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Abstract: Convolutional neural networks (CNNs) have been widely used in hyperspectral image
classification in recent years. The training of CNNs relies on a large amount of labeled sample data.
However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for
hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve
high classification performance. To solve the above issues, a deep spectral spatial inverted residuals
network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced
to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In
addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed,
which locks the effective features of each layer while avoiding network degradation. Furthermore, a
global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial
global context information under the condition of the same number of input and output feature
maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number
of experimental results show that compared with some state-of-the-art classification methods, the
proposed method can provide higher classification accuracy for hyperspectral images.

Keywords: hyperspectral image; classification; deep feature extraction; inverted residual convolution
network; global 3D attention

1. Introduction

With the rapid development of remote sensing imaging technology, hyperspectral
image (HSI) has drawn more attention in recent years. HSI can be viewed as a three-
dimensional cube constructed by plenty of bands. Each sample of HSI contains reflection
information of hundreds of different spectral bands, which makes this kind of image
suitable for many practical applications, such as precision agriculture [1], food analysis [2],
anomaly detection [3], geological exploration [4,5], etc. In the past decade, hyperspectral
image processing technology has become increasingly popular due to the development of
machine learning. However, there are still some challenges in the field of HSI classification:
(1) the training of deep learning model depends on a great quantity of labeled sample data,
while the number of labeled samples in hyperspectral data is insufficient; (2) because HSI
contains rich spectral spatial information, the problem that the spectral spatial features of
HSI are not effectively extracted still exists [6]. In addition, the phenomenon of different
spectral curves of the same substance and different substances of the same spectral curves
often occur.

Many of the traditional machine learning-based HSI classification approaches use
hand-crafted features to train the classifier [7]. Obviously, feature extraction and classifier
training are separated. Representative methods of hand-craft features include local binary
patterns (LBPs) [8], directional gradient histogram (HOG) [9], global invariant scalable
transform (GIST) [10], random forest [11], and so on. Representative classifiers include
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logistic regression [12], limit learning machine [13], and support vector machine (SVM) [14].
The method of hand-craft features (they generally rely on utilizing engineering skills and
domain expertise to design several human-engineering features, such as shape, texture,
color, spectral, and spatial details [7]) can effectively represent various attributes of images.
However, the best feature sets of different data are very different. Moreover, manual
involvement in designing the features considerably affects the classification process, as it
requires a high level of domain expertise to design hand-crafted features [7]. Due to the
above limitations of hand-craft features, many automatic feature extraction methods have
emerged. For instance, deep learning is an automatic feature extraction method which has
achieved great success in recent years. More and more researchers apply deep learning
technology to HSI classification tasks.

HSI classification methods based on deep learning framework can be divided into
supervised classification methods and unsupervised/semi-supervised classification meth-
ods [15]. Unsupervised classification methods only rely on the spectral or texture informa-
tion of different ground objects of HSI for feature extraction, and then use the differences
of features to achieve the purpose of classification. There are some classification methods
improved by automatic encoders (AE) [16,17] for hyperspectral image classification. For
example, in [18], the feature representation is adaptively learned from unlabeled data by
learning the feature mapping function based on stacked sparse autoencoder. Zhang et al.
proposed an unsupervised HSI classification feature learning method based on recursive
autoencoder (RAE) network [19]. Mou et al. proposed an end-to-end complete convolution
deconvolution network based on the so-called encoder–decoder paradigm for unsuper-
vised spectral spatial feature learning [20]. Moreover, the proposal of generative adversarial
network (GAN) further promotes the development of unsupervised classification meth-
ods [21]. For instance, Zhu et al. proposed an HSI classification method based on GAN. The
generator provides the false input close to the real input, and the discriminator classifies
the real input and false input and obtains high classification accuracy [22]. Supervised
classification is the process of using the samples of the known category to judge the sam-
ples of other unknown categories. Mou et al. proposed a recurrent neural network (RNN)
model which can effectively analyze hyperspectral samples into sequence data, and then
determine the sample category according to network reasoning [23].

The HSI classification method based on CNN is also a typical supervised classification
method. As a powerful neural network, CNN has strong ability to automatically extract
features. At present, most CNN-based hyperspectral classification methods focus on joint
spectral spatial feature extraction. According to different implementation types, they can be
divided into two categories: (1) extract spectral and spatial features, respectively, and fuse
them for classification; (2) extract spectral spatial features at the same time for classification.
There are many methods to extract spatial spectral features respectively. For example,
Zhang et al. proposed a dual-channel CNN (DCCNN) model, which uses one-dimensional
CNN and two-dimensional CNN to extract spectral and spatial features, respectively [24].
In [25], a dual-stream architecture is introduced, in which one stream encodes spectral
features through a stacked noise reduction automatic encoder, and the other stream extracts
spatial features through deep CNN. In [26], a three-layer CNN is constructed to extract
spectral spatial features by cascading spectral features and two-scale spatial features from
shallow to deep layers. Then, multilayer spatial spectral features are fused to achieve
complementary information. Finally, the fused features and classifiers are integrated into
a unified network and optimized end-to-end. Yang et al. proposed a deep convolution
neural network with double-branch structure to extract the joint spectral spatial features
of HSI [27]. The above methods were able to extract spatial and spectral features but
ignored the integrity of HSI. In this case, the method of extracting spatial spectral features
at the same time showed its advantages in combining the spectral spatial context and
preserving the integrity of HSI information. For example, Chen et al. proposed a three-
dimensional CNN (3D-CNN) architecture based on kernel sampling to extract the spectral
spatial features of HSI simultaneously [28]. In [29], a fast spectral space model with dense
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connectivity for HSI classification is introduced. Zhong et al. proposed a spectral spatial
residual network. The spectral and spatial residual blocks continuously learn the main
features from HSI to improve the classification performance [30]. Wang et al. proposed an
end-to-end alternating updating spectral and spatial convolution network with cyclic feed-
back structure to learn the spectral and spatial features of HSI [31]. Fang et al. proposed a
3D-CNN model combining the dense connection and spectral attention mechanism and
obtained good classification results [32]. Attention thoughts in deep learning are essentially
similar to human selective visual attention mechanism [33–35]. The core goal is to select
more critical information from a large amount of data. Nowadays, attention mechanism
is also widely used in HSI classification tasks. For example, inspired by squeeze-and-
excitation (SE) block [33], in [36], two bilinear squeeze-and-excitation network, (SENet,)
with different compression strategies are used to improve the performance of HSI classifi-
cation. However, deep learning models usually need a large amount of training samples
to achieve optimal performance. In order to solve the problem of limited labeled samples
of HSI and avoid overfitting, researchers have carried out a lot of research. Geometric
transformation method and pixel transformation method were commonly used in the early
stage. Later, some other methods were proposed. For instance, GAN can generate samples
similar to real data [37]. Wu et al. proposed the CRNN model, where first, all training
data and their pseudo-labels were used to pretrain the model, and then, the model was
fine-tuned with limited labeled data [38]. In addition to these two models, CNNs have also
been used to alleviate the small sample problem of HSI. Li et al. proposed a pixel pair (PPF)
method. The trained 1D-CNN classifies the pixel pairs composed of test center pixels and
surrounding pixels and determines the final label by the voting strategy [39]. Later, in [40],
a pixel block pair (PBP) method was proposed to extract PBP features with a depth CNN
model. Haut et al. introduced a random erasing method to increase the number of labeled
data [41]. In [6], Zhang et al. proposed a data balance augmentation method, which can
solve the problems of limited labeled data and unbalanced categories.

The training of a deep learning model depends on a large number of labeled sample
data. Data augmentation can alleviate the problem of limited labeled samples in a hyper-
spectral image dataset. Random erasing data augmentation has been applied to many scene
tasks. Nevertheless, in some articles [41] that apply it to hyperspectral image classification,
the scale of model space is too large, the complexity is large, and the classification accuracy
is not high. There is also the problem that spectral spatial features have not been effectively
extracted. Because 3D-CNN is more suitable for hyperspectral image classification tasks,
it can realize spectral and spatial feature representation at the same time. To address
challenges mentioned above, a deep spectral spatial inverted residual network (DSSIRNet)
based on data block augmentation is proposed. The network is divided into three stages. In
the first stage, the random erasing strategy is designed to enhance the data of the original
input 3D cube. The two components of the second stage realize effective joint spectral
spatial feature extraction. In the third stage, hyperspectral image classification is realized
by using the high-level semantic features learned previously.

The main contributions of this paper are as follows:
In order to make full use of the rich information in HSI, a DIR module is proposed. In

this module, the low dimensional representation of the input data is extended to the high
dimension, and the depthwise separable convolution is utilized for filtering. Then, the
features are projected back to the low dimensional representation by standard convolution.
This design is more suitable for high-dimensional feature extraction of HSI.

A global 3D attention module is designed and embedded into the DIR module, which
fully considers the global context information of spectral and spatial dimension to further
improve the classification performance.

The proposed DSSIRNet is based on 3D-CNN model. With considering the computa-
tional complexity, a random erasing strategy based on small spatial blocks is introduced to
increase the number of available labeled samples.
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The rest of this paper is arranged as follows. The details of the proposed DSSIRNet
algorithm are described in Section 2. In Section 3, the experimental results and analysis are
provided. In Section 4, some conclusions are drawn.

2. Materials and Methods

The overall framework of the proposed method is shown in Figure 1. Set S = {X, Y}
is the input of the model, where X ∈ <H×W×B is the 3D HSI cube with height H, width W,
and the number of spectral channel B, and Y is the label vector of HSI data. Firstly,
X ∈ <H×W×B is randomly divided into some 3D blocks, which are composed of marked
central samples and adjacent samples, and are recorded as a new sample set P ∈ <h×w×B,
where h, w, and B represent the height, width, and spectral dimension of the new 3D
cube, respectively.
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h and w are set to the same value. Then, the training set Xtrain is randomly sampled
from the new sample set according to a certain proportion P, and then the validation set
Xvalid is randomly sampled from the rest according to the same proportion. Finally, the
remaining proportion is used as the test set Xtest. Next, the DSSIRNet is trained with
the training set Xtrain to obtain the initial parameters of the model, and the parameters
are continuously updated through the validation set Xvalid until the optimal parameters
are obtained. Finally, the test set Xtest is input into the optimal model to obtain the final
prediction results Y′ .

2.1. The Overall Framework of the Proposed DSSIRNet

Figure 2 shows the structure of the proposed DSSIRNet. The framework is divided
into three stages: data augmentation based on random erasing, deep feature extraction
with dual-input fusion and DIR module, and classification. The first stage is designed
to solve the problem of limited labeled samples of hyperspectral images. Through block
random erasing of training samples, the spatial distribution of the dataset can be fully
changed, and the number of available training samples can be effectively increased without
parameter increase. In order to improve the robustness of the model, it is necessary to solve
the problem of insufficient spectral spatial information extraction of hyperspectral images.
The second stage of a deep feature extraction network can solve this problem. The second
stage mainly includes two parts: (1) dual-input fusion part; (2) DIR dense connection part.
In the second part of this stage, three DIR modules are densely connected to enhance the
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ability of feature representation. This paper also designs a global 3D attention module in
the DIR module to achieve more refined and sufficient global context feature extraction.
Finally, the spectral spatial features fully extracted in the second stage are input into the
third stage to realize classification.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 22 
 

 

changed, and the number of available training samples can be effectively increased with-
out parameter increase. In order to improve the robustness of the model, it is necessary to 
solve the problem of insufficient spectral spatial information extraction of hyperspectral 
images. The second stage of a deep feature extraction network can solve this problem. The 
second stage mainly includes two parts: (1) dual-input fusion part; (2) DIR dense connec-
tion part. In the second part of this stage, three DIR modules are densely connected to 
enhance the ability of feature representation. This paper also designs a global 3D attention 
module in the DIR module to achieve more refined and sufficient global context feature 
extraction. Finally, the spectral spatial features fully extracted in the second stage are in-
put into the third stage to realize classification. 

DIR
FC

Stage 1: Data augmentation 
by Random Erasing

Stage 2: Deep Feature Extraction with Double Input 
Fusion and DIR Module

Stage 3:
classification

 ( )f ⋅

 ( )g ⋅

...

...

9×9×97,32

9×9×97,32

＋
Random
Erasing DIRDIR

Conv3d BatchNorm3d swish DepthwiseConv3D

...

9×9×1,C

...

9×9×1,6C

...

9×9×1,6C

...

9×9×1,C
× ＋

...

9×9×1,2C

G3D
×

×

Global 3D 
Attention
Module
(G3D)

ReLU Adaptive AvgPool3d

＋ Element-wise addition × Element-wise multiplication

 
Figure 2. The structure of the proposed DSSIRNet. 

2.2. Block Random Erasing Strategy for Data Augmentation 
In the imaging process, hyperspectral images may be occluded by clouds, shadows 

or other objects due to the influence of the atmosphere, resulting in the loss of information 
in the occluded area. The most common interference is cloud cover. Therefore, in the first 
stage, this paper designs a block random erasing strategy. Before model training, first, the 
image scene is simulated under cloud erasing conditions, and then the space block with 
added interference is input into the model for training. It realizes the change of spatial 
information, increases the available samples, and then improves the classification accu-
racy. Different from [40], the feature extraction classification model proposed in this paper 
is three-dimensional. In order to avoid the high complexity of the model, the random eras-
ing under small spatial blocks (i.e., 9 × 9) is studied. 

For the training sample set trainX , S  is the spatial area of the original input 3D cube, 
the erasing probability is set to p , the area of the random initialization erasing area is set 

to eS , the ratio eS
S

 is set between lp  and hp , and the ratio er  of height and width of 

eS  is set between 1r  and 2r . First, a probability 1 (0,1)p Rand=  is randomly obtained. If 

1p p<  is satisfied, erasure is implemented; otherwise, it will not be processed. In order 
to obtain the position of the erasing area, first the initial erasing area ( , )e l hS rand p p S= ∗  
is calculated according to the randomly erasing proportion, and then the length and width 
of the erasing area is calculated according to the random height to width ratio: 

1 2( , )er rand r r=   (1)

e e eH S r= ∗   (2)

Figure 2. The structure of the proposed DSSIRNet.

2.2. Block Random Erasing Strategy for Data Augmentation

In the imaging process, hyperspectral images may be occluded by clouds, shadows or
other objects due to the influence of the atmosphere, resulting in the loss of information in
the occluded area. The most common interference is cloud cover. Therefore, in the first
stage, this paper designs a block random erasing strategy. Before model training, first, the
image scene is simulated under cloud erasing conditions, and then the space block with
added interference is input into the model for training. It realizes the change of spatial
information, increases the available samples, and then improves the classification accuracy.
Different from [40], the feature extraction classification model proposed in this paper is
three-dimensional. In order to avoid the high complexity of the model, the random erasing
under small spatial blocks (i.e., 9 × 9) is studied.

For the training sample set Xtrain, S is the spatial area of the original input 3D cube,
the erasing probability is set to p, the area of the random initialization erasing area is set
to Se, the ratio Se

S is set between pl and ph, and the ratio re of height and width of Se is set
between r1 and r2. First, a probability p1 = Rand(0, 1) is randomly obtained. If p1 < p is
satisfied, erasure is implemented; otherwise, it will not be processed. In order to obtain the
position of the erasing area, first the initial erasing area Se = rand(pl , ph) ∗ S is calculated
according to the randomly erasing proportion, and then the length and width of the erasing
area is calculated according to the random height to width ratio:

re = rand(r1, r2) (1)

He =
√

Se ∗ re (2)

We =

√
Se

re
(3)

Then, according to the randomly height and width value, the coordinate (xe, ye)
of the upper left corner of the erasing area can be obtained. According to the height
and width obtained by Formulas (1)–(3), the boundary coordinates of the occluded area
(xe + We, ye + He) can be obtained. If the coordinates exceed the boundary of the original
space, the above process is repeated. For each iteration of training, random erasing
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is performed to generate a changing 3D cube, which enables the model to learn more
abundant spatial information.

2.3. Dual-Input Fusion Part

Let x ∈ Xtrain
h×h×l be the data processed by random erasing. After spectral processing

f (·) and spatial processing g(·), two groups of feature maps are obtained as the dual input
of DIR module. In fact, f (·) and g(·) are the combination functions of three-dimensional
convolution, batch normalization (BN), and swish activation functions. The difference
between f (·) and g(·) is that the convolution kernel of three-dimensional convolution is
different, and the corresponding feature map is

Mspectral = f (x) = σ(BNγ,β[(W1 ∗ x + b1)]) (4)

Mspatial = g(x) = σ(BNγ,β[(W2 ∗ x + b2)]) (5)

where Mspectral and Mspatial are the feature maps obtained by spectral processing and
spatial processing, respectively, σ represents swish activation function operation, ∗ rep-
resents three-dimensional convolution operation, Wi and bi are the weight and bias of
two convolution, respectively, and γ and β represent the trainable parameters of BN opera-
tion, respectively. The three-dimensional convolution kernels of spectral processing and
spatial processing are 1× 1× 9 and 3× 3× 9, respectively. The number of convolution
kernels is 32, the convolution stride is (1, 1, 2), and the paddings are (0, 0, 0) and (1, 1, 0),
respectively. Therefore, the size and number of the two groups of feature maps are the
same. Then, the obtained two groups of feature maps are directly added and fused element
by element, which can be represented as

Msum = Mspectral ⊕Mspatial (6)

where ⊕ represents the element by element addition operation, and Msum represents the
fused feature map.

2.4. DIR Module

The DIR module designed in this paper is inspired by Mobilenet v3 [42] and Effi-
cientnet [43]. We expand the 2D inverted residual model to 3D inverted residual model.
Through a large number of experiments and parameter adjustment, a 3D general module
suitable for hyperspectral image classification is designed. Figure 3 shows the schematic
diagram of the DIR module.
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The main idea of deep extraction of spectral spatial features in a DIR module is to
expand the low-dimensional representation of input data to high-dimensional representa-
tion and filter the feature maps with depthwise separable convolution (DSC). The filtered
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feature maps are also transmitted to the global 3D attention module for deeper filter-
ing. Following this, the two groups of filtered features are multiplied to enhance feature
representation, and then these features are projected back to the low-dimensional represen-
tation by standard convolution. Finally, the residual branch is utilized to avoid network
degradation. The implementation details of DIR module are described in Algorithm 1.

Algorithm 1 DIR module.

Input: The feature map set xl ∈ <h×h×l,C obtained after dual-input fusion.
1: Ascend the dimension of input data xl ∈ <h×h×l,C by Conventional 3D convolution. The
number of feature maps after convolution is 6C, and then the feature maps are activated by BN
and swish.
2: DSC is performed on the feature maps in two steps: depthwise process and pointwise process.
The convolution kernels of the two convolution processes are set to 3× 3× 3 and 1× 1× 1,
respectively. The number of feature maps before and after DSC remains the same. Following this,
BN and swish activation are performed on these feature maps and then the filtered feature map
set Dl+1 is obtained.
3: Input Dl+1 into the global 3D attention module for depth filtering and obtain the feature map
set G3D.
4: Calculate the product of feature maps ˆG3D = Dl+1 ⊗ G3D.
5: Reduce the dimension of the multiplied feature map ˆG3D through conventional
three-dimensional convolution, and then perform the BN and swish to obtain the reduced feature
map set xl+1 ∈ <h×h×l,C.
6: Add the input feature map and the reduced dimension feature map, and then activate them
with swish to obtain the output feature map set yl = σ(xl ⊕ xl+1).
Output: Feature map set yl ∈ <h×h×l,C with the same size and number as the input feature map.

2.5. Global 3D Attention Module

Inspired by csSE [44], this paper designs the global 3D attention module, as shown
in Figure 4. The global 3D attention module fully considers the global information and
effectively extracts the spectral and spatial context features, so as to enhance the ability of
feature representation.
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The 3D spectral part: firstly, the input feature map U = [u1, u2, . . . , us] as a combina-
tion of spectral channels ui ∈ <d×d×s, is processed by adaptive average pooling (AAP),
and the tensor of element k is obtained:

zk =
1

d× d× s

d

∑
i=0

d

∑
j=0

s

∑
n=0

Uk(i, j, n) (7)

Then, two linear layers with size c
2 × 1× 1× 1 and c× 1× 1× 1 are trained to find the

correlation between features and classification, and the s-dimensional tensor is obtained.
Next, the sigmoid function is used for normalization to obtain the spectral attention map.
Finally, the obtained spectral attention map is multiplied by the input feature map. The
process can be represented as

Fc(U) = [δ(ẑ1)U1, δ(ẑ2)U2, . . . , δ(ẑs)Us] (8)

where δ(ẑs) represents the combination function of two linear layers, ReLU operation and
sigmoid activation operation, and Fc(U) is the spectral attention map.

The 3D spatial part: firstly, the image features are extracted through C convolution
layers, then the spatial attention map is activated by sigmoid function, and finally the
obtained spatial attention map is multiplied by the input feature map. The process can be
represented as

Fs(U) = [δ(q̂1)U1, δ(q̂2)U2, . . . , δ(q̂s)Us] (9)

where δ(q̂s) is the combination function of one-layer three-dimensional convolution and
sigmoid activation operation, and Fs(U) is the spatial attention map.

Finally, the feature maps obtained from the two parts are compared element by
element, and the maximum value is returned to generate the final global 3D attention map.

3. Experimental Setting and Results
3.1. Experimental Setting

(1) Datasets
In order to verify the performance of DSSIRNet, four classical datasets are used in

the experiment.
The Indian Pines (IN) dataset was obtained from the airborne visible infrared imaging

spectrometer (AVIRIS) sensor in northwestern Indiana. The data size is 145 × 145, a total
of 220 continuous imaging bands for ground objects. After excluding 20 bands of 104–108,
150–163, and 200 that cannot be reflected by water, the remaining 200 effective bands
are taken as the research object. The spatial resolution is 20 m per pixel and the spectral
coverage is 0.4~2.5 µm. There are 16 kinds of crops.

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously
images 115 bands in the wavelength range of 0.43~0.86 µm, with a spatial resolution
of 1.3 m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103,
including nine types of land cover.

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley,
California. The spatial resolution of the data is 3.7 m, and the size is 512× 217. The original
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious water
vapor absorption, 204 effective bands are retained. The dataset contains 16 crop categories.

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Okavango
Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 µm.
After excluding the uncalibrated bands covering the water absorption characteristics and
noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for research.
The data size is 1476 × 256. The ground truth map can be divided into 14 categories.

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training
set, validation set, and test set, respectively. The proportion of training, validation, and test
randomly selected from each category is the same. The training proportion is equal to the
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ratio of the number of training samples obtained by random sampling to the total number
of samples. The principle of validation proportion and test proportion is similar. Here, in
order to avoid missing training samples of some categories in the IN dataset, we randomly
select 5% for training, 5% for validation, and the remaining 90% for testing. The proportion
of training set, validation set, and test set randomly selected from UP dataset, SV dataset,
and BS dataset is the same, which are 3%, 3%, and 94% respectively. The detailed division
information of the four datasets is listed in Tables 1 and 2 respectively.

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP.

Setting IN UP

No Color Class Train Val Test Class Train Val Test

1
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Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Alfalfa 2 2 42 Asphalt 199 199 6233
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Corn-notill 71 71 1286 Meadows 559 559 17,531
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11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 
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set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Oats 1 1 18 Shadows 28 28 891
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Soybean-notill 49 49 874 — — — —
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Soybean-mintill 123 123 2209 — — — —
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Soybean-clean 30 30 533 — — — —
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Wheat 10 10 185 — — — —
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — 

Woods 63 63 1139 — — — —
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total of 220 continuous imaging bands for ground objects. After excluding 20 bands of 
104–108, 150–163, and 200 that cannot be reflected by water, the remaining 200 effective 
bands are taken as the research object. The spatial resolution is 20 m per pixel and the 
spectral coverage is 0.4~2.5 μm. There are 16 kinds of crops. 

The Pavia University (UP) dataset was collected by ROSIS sensor. It continuously 
images 115 bands in the wavelength range of 0.43~0.86 μm, with a spatial resolution of 1.3 
m. After eliminating the noise influence band, the size of UP is 610 × 340 × 103, including 
nine types of land cover. 

The Salinas Valley (SV) dataset was captured by AVIRIS sensors in Salinas Valley, 
California. The spatial resolution of the data is 3.7 m, and the size is 512 × 217. The original 
data is 224 bands. After removing 20 bands of 108–112, 154–167, and 224 with serious 
water vapor absorption, 204 effective bands are retained. The dataset contains 16 crop 
categories. 

The Botswana (BS) dataset was gathered from the NASA EO-1 satellite over Oka-
vango Delta, Botswana, with a spatial resolution of 30 m and spectral coverage of 0.4~2.5 
μm. After excluding the uncalibrated bands covering the water absorption characteristics 
and noise bands, 145 bands of 10–55, 82–97, 102–119, 134–164, and 187–220 are left for 
research. The data size is 1476 × 256. The ground truth map can be divided into 14 catego-
ries. 

In the follow-up experiment, the IN, UP, SV, and BS datasets are divided into training 
set, validation set, and test set, respectively. The proportion of training, validation, and 
test randomly selected from each category is the same. The training proportion is equal to 
the ratio of the number of training samples obtained by random sampling to the total 
number of samples. The principle of validation proportion and test proportion is similar. 
Here, in order to avoid missing training samples of some categories in the IN dataset, we 
randomly select 5% for training, 5% for validation, and the remaining 90% for testing. The 
proportion of training set, validation set, and test set randomly selected from UP dataset, 
SV dataset, and BS dataset is the same, which are 3%, 3%, and 94% respectively. The de-
tailed division information of the four datasets is listed in Tables 1 and 2 respectively. 

Table 1. Land cover category and number of samples for training, validation, and testing of IN and UP. 

Setting IN UP 
No Color Class Train Val Test Class Train Val Test 

1  Alfalfa 2 2 42 Asphalt 199 199 6233 

2  Corn-notill 71 71 1286 Meadows 559 559 17,531 

3  Corn-mintill 42 42 746 Gravel 63 63 1973 

4  Corn 12 12 213 Trees 92 92 2880 

5  Grass-pasture 24 24 435 Painted metal sheets 40 40 1265 

6  Grass-trees 36 36 658 Bare Soil 151 151 4727 

7  Grass-pasture-mowed 1 1 26 Bitumen 40 40 1250 

8  Hay-windrowed 24 24 430 Self-Blocking Bricks 110 110 3462 

9  Oats 1 1 18 Shadows 28 28 891 

10  Soybean-notill 49 49 874 — — — — 

11  Soybean-mintill 123 123 2209 — — — — 

12  Soybean-clean 30 30 533 — — — — 

13  Wheat 10 10 185 — — — — 

14  Woods 63 63 1139 — — — — 

15  Building-grass-trees-drives 19 19 348 — — — — Building-grass-trees-drives 19 19 348 — — — —
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(2) Experimental Setting and Evaluation Index
In the experiment, the batch size of each dataset was set to 16 and the input spatial

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition,
the maximum training epoch was set to 200. The experimental hardware platform is a
server with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G
memory. The experimental software platform is based on Windows 10 Visual Studio Code
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classification
results of all the experiments were the average classification accuracy ± standard deviation
through experiments more than 20 times. In order to provide a quantitative evaluation, this
paper uses overall accuracy (OA), average accuracy (AA), and kappa coefficient (kappa)
as the measures of classification performance. OA represents the ratio of the number of
correctly classified samples to the total number of samples. AA indicates the classification
accuracy of each category. Kappa coefficient measures the consistency between the results
and the real ground map, which is an index to measure the accuracy of classification.
Its calculation is based on the confusion matrix. The lower the Kappa value, the more
imbalanced the confusion matrix, and the worse the classification effect.
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3.2. Classification Results Compared with Other Methods

This paper compares the proposed DSSIRNet with some state-of-the-art classification
methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The re-
maining two methods and the proposed DSSIRNet are 3D-CNN based methods. Tables 3–6
list the average classification accuracy of the seven methods on the four datasets. The
2–17 lines record the classification accuracy of specific categories, and the last three lines
record OA, AA, and kappa of all categories. In addition, for these experimental results, the
best results are highlighted in bold.

Table 2. Land cover category and number of samples for training, validation, and testing of SV and BS.

Setting SV BS

No Color Class Train Val Test Class Train Val Test

1
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size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
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viation through experiments more than 20 times. In order to provide a quantitative eval-
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classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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Table 2. Land cover category and number of samples for training, validation, and testing of SV and BS. 

Setting SV BS 
No Color Class Train Val Test Class Train Val Test 

1  Brocoli-green-weeds-1 60 60 1889 Water 7 7 256 

2  Brocoli-green-weeds-2 108 108 3510 Hippo grass 5 5 91 

3  Fallow 54 54 1868 Floodplain grasses1 7 7 237 

4  Fallow-rough-plow 36 36 1322 Floodplain grasses2 7 7 201 

5  Fallow-smooth 78 78 2522 Reeds 7 7 255 

6  Stubble 114 114 3731 Riparian 7 7 255 

7  Celery 102 102 3375 Fierscar 7 7 245 
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14  Lettuce-romaine-7wk 30 30 1010 Exposed soils 2 2 91 

15  Vineyard-untrained 216 216 6836 — — — — 

16  Vineyard-vertical-trellis 54 54 1699 — — — — 

Total 1578 1578 50,973 — 95 95 3058 

(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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Table 2. Land cover category and number of samples for training, validation, and testing of SV and BS. 

Setting SV BS 
No Color Class Train Val Test Class Train Val Test 

1  Brocoli-green-weeds-1 60 60 1889 Water 7 7 256 

2  Brocoli-green-weeds-2 108 108 3510 Hippo grass 5 5 91 

3  Fallow 54 54 1868 Floodplain grasses1 7 7 237 
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5  Fallow-smooth 78 78 2522 Reeds 7 7 255 
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12  Lettuce-romaine-5wk 54 54 1819 Short mopane 5 5 171 

13  Lettuce-romaine-6wk 24 24 868 Mixed mopane 7 7 254 

14  Lettuce-romaine-7wk 30 30 1010 Exposed soils 2 2 91 

15  Vineyard-untrained 216 216 6836 — — — — 

16  Vineyard-vertical-trellis 54 54 1699 — — — — 

Total 1578 1578 50,973 — 95 95 3058 

(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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Table 2. Land cover category and number of samples for training, validation, and testing of SV and BS. 
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15  Vineyard-untrained 216 216 6836 — — — — 

16  Vineyard-vertical-trellis 54 54 1699 — — — — 

Total 1578 1578 50,973 — 95 95 3058 

(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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Table 2. Land cover category and number of samples for training, validation, and testing of SV and BS. 

Setting SV BS 
No Color Class Train Val Test Class Train Val Test 

1  Brocoli-green-weeds-1 60 60 1889 Water 7 7 256 

2  Brocoli-green-weeds-2 108 108 3510 Hippo grass 5 5 91 

3  Fallow 54 54 1868 Floodplain grasses1 7 7 237 

4  Fallow-rough-plow 36 36 1322 Floodplain grasses2 7 7 201 

5  Fallow-smooth 78 78 2522 Reeds 7 7 255 

6  Stubble 114 114 3731 Riparian 7 7 255 

7  Celery 102 102 3375 Fierscar 7 7 245 

8  Grapes-untrained 336 336 10,599 Island interior 7 7 189 

9  Soil-vineyard-develop 186 186 5831 Acacia woodlands 10 10 294 
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15  Vineyard-untrained 216 216 6836 — — — — 

16  Vineyard-vertical-trellis 54 54 1699 — — — — 

Total 1578 1578 50,973 — 95 95 3058 

(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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(2) Experimental Setting and Evaluation Index 
In the experiment, the batch size of each dataset was set to 16 and the input spatial 

size was 9 × 9. In this paper, Adam optimizer was adopted. The initial learning rate was 
set to 0.0003, and the patience value was set to 15 with cosine attenuation. In addition, the 
maximum training epoch was set to 200. The experimental hardware platform is a server 
with Intel (R) Core (TM) i9-9900k CPU, NVIDIA GeForce RTX 2080 Ti GPU and 32 G 
memory. The experimental software platform is based on Windows 10 Visual Studio Code 
operating system, and adopts CUDA 10.0, Pytorch 1.2.0, and Python 3.7.4. The classifica-
tion results of all the experiments were the average classification accuracy ± standard de-
viation through experiments more than 20 times. In order to provide a quantitative eval-
uation, this paper uses overall accuracy (OA), average accuracy (AA), and kappa coeffi-
cient (kappa) as the measures of classification performance. OA represents the ratio of the 
number of correctly classified samples to the total number of samples. AA indicates the 
classification accuracy of each category. Kappa coefficient measures the consistency be-
tween the results and the real ground map, which is an index to measure the accuracy of 
classification. Its calculation is based on the confusion matrix. The lower the Kappa value, 
the more imbalanced the confusion matrix, and the worse the classification effect. 

3.2. Classification Results Compared with Other Methods 
This paper compares the proposed DSSIRNet with some state-of-the-art classification 

methods, including SVM_RBF [14], DRCNN [45], ROhsi [40], SSAN [46], SSRN [29], and 
A2S2K-ResNet [47]. SVM_RBF is a pixel based classification method, DRCNN and ROhsi 
are 2D-CNN based methods, and SSRN is a method based on RNN and 2D-CNN. The 
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Vineyard-vertical-trellis 54 54 1699 — — — —

Total 1578 1578 50,973 — 95 95 3058

As can be seen from Table 3, the classification results of the proposed DSSIRNet
method on the IN dataset are obviously superior to those of other state-of-the-art methods,
and the best OA, AA, and kappa values are achieved. Because the frameworks based
on deep learning (including DRCNN, ROhsi, SSAN, SSRN, A2S2K-ResNet, and DSSIR-
Net) have excellent nonlinear representation and automatic hierarchical feature extraction
capabilities, their classification performances are better than that of SVM_RBF. For the
model based on 2D-CNN, the model structures of ROhsi and SSAN are too simple, and
the extraction of spectral spatial feature is not sufficient. Therefore, the OAs of the above
two methods are 9.63% and 9.08% lower than those of DRCNN, respectively. For the
3D-CNN model, the learning of spectral spatial features of SSRN is separated, and the
learned advanced features are not fused. Thus, the OAs of SSRN are lower than that of
A2S2K-ResNet and the proposed DSSIRNet method. The proposed DSSIRNet method
firstly performed block data augmentation on the input 3D cube to increase the available
samples, and then the designed DIR module fully extracted the spectral spatial features.
The global 3D attention module also effectively realized the selection and extraction of
global context information. The final dense connection operation effectively integrated
the joint spectral spatial features learned by the DIR module. Therefore, the OA value
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of the proposed method on the IN dataset is 0.8% higher than that of A2S2K-ResNet. In
particular, the proposed DSSIRNet method also provides a 100% prediction rate for the
wheat category.

Table 3. Classification results of different methods on the IN dataset.

Class. SVM-RBF [14] DRCNN [45] ROhsi [40] SSAN [46] SSRN [29] A2S2K-ResNet [47] DSSIRNet

1 35.17 ± 23.03 95.75 ± 3.41 68.25 ± 4.89 58.26 ± 3.47 97.30 ± 3.52 95.99 ± 6.88 98.88± 1.35
2 62.79 ± 3.24 87.63 ± 4.68 71.01 ± 0.60 65.01 ± 1.98 94.54 ± 3.20 94.88 ± 1.86 96.65± 2.50
3 68.52 ± 3.51 91.40 ± 5.62 79.54 ± 1.34 82.75 ± 13.96 95.13 ± 3.10 94.54 ± 2.04 96.64± 1.22
4 52.79 ± 7.87 88.37 ± 4.10 77.10 ± 5.62 87.10 ± 2.71 96.15 ± 2.02 96.59 ± 2.76 94.81 ± 2.66
5 86.19 ± 3.77 85.87 ± 2.12 85.16 ± 3.29 89.02 ± 2.48 97.67 ± 2.52 98.41 ± 1.10 98.62 ± 1.37
6 85.50 ± 2.78 97.79 ± 3.57 89.05 ± 5.23 96.99 ± 0.68 98.21 ± 0.91 98.38 ± 1.33 99.13± 0.58
7 75.54 ± 10.29 92.26 ± 1.99 71.79 ± 11.02 68.84 ± 16.49 82.07 ± 21.96 85.05 ± 12.34 94.18 ± 5.65
8 89.32 ± 2.00 99.08 ± 2.63 87.78 ± 2.02 98.48 ± 2.92 98.26 ± 3.24 99.75 ± 0.09 99.92± 0.38
9 59.87 ± 20.28 56.75 ± 9.04 40.74 ± 6.92 73.08 ± 36.90 85.91 ± 15.93 72.41 ± 18.63 83.71 ± 18.72
10 68.69 ± 3.36 97.18 ± 2.65 86.69 ± 1.30 93.38 ± 3.11 93.56 ± 2.44 94.72 ± 2.30 97.07 ± 4.77
11 69.97 ± 2.39 92.45 ± 2.78 90.12 ± 0.41 90.39 ± 3.09 97.34 ± 1.01 97.11 ± 1.55 97.65 ± 2.90
12 61.25 ± 5.31 98.03 ± 0.86 86.04 ± 4.54 96.65 ± 1.06 96.85 ± 2.19 95.77 ± 2.22 98.69± 0.92
13 87.18 ± 5.29 99.56 ± 0.18 86.48 ± 5.01 99.05 ± 1.14 99.57 ± 0.84 98.78 ± 1.50 100.0 ± 0.0
14 89.37 ± 1.73 98.23 ± 1.19 96.90 ± 0.28 97.48 ± 1.75 97.54 ± 1.76 97.54 ± 1.41 98.78 ± 1.21
15 69.36 ± 5.32 85.34 ± 0.97 76.50 ± 2.63 96.39 ± 2.75 95.94 ± 3.58. 95.62 ± 2.66 95.76 ± 2.60
16 98.61 ± 2.25 77.04 ± 4.70 81.34 ± 14.16 94.19 ± 7.80 94.17 ± 4.21 92.55 ± 5.62 98.70 ± 1.10

OA (%) 73.74 ± 1.30 94.87 ± 0.92 85.24 ± 0.52 85.79 ± 6.32 96.07 ± 0.73 96.38 ± 0.58 97.18± 0.61
AA (%) 72.50 ± 2.30 90.17 ± 1.59 79.65 ± 1.04 86.71 ± 3.03 95.00 ± 2.38 94.20 ± 1.18 96.82± 3.05

Kappa (%) 69.79 ± 1.49 94.36 ± 1.09 83.12 ± 0.60 83.78 ± 5.51 95.86 ± 0.84 95.88 ± 0.67 96.78± 0.69

Table 4. Classification results of different methods on the UP dataset.

Class SVM-RBF [14] DRCNN [45] ROhsi [40] SSAN [46] SSRN [29] A2S2K-ResNet [47] DSSIRNet

1 88.56 ± 7.71 95.75 ± 0.08 93.63 ± 1.27 94.63 ± 0.21 99.01 ± 0.08 99.44 ± 0.37 99.04 ± 0.53
2 97.12 ± 0.09 94.73 ± 1.20 96.99 ± 0.84 100.0 ± 0.0 98.99 ± 0.20 97.71 ± 3.08 100.0± 0.0
3 81.19 ± 9.07 90.40 ± 3.28 78.44 ± 2.08 76.39 ± 10.09 96.79 ± 1.62 96.11 ± 5.11 98.70± 0.54
4 86.58 ± 7.77 97.37 ± 0.23 96.56 ± 1.16 96.64 ± 0.63 97.98 ± 1.03 99.59 ± 0.18 97.98 ± 0.52
5 98.39 ± 0.08 98.87 ± 0.05 97.49 ± 1.75 97.84 ± 0.74 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
6 85.63 ± 1.89 95.70 ± 1.34 91.05 ± 0.69 87.90 ± 9.81 99.31 ± 0.55 100.0 ± 0.0 100.0 ± 0.0
7 85.81 ± 3.95 89.06 ± 11.37 84.30 ± 5.07 89.54 ± 8.05 99.69 ± 0.45 99.24 ± 1.01 99.39 ± 0.63
8 83.92 ± 0.98 96.19 ± 0.93 97.73 ± 0.47 92.99 ± 4.67 82.82 ± 1.81 95.95 ± 1.02 97.86 ± 0.51
9 99.12 ± 0.62 96.60 ± 1.32 99.36 ± 0.43 98.55 ± 0.06 99.86 ± 0.21 99.69 ± 0.28 99.89 ± 0.08

OA (%) 91.49 ± 1.04 95.79 ± 0.97 94.57 ± 0.51 94.35 ± 3.31 97.62 ± 0.71 98.22 ± 1.71 99.31 ± 0.06
AA (%) 89.59 ± 5.69 94.96 ± 0.51 92.84 ± 0.81 92.72 ± 1.28 97.16 ± 0.36 98.63 ± 0.99 99.20 ± 0.15

Kappa (%) 88.68 ± 3.08 94.67 ± 0.29 92.80 ± 0.67 92.44 ± 3.09 96.83 ± 1.42 97.62 ± 2.29 99.05 ± 0.08

Table 5. Classification results of different methods on the SV dataset.

Class SVM-RBF [14] DRCNN [45] ROhsi [40] SSAN [46] SSRN [29] A2S2K-ResNet [47] DSSIRNet

1 99.13 ± 0.31 98.84 ± 0.17 99.96 ± 0.04 99.66 ± 0.15 99.92 ± 0.09 100.0 ± 0.0 100.0± 0.0
2 99.22 ± 0.40 99.61 ± 0.09 99.96 ± 0.05 99.94 ± 0.02 100.0 ± 0.0 100.0 ± 0.0 100.0± 0.0
3 99.05 ± 1.70 99.75 ± 0.06 95.80 ± 1.79 96.62 ± 2.16 99.82 ± 0.25 99.74 ± 0.25 99.86± 0.13
4 98.67 ± 0.35 98.79 ± 0.35 99.11 ± 1.25 98.91 ± 0.62 98.90 ± 0.75 99.46 ± 0.40 99.66 ± 0.68
5 97.81 ± 0.19 98.84 ± 1.01 98.62 ± 0.73 99.79 ± 0.04 99.78 ± 0.29 99.58 ± 0.51 99.91 ± 0.82
6 98.62 ± 1.62 99.07 ± 0.80 98.27 ± 0.60 98.17 ± 0.43 99.98 ± 0.02 100.0 ± 0.0 100.0± 0.0
7 99.62 ± 2.02 89.05 ± 9.25 99.80 ± 0.22 99.79 ± 0.28 99.89 ± 0.15 100.0 ± 0.0 100.0 ± 0.0
8 81.91 ± 16.99 97.17 ± 2.23 88.66 ± 1.39 82.53 ± 9.37 99.55 ± 0.17 98.88 ± 0.87 99.07 ± 0.63
9 99.08 ± 0.85 96.88 ± 3.60 98.79 ± 0.20 100.0 ± 0.0 98.91 ± 0.14 99.93 ± 0.08 100.0± 0.0
10 88.26 ± 4.86 89.34 ± 0.41 97.29 ± 0.76 99.25 ± 0.53 98.68 ± 0.75 99.48 ± 0.32 99.79± 0.12
11 91.98 ± 4.17 100.0 ± 0.0 97.18 ± 0.73 99.53 ± 0.17 87.89 ± 14.41 98.59 ± 1.98 97.78 ± 3.00
12 99.14 ± 0.79 95.43 ± 1.37 97.94 ± 1.02 98.72 ± 1.15 99.74 ± 0.20 99.09 ± 1.16 100.0± 0.0
13 98.42 ± 2.43 98.97 ± 0.48 96.90 ± 0.39 96.20 ± 2.97 94.57 ± 7.67 98.50 ± 1.95 99.80± 0.11
14 91.49 ± 5.85 82.24 ± 11.34 97.48 ± 0.48 98.45 ± 0.93 98.99 ± 0.87 99.21 ± 0.51 98.93 ± 1.15
15 71.44 ± 19.45 97.57 ± 1.77 84.76 ± 1.49 90.36 ± 5.02 85.29 ± 5.44 94.06 ± 2.51 98.83± 0.92
16 97.21 ± 2.74 92.72 ± 0.05 88.33 ± 1.87 97.09 ± 1.28 99.93 ± 0.09 99.74 ± 0.18 100.0± 0.0

OA (%) 90.74 ± 0.96 96.63 ± 2.41 94.28 ± 0.16 94.64 ± 4.13 96.80 ± 1.84 98.36 ± 0.56 99.35± 0.09
AA (%) 94.44 ± 0.24 95.89 ± 0.50 96.18 ± 0.07 97.18 ± 2.69 97.62 ± 1.88 99.14 ± 0.55 99.60± 0.22

Kