Heat Island (SUHI) Mapping

Generally, SUHI mapping methods are categorized into three groups, namely (1) using
LST as a proxy of SUHI, (2) LST differences between urban and the surroundings [13,62]
(i.e., reference areas), and (3) statistical methods [20]. The first approach uses LST values to
investigate the SUHI variability since the SUHI manifests itself in hotspot forms or high
LST values in comparison to the surrounding environment [63]. The main limitation of
these approaches is that they avoid the measurement of SUHI intensities and make SUHI
comparisons more challenging [20]. In the second category, the LST differences between
urban areas and mean LST values of reference areas (e.g., rural, suburban, water, and
vegetation) are employed to map the SUHI [38,64]. Although these methods are simple
to implement and provide SUHI intensities, they commonly suffer from uncertainties
associated with urban and reference areas delineation [65]. The third category utilized
statistical algorithms, such as Gaussian Surface Modeling (GSM) and linear regression
functions, to generate SUHI maps [66,67]. These approaches are not affected by the biases
caused by reference area selection and, thus, facilitate the SUHI comparisons [20].

In this study, the planar fitting and GSM were implemented to map the SUHI areas of
Tehran. The GSM model enables a better understanding of the SUHI patterns as it provides
the magnitude, spatial extent, and central location of the SUHI. Furthermore, this method
allows quantitative comparisons of SUHI maps over timescales for a single city [68]. The
GSM was first developed by [69], and then was employed in other studies to delineate
SUHI intensity and its spatial extents. A stable workflow to implement the GSM model
for SUHI mapping is thoroughly described in [70]; however, brief step-wise explanations
are provided in the following. For this task, the first step is to compute the SUHI map
based on Equation (4). To this end, the urban areas (BU pixels from the LULC maps) were
temporarily masked from the LST images (T(x, y); x and y are the pixel coordinates), and
then a planar surface was fitted to the existing non-urban LST values to determine T0, a1,
and a2. This part attempts to model the spatial pattern of LST in the study area with the
assumption of no BU areas. The next step is to subtract the fitted surface from the actual
LST with all pixels to extract the SUHI patterns (Equation (4)). Afterward, the GSM, as
shown in Equation (5), is fitted to the derived SUHI images using the least-square method.
These approaches provide the SUHI characteristics, including SUHI magnitude (a0), the
central location of the primary heat island (x0 and y0), its orientation (ϕ), and its spatial
extent (ax and ay). Furthermore, as an automatic workflow, it eliminated the uncertainties
associated with reference area selection [20].

T(x.y) = T0 + a1x + a2y + SUHI(x.y) (4)

SUHI (x, y) = a0∗ exp

[
−
(
(x− x0 ) cos ϕ +

(
y− y0

)
sin ϕ

)2

0.5a2
x

−
((

y− y0
)

cos ϕ− (x− x0) sin ϕ
)2

0.5a2
y

]
(5)

3.4. Urban Thermal Filed Variance Index (UTFVI) Mapping

UTFVI, which is calculated based on Equation (6) [71], is an extensively used indicator
that describes the environmental condition and quality of urban health through the measure
of thermal comfort presence in the environment [25]. Although there are different indices
for the evaluation of thermal comfort, they are not applicable in some regions due to the
lack of data [72–74]. UTFVI notably causes adverse impacts on different socio-economic
and environmental issues, including humidity, air quality, indirect economic loss, reduced
living comfort, and increased mortality rate [75]. Accordingly, the examination of the
UTFVI patterns is attracting more interest in the scientific community since it could provide
beneficial information of thermal comfort status, ensuring sustainable development [25].
The calculated UTFVI values were then classified into six classes (see Table 2) for better
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visualization and to provide explicit environmental condition patterns throughout the
city [23].

UTFVI =
LST− LSTmean

LST mean
(6)

Table 2. The Urban Thermal Field Variance Index (UTFVI) ranges to define the categorial environ-
mental condition.

UTFVI Value Range Environmental Condition Category

1 <0.000 Excellent Condition (EC)
2 0.000–0.005 Good Condition (GC)
3 0.0005–0.010 Normal Condition (NC)
4 0.010–0.015 Bad Condition (BC)
5 0.015–0.020 Worse Condition (WC)
6 >0.020 Worst Condition (WTC)

4. Results
4.1. Decadal LULC, SUHI, and UTFVI

Figure 3 shows the generated LULC, SUHI, and UTFVI maps over Tehran from 1989
to 2019.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 23 
 

 

2009 illustrate that over 55.45% of Tehran was identified as EC, while in 2019, 52.35% and 

37.11% were classified as WTC and EC, respectively. The results manifest a 16.37% and 

18.34% increase and decrease in the areas of WTC and EC in 2019, respectively, compared 

to the same classes in 2009. 

 

Figure 3. (a–d) Land Use/Land Cover (LULC) maps, (e–h) Surface Urban Heat Island (SUHI) maps, and (i–l) Urban Ther-

mal Field Variance Index (UTFVI) maps of Tehran for 1989, 1999, 2009, and 2019 for top to bottom, respectively. 

4.1.1. Relationship between SUHI and LULC 

For a more profound comparison between SUHI variations and LULC changes, the 

SUHI maps were classified into five categories, provided in Table 3. 

Table 3. Surface Urban Heat Island (SUHI) ranges to define categorial SUHI. 

 SUHI Intensity Ranges SUHI Category 

1 SUHI ≤ SUHImean − 1.5SUHISD Very Low  

2 SUHImean − 1.5SUHISD < SUHI ≤ SUHImean − SUHISD Low 

3 SUHImean − SUHISD < SUHI ≤ SUHImean + SUHISD Moderate 

4 SUHImean + SUHISD < SUHI ≤ SUHImean + 1.5SUHISD High 

5 SUHI > SUHImean + 1.5SUHISD Very High 

The classified SUHI maps, along with the corresponding pie charts showing the share 

of each SUHI class, are presented in Figure 4. It is evident that over the past three decades, 

the majority (i.e., over 70%) of the city was classified as Medium SUHI. Furthermore, the 

Figure 3. (a–d) Land Use/Land Cover (LULC) maps, (e–h) Surface Urban Heat Island (SUHI) maps, and (i–l) Urban
Thermal Field Variance Index (UTFVI) maps of Tehran for 1989, 1999, 2009, and 2019 for top to bottom, respectively.



Remote Sens. 2021, 13, 4469 9 of 25

Figure 3a–d illustrates that the city has undergone a substantial LULC change, mainly
in terms of urban expansion and the conversion of natural land covers into urban imper-
vious surfaces and BU. In particular, the produced LULC maps, with overall accuracies
that varied between 89.14% and 93.61% (see Figure A1), indicate that the BU areas covered
329.49 km2, 387.24 km2, 446.93 km2, and 505.17 km2 of the city in 1989, 1999, 2009, and
2019, respectively. This specifies an approximately 53.33% growth in BU areas over the last
three decades. Additionally, the time-series LULC maps generated from 25 Landsat-5 and
Landsat-8 images between 1989 and 2019 revealed a gradual upward trend of urbanization
with a rate of 5.86 (±2.42) km2 per year in Tehran. According to Figure 3a–d, consider-
able urban expansions occurred in the western and northern parts of the city due to the
construction and development of residential, industrial, and commercial infrastructures.
For instance, in 1989, most of the western parts of Tehran were covered by BL and GS,
constantly changing to BU by 2019. Moreover, a notable part of GS areas in 1989, especially
in the northern parts, were lost and superseded by BU.

Likewise, Figure 3e–h presents the SUHI maps of Tehran between 1989 and 2019. As is
clear, the spatial patterns of SUHIs have changed over the past three decades. Visually, the
regions in which the SUHI intensities were increased are mostly demarcated in locations
where BU areas were developed or BL areas exist. For example, the northern part of the
city experienced SUHI intensification that is mainly associated with the drastic reduction
of GS areas (see Figure 3a–d), which had eliminated the cooling effect of this land cover.
Similarly, the western regions, which have been the center of urban development for the
past decades, encountered a significant increase in SUHI intensity. Considering LULC maps
(Figure 3a–d), the SUHI intensifications could be partly identified as the consequences of
GS loss across Tehran. In addition to SUHI intensity changes over the regions associated
with LULC transitions, the city center, which was almost covered by BU in the study period,
also experienced a moderate aggravation of this phenomenon. Despite spatial changes of
SUHI intensities throughout Tehran, further statistical analysis revealed that the average
SUHI intensity in Tehran increased from 2.05 ◦C to 4.07 ◦C from 1989 to 2019. This also
confirms the necessity of devoting more research studies to examine the SUHI patterns and
intensities for further adaption.

The UTFVI maps were also derived from LST images and then were classified
into six classes (see Table 2) for better visualization and to provide an explicit spatio-
temporal overview of the environmental condition and thermal comfort throughout Tehran
(Figure 3i–l). Generally, major BU areas were distributed over two extreme categories of
EC and WTC, while small BU patches were demarcated in GC and NC. As in the SUHI
maps and urbanization patterns, the western part of Tehran had a higher rate of UTFVI
alterations, in which the WTC has spatially expanded except for small patches, including
the Chitgar Lake and the surrounding areas. The center and south of the city have also
experienced thermal comfort degradation since the WTC patches have enlarged. UTFVI
maps of 1989-2009 illustrate that over 55.45% of Tehran was identified as EC, while in 2019,
52.35% and 37.11% were classified as WTC and EC, respectively. The results manifest a
16.37% and 18.34% increase and decrease in the areas of WTC and EC in 2019, respectively,
compared to the same classes in 2009.

4.1.1. Relationship between SUHI and LULC

For a more profound comparison between SUHI variations and LULC changes, the
SUHI maps were classified into five categories, provided in Table 3.



Remote Sens. 2021, 13, 4469 10 of 25

Table 3. Surface Urban Heat Island (SUHI) ranges to define categorial SUHI.

SUHI Intensity Ranges SUHI Category

1 SUHI ≤ SUHImean − 1.5SUHISD Very Low
2 SUHImean − 1.5SUHISD < SUHI ≤ SUHImean − SUHISD Low
3 SUHImean − SUHISD < SUHI ≤ SUHImean + SUHISD Moderate
4 SUHImean + SUHISD < SUHI ≤ SUHImean + 1.5SUHISD High
5 SUHI > SUHImean + 1.5SUHISD Very High

The classified SUHI maps, along with the corresponding pie charts showing the share
of each SUHI class, are presented in Figure 4. It is evident that over the past three decades,
the majority (i.e., over 70%) of the city was classified as Medium SUHI. Furthermore, the
area of Very Low SUHI had moderate spatial changes and declined by about 2.26% from
1989 to 2019, which was mainly focused on the northern part of the study area. This may
be mainly linked to the loss of vegetation covers (i.e., GS) and their replacement with urban
impervious surfaces (i.e., BU). The area of Low SUHI increased by about 3.16% over the
last three decades, of which further investigations revealed that 60.45% of this class was
transited from the Very Low SUHI. Despite the variations of spatial distribution, the High
SUHI maintained nearly 9% of Tehran’s area over the study period. Moreover, Very High
areas, except for some small patches, were mainly distributed and expanded in the western
parts of Tehran, which was also in agreement with impervious surface developments. The
Very High area increased by about 3.44% from 1989 to 2019 and reached 10.05% of the
entire study area.
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class in (a) 1989, (b) 1999, (c) 2009, and (d) 2019 (see Table 3 for SUHI classes).

Additionally, the distribution of each LULC class at different SUHI categories for 1989,
1999, 2009, and 2019 was extracted by combining the LULC and classified SUHI maps.
According to the results (Figure 5), except for the WB, the majority area of other LULC
classes had Medium SUHI. The results suggest that the SUHI intensity (i.e., SUHI category)
has increased over the BL and BU areas over the last three decades while remaining
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relatively the same for the other two LULC classes. Moreover, the area of BU with High
and Very High SUHI intensities slightly increased from 1989 to 2019, which indicates the
necessity for precise monitoring of the SUHI phenomenon, especially in these regions, to
adopt mitigation strategies. Likewise, one can see a notable increase in the area of BL with
High and Very High SUHI intensities reaching nearly 47.53% in total over the last three
decades, which could also cause environmental issues for their proximities. The WB areas
mostly included Very Low SUHI that was already expected based on the cooling effect
characteristics of this land cover, except for a moderate fluctuation in 1999 that could be
linked to the misclassification errors of the LULC maps. Although the area of Very High
and High SUHI classes over the GS areas remained the same over time, the total area with
Very Low and Low SUHI intensities declined by about 15.49% in 2019, compared to their
corresponding utmost values (i.e., 39.12%) in 1999. In addition to the GS loss throughout
the city, the thinning of GS cover can also be understood as another reason for this decline
due to the weakening of cooling efficiency [76].
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Figure 5. Decadal distribution of each Land Use/Land Cover (LULC) class at different Surface Urban Heat Island (SUHI)
categories in percentage (relative to the total area of Tehran) from 1989 to 2019.

To further appraise the impact of GS loss as a great source of SUHI mitigation [8,35],
the decadal transition of GS to other LULC classes and the related SUHI intensity changes
were investigated (see Table 4). Considering Table 4, the most significant transition of
GS to other LULC classes, with a total area of 51.32 km2, occurred from 1999 to 2009.
This considerable LULC change has also been accompanied by an increment in the SUHI
intensity. In particular, the conversion of 20.61% of GS to BL from 1999 to 2009 resulted in a
2.16 ◦C rise in SUHI intensity in the corresponding locations. Likewise, the replacement
of 18.61% of GS with BU areas led to a 1.24 ◦C growth in the SUHI intensity. After LULC
changes between 1999 and 2009, the most extensive variation in GS occurred from 1989
to 1999 with a 40.03 km2 loss of GS, which resulted in an average SUHI intensification of
about 1.02 ◦C in the transition zones. In total, regarding the GS conversion to other LULC
classes from 1989 to 2019, approximately 85.76 km2 of GS disappeared, by which the SUHI
intensity experienced an average rise of about 2.84 ◦C in the changed areas, leading to
SUHI intensification throughout the city.
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Table 4. Mean Surface Urban Heat Island (SUHI) intensity of Green Space (GS) class along with the conversion rates to
three other Land Use/Land Cover (LULC) classes based on the number of pixels, area per km2 and the percentage of the
converted pixels to the total number of GS pixels, and the mean SUHI intensity changes of converted pixels during the
10-year from 1989 to 1999, 1999 to 2009 and 2009 to 2019.

Year from Mean SUHI (◦C) Year to Numb. of Pixels Area (km2) % of GS Mean SUHI (◦C)

1989 1999

Green Space 1.286 Built-Up 19,502 20.67 15.5 1.442
Bare Land 18,110 19.2 14.4 3.267

Water Body 154 0.16 0.1 −1.174

1999 2009

Green Space 0.963 Built-Up 22,975 24.35 18.6 2.206
Bare Land 25,438 26.96 20.6 3.127

Water Body 0 0 0 -

2009 2019

Green Space 1.469 Built-Up 17,278 18.31 18.2 2.864
Bare Land 19,121 20.27 20.2 4.878

Water Body 80 0.08 0.1 −3.07

4.1.2. Relationship between UTFVI and LULC

In order to examine the status of the LULC classes in terms of environmental condition
and thermal comfort, the relative percentage of each class for the two UTFVI classes of
EC and WTC for 1989, 1999, 2009, and 2019 were extracted (Figure 6). It is worth noting
that only two extreme UTFVI classes were considered since these two classes cover nearly
90% of the study area. In general, during the last three decades, all LULC classes had
downward trends in EC and upward trends in WTC. According to the results, BL areas
were dominantly demarcated in WTC in all time intervals. The BL areas had the most
environmental change in the last three decades. In particular, the area of BL with EC
declined from 28.60% in 1989 to about 10% in 2019, and meanwhile, the BL area with
WTC grew by about 22.53%, reaching 84.95% in 2019. In contrast, WB and GS areas
were located mostly in EC; however, the GS experienced a more severe degradation (i.e.,
a downward trend in EC and an upward trend in WTC) in environmental conditions,
which could probably be linked to the loss and thinning of GS cover. More importantly,
Figure 6a shows that in 1989, over 61.35% of BU areas were located in EC, while in 2019,
this percentage considerably decreased by about 19.01%, reaching 42.34%. Likewise, an
unfavorable upward trend can be seen in Figure 6b, in which nearly 45.31% of the BU
areas were demarcated in WTC. Consequently, the results confirmed that from 1989 to
2019, the BU, which is the permanent habitat of people, experienced significant thermal
comfort decay. These adverse environmental conditions in BU areas can be associated with
considerable urban expansions in unsuitable western parts of the city, which have also
been classified as WTC in the earlier year of this study.
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(a) Excellent and (b) Worst environmental conditions based on Urban Thermal Field Variance Index (UTFVI) in 1989, 1999,
2009, and 2019.

4.2. Intra-Annual Variation of SUHI

Seasonal variations of SUHI were also examined in the most recent year (i.e., 2019) of
the study period to obtain an overview of the current spatio-temporal SUHI status. This
analysis can provide practical information for future planning to promote a sustainable
city. In this regard, the pattern and descriptive characteristics of the GSM are represented
in Figure 7. Figure 7a–d illustrates the center and spatial footprint of primary SUHI, using
an ellipse with an orientation of ϕ and major and minor axes that are equal to ax and ay.
As is clear, the SUHI throughout Tehran generally had higher intensity in summer and
spring. It is evident that summer had the highest SUHI magnitude of 8.28 ◦C with the
greatest SUHI footprint, while the winter had the lowest SUHI magnitude of 4.37 ◦C. The
GSM results implied that almost the western and southwestern regions of the city, where
the center of SUHI was located in all seasons, had the highest rate of this phenomenon.
This could be related to the development and concentration of industrial infrastructure and
urban expansions in these regions. It is worth mentioning that there were other parts of the
city with SUHI hotspots; however, the GSM model attempted to find and fit the greatest
SUHI hotspot in the study area. Furthermore, the visual inspection of the results revealed
that despite the concentrated patches with high SUHI intensity, the road networks with
impervious surfaces, especially in the center of the city, included high SUHI intensity. This
may be rooted in the fact that these roads in the city center mostly suffer from high traffic
and the related heat from the combustion of fossil fuels.

As already discussed in detail in Section 4.1., the study area has undergone a significant
LULC change in the past three decades. Here, the seasonal variations of SUHI intensities
in different seasons between 1989 and 2019 were also explored. According to Table 5, the
average SUHI intensities of all LULC classes in each season have modestly increased from
1989 to 2019. For instance, the BL average SUHI in summer 1989 increased by about 2.35 ◦C
and reached 7.39 ◦C in summer 2019. Likewise, the average SUHI intensities over BU in
spring from 1989 to 2019 rose from 2.86 ◦C to 4.44 ◦C. In total, the results revealed that the
rise of the SUHI intensity itself through time and the LULC changes, in addition to causing
a higher amount of LULC classes to experience higher SUHI intensities, have increased the
average SUHI intensity throughout the city and decreased the thermal comfort and quality
of the city.
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Table 5. Seasonal values of mean Surface Urban Heat Island (SUHI) intensity for different types of Land Use/Land Cover
(LULC) and their coverage percentage (relative to the total area of Tehran) in 1989 and 2019.

1989 2019

LULC
Classes

Coverage
(%)

Mean SUHI (◦C) Coverage
(%)

Mean SUHI (◦C)

Spring Summer Autumn Winter Spring Summer Autumn Winter

BU 45.17 2.864 2.888 1.512 −0.561 69.26 4.44 4.298 3.137 1.706
GS 18.23 1.535 0.833 0.978 −0.6 11.9 3.359 3.24 2.773 2.122
WB 0.03 −0.897 −2.592 −1.449 −1.682 0.25 −2.783 −1.623 −0.145 1.595
BL 36.57 3.971 5.045 4.463 −0.66 18.6 6.816 7.392 6.619 3.286

4.3. Relationship between SUHI and AP

Air pollution is an influential factor on LST and consequently on SUHI intensity [77].
However, contradicting reports on the relationship between air pollutants and SUHI in-
tensity in different regions [45–48] necessitate local studies to appraise their relationship
in Tehran. In particular, these types of investigations should be examined through case-
specific studies to ensure the selection of efficient strategies due to the complex and different
characteristics of urban areas [46]. Accordingly, the results can assist in adopting more
efficient strategies for the mitigation of these two adverse environmental phenomena [78].
Here, five different air pollutants, including NO2, O3, PM2.5, and PM10, were considered to
discover their relationships with SUHI intensity. Figure 8 illustrates the generally positive
relationships between daily pollutants concentration and SUHI intensity in 2019. To esti-
mate the strength of bivariate associations between SUHI and air pollutants, the Correlation
Coefficient (CC) values were calculated. Considering the annual investigations, O3 and
NO2 had the highest and lowest CC values of 0.43 and 0.23, respectively. Furthermore,
the CC values were also computed in seasonal time scales. According to the results, the
highest CC values for O3 (0.64) and PM10 (0.60) were observed in autumn, while NO2 (0.43)
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had the highest CC value in spring. Additionally, PM2.5 was the only pollutant that had
almost steady behavior in all seasons, with an average CC value of 0.48. The discrepancies
in seasonal CC values could be linked to other climate and meteorological factors such as
wind speed, boundary layer structure, weather conditions, solar radiation, temperature
inversion, and humidity [48,79]. The results indicate that these two environmental issues
had a positive relationship, and an increase in one can strengthen the other and, thus,
should be properly monitored since they are threats to human life and degrade the quality
of life in metropolitan areas [80,81].
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5. Discussion

Due to socio-economic and political conditions, Tehran has experienced a high rate
of population rise in recent decades, which has led to Tehran being named one of the
cities with the highest annual growth in Asia [34]. These demographic changes were
accompanied by an increase in demands for urban facilities and resulted in a massive
conversion of natural land covers to urban impervious surfaces [28]. This study illustrated
that from 1989 to 2019, the dramatic urban expansion was accompanied by a considerable
increase in the agglomeration of BU areas during each decadal interval (Figure 3). The
sharp rise in BU constructions, especially in the western part of Tehran, has altered the
thermodynamic properties of the surface and increased LST. The decadal examination of
SUHI patterns throughout the city indicated the deterioration of thermal conditions in the
study area. One of the main consequences of urbanization that emerged with the land
cover transition was creating and intensifying SUHIs [82]. Some of the factors that have
contributed to the aggregated growth of SUHI intensity include population growth, an
increase in BU areas, the expansion of industrial activities, GS cover reduction, and changes
in the intensity of solar radiation [52,83]. Different studies have focused on the appraisal of
LULC transitions on increasing LST and SUHI. Furthermore, researchers have reported
a negative relationship between GS cover and SUHI intensity and its significant role in
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mitigating the SUHI intensity [84]. Considering Tehran, the northern part of the city had
the most considerable cooling effect associated with dense GS cover. However, over the last
three decades, notable GS areas disappeared, and as a result, the SUHI intensity increased.
Despite the GS loss, the thinning of GS density due to land cover changes also weakened
the cooling efficiency of the remnant GS areas [76]. Taking the current structure of Tehran
and the urban morphology, it may be practically infeasible and resource-intensive to create
new large GS (i.e., parks and forests) areas within the hotspot zones of SUHI and, thus,
it would be more cost-effective to establish new policies to encourage the use of green
and cool roofs to mitigate the SUHI intensities [85], which can be followed up in future
studies. Furthermore, utilizing high-albedo materials for roofs, pavements, and roads can
also help mitigate SUHI and cool the city [86]. Additionally, the decadal analyses of the
thermal comfort of the city through the UTFVI index demonstrated that the environmental
condition of the city experienced a notable decay. More importantly, currently, 45.31% of
BU exists in WTC zones that can potentially threaten human health. Despite other natural
and climate-related factors that contributed to the environmental decay of Tehran, the
construction of BU areas in locations with WTC in earlier decades has caused the unsuitable
environmental condition of the majority of BU areas in Tehran. Therefore, it could be stated
that the current status of the environmental condition of Tehran should be considered
before any possible urban expansion to avoid further degradations of thermal comfort in
BU areas.

Tehran is suffering from high-density air pollution [44]. Population growth, fossil fuel
consumption, and the reduction of local winds due to vast vertical urban expansion have
played essential roles in increasing the air pollutant concentration in Tehran. Additionally,
urban growth, the conversion of natural land cover to buildings and human residents, and
climate change have all enhanced the UHI intensity throughout the city. The preliminary
analysis in this study reveals the positive interaction between SUHI and AP, which is also
in accordance with similar studies in other areas [77,87,88]. In fact, high pollutant concen-
trations can trap more earth-emitted infrared radiation and heat in the urban environment,
thus increasing the temperature [89]. Consequently, it is possible to incorporate suitable
strategies to simultaneously reduce the SUHI intensity and AP concentration [90]. For
instance, urban greening (i.e., increasing the vegetation cover through the city, especially
in hotspot zones) is known to be an effective approach to mitigate the SUHI intensity. In
this case, an efficient strategy would be choosing appropriate plant/tree species that have
higher pollutant tolerance [90]. For example, Currie and Bass [91] found that extending
green roofs by grass or shrubs can significantly mitigate AP, and it is well known that
green roofs were stated to be one of the suitable approaches for UHI mitigation. Likewise,
a model estimated by Yang et al. [92] indicated that increasing green roofs by about 20
ha can remove nearly 1700 kg of air pollutions during one year in Chicago. Furthermore,
alterations in the urban microclimate can influence pollutant dispersion [90]. In particular,
SUHI-related warm temperatures in urban areas affect the atmospheric turbulence and
increase the boundary layer’s height, leading to higher air pollution concentration [7,93].
Accordingly, SUHI mitigation will remove the effect that excessive warm temperatures
have on atmospheric turbulence. For instance, Epstein et al. [94] reported that a decrease
of about 0.35 k in the UHI intensity can decrease the urban boundary layer height by
about 60%, thus boosting the dispersion of aerosol particles inside a deeper boundary layer,
decreasing the aerosol concentration.

In this paper, Landsat-5 and Landsat-8 satellite images were collected from GEE. This
geospatial cloud platform helps to reduce the dedicated time and effort for repetitive
tasks, including pre-processing, image acquisition, and calibrating, of time-series satellite
data [95]. Accordingly, it is recommended to exploit the considerable potential of GEE for
long-term urban studies, especially for LULC, SUHI, and UTFVI mapping and monitoring.
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6. Conclusions

Time-series Landsat-5 and Landsat-8 satellite images were employed to study the
spatio-temporal variations of LULC, SUHI, and UTFVI throughout Tehran. The main
findings of this study include the following:

4 The generated LULC maps indicated that the simultaneous loss of GS areas along
with the expansion of BU areas have contributed toward SUHI intensification by an
average of 2.02 ◦C over the last three decades.

4 The seasonal SUHI investigations revealed that the summer had the highest SUHI
magnitude and footprint in Tehran.

4 The UTFVI analysis revealed that the thermal comfort condition of Tehran has been
significantly degraded since 52.35% of the city was identified as WTC, which was
increased by about 16.37% compared with 2009.

4 Notable thermal comfort degradation, especially in BU areas, was also associated
with arbitrary urban expansion in the western part of Tehran since these regions were
also classified as WTC even in earlier years when no BU existed.

4 The preliminary results of comparing SUHI intensities and AP (i.e., NO2, O3, PM2.5,
and PM10) concentrations indicated positive CC values between these two environ-
mental phenomena in Tehran, which could be considered to adopt two-way mitigation
strategies.

Policymakers and urban managers can employ the results of this study to avoid further
environmental degradation in Tehran and assist with movement toward a sustainable city.
In this regard, urban greening (i.e., by expanding urban parks, forests, and green roofs)
can be considered to improve the environmental condition of Tehran. Determining and
allocating pollution-tolerant plant species with reasonable cooling effects can be considered
as the next step to enhance the quality of life in Tehran.
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Appendix A

Table A1. The nomenclature of all abbreviations used in this paper.

Abbreviations Definitions Abbreviations Definitions

ANN Artificial Neural Networks NC Normal Condition

ASTER Thermal Emission and Reflection
Radiometer NDVI Normalized Difference Vegetation

Index

BC Bad Condition OLI Operational Land Imager

BL Bare Land PM Particulate Matter

BU Built-Up RBF Radial Basis Function

CA-M Cellular Automata-Markov SD Standard Deviation

CC Correlation Coefficient SUHI Surface Urban Heat Island

CF Mask C Function of Mask SVM Support Vector Machine

EC Excellent Condition TIR Thermal Infrared

GC Good Condition TIRS Thermal Infrared Sensor

GEE Google Earth Engine TM Thematic Mapper

GS Green Space UHI Urban Heat Island

GSM Gaussian Surface Model USGS United States Geological Survey

LaSRC Land Surface Reflectance Code UTFVI Urban Thermal Field Variance
Index

LEDAPS Landsat Ecosystem Distribution
Adaptive Processing System WB Water Body

LST Land Surface Temperature WC Worse Condition

LULC Land Use/Land Cover WTC Worst Condition

NASA National Aeronautics and Space
Administration
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Table A2. Brief specification of satellite images used for LUCL, UHI, UTFVI, and NDVI mapping over the study area.

Result Satellite Bands Spatial
Resolution (m)

Number of
Images Dates

LULC

Landsat-5 1, 2, 3, 4, 5, and 7 30 18

10/06/1989,
13/06/1990,
16/06/1991,
18/06/1992,
25/09/1993,
12/09/1994,
11/06/1995,
17/09/1996,
13/04/1997,
05/07/1998,
24/07/1999,
12/09/2000,
29/07/2001,
30/06/2002,
30/06/2008,
13/03/2009,
04/06/2010,
09/07/2011

Landsat-8 2, 3, 4, 5, 6, and 7 30 7

16/09/2013,
18/08/2014,
05/08/2015,
07/08/2016,
25/07/2017,
26/06/2018,
31/07/2019

UHI, UTFVI, and
NDVI

Landsat-5 6 30/120 m 32

01/01/1989,
06/03/1989,
25/05/1989,
10/06/1989,
26/06/1989,
29/08/1989,
14/09/1989,
30/09/1989,
16/10/1989,
13/01/1999,
18/03/1999,
19/04/1999,
05/05/1999,
21/05/1999,
06/06/1999,
08/07/1999,
24/07/1999,
09/08/1999,
10/09/1999,
12/10/1999,
13/11/1999,
13/03/2009,
01/06/2009,
17/06/2009,
03/07/2009,
19/07/2009,
04/08/2009,
05/09/2009,
21/09/2009,
07/10/2009,
08/11/2009,
24/11/2009
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Table A2. Cont.

Result Satellite Bands Spatial
Resolution (m)

Number of
Images Dates

Landsat-8 10 30/100 m 15

04/01/2019,
05/02/2019,
21/02/2019,
10/04/2019,
12/05/2019,
28/05/2019,
13/06/2019,
29/06/2019,
15/07/2019,
31/07/2019,
16/08/2019,
01/09/2019,
17/09/2019,
03/10/2019,
19/10/2019

The NDVI images were calculated to apply emissivity correction of LST images. In total, 47 Landsat-5 and 21 Landsat-8 scenes were
considered. There are several common image dates between the two above categories.

Table A3. ImageCollection IDs of Landsat-5 and Landsat-8 datasets of this study.

1. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890101
2. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890306
3. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890525
4. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890610
5. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890626
6. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890829
7. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890914
8. LANDSAT/LT05/C01/T1_SR/LT05_164035_19890930
9. LANDSAT/LT05/C01/T1_SR/LT05_164035_19891016
10. LANDSAT/LT05/C01/T1_SR/LT05_164035_19900613
11. LANDSAT/LT05/C01/T1_SR/LT05_164035_19910616
12. LANDSAT/LT05/C01/T1_SR/LT05_164035_19920618
13. LANDSAT/LT05/C01/T1_SR/LT05_164035_19930925
14. LANDSAT/LT05/C01/T1_SR/LT05_164035_19940912
15. LANDSAT/LT05/C01/T1_SR/LT05_164035_19950611
16. LANDSAT/LT05/C01/T1_SR/LT05_164035_19960917
17. LANDSAT/LT05/C01/T1_SR/LT05_164035_19970413
18. LANDSAT/LT05/C01/T1_SR/LT05_164035_19980705
19. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990113
20. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990318
21. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990419
22. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990505
23. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990521
24. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990606
25. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990708
26. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990724
27. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990809
28. LANDSAT/LT05/C01/T1_SR/LT05_164035_19990910
29. LANDSAT/LT05/C01/T1_SR/LT05_164035_19991012
30. LANDSAT/LT05/C01/T1_SR/LT05_164035_19991113
31. LANDSAT/LT05/C01/T1_SR/LT05_164035_20000912
32. LANDSAT/LT05/C01/T1_SR/LT05_164035_20010729
33. LANDSAT/LT05/C01/T1_SR/LT05_164035_20020630
34. LANDSAT/LT05/C01/T1_SR/LT05_164035_20080630

35. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090313
36. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090601
37. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090617
38. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090703
39. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090719
40. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090804
41. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090905
42. LANDSAT/LT05/C01/T1_SR/LT05_164035_20090921
43. LANDSAT/LT05/C01/T1_SR/LT05_164035_20091007
44. LANDSAT/LT05/C01/T1_SR/LT05_164035_20091108
45. LANDSAT/LT05/C01/T1_SR/LT05_164035_20091124
46. LANDSAT/LT05/C01/T1_SR/LT05_164035_20100604
47. LANDSAT/LT05/C01/T1_SR/LT05_164035_20110709
48. LANDSAT/LC08/C01/T1_SR/LC08_164035_20130916
49. LANDSAT/LC08/C01/T1_SR/LC08_164035_20140818
50. LANDSAT/LC08/C01/T1_SR/LC08_164035_20150805
51. LANDSAT/LC08/C01/T1_SR/LC08_164035_20160807
52. LANDSAT/LC08/C01/T1_SR/LC08_164035_20170725
53. LANDSAT/LC08/C01/T1_SR/LC08_164035_20180626
54. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190104
55. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190205
56. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190221
57. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190410
58. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190512
59. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190528
60. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190613
61. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190629
62. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190715
63. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190731
64. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190816
65. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190901
66. LANDSAT/LC08/C01/T1_SR/LC08_164035_20190917
67. LANDSAT/LC08/C01/T1_SR/LC08_164035_20191003
68. LANDSAT/LC08/C01/T1_SR/LC08_164035_20191019
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Table A4. Number and area of reference samples were collected using satellite images to support the supervised classification task for
LULC mapping.

ID Class
1989 1999 2009 2019

Polygons Area (ha) Polygons Area (ha) Polygons Area (ha) Polygons Area (ha)

1 Built-Up 64 84.01 67 90.66 71 94.38 77 105.62
2 Bare Land 83 199.85 84 208.19 81 193.78 80 189.38
3 Green Space 78 169.59 83 193.09 82 180.30 76 163.77
4 Water Body 14 7.38 14 7.38 14 7.38 25 15.89

Total 239 460.83 248 499.33 247 475.84 258 474.66
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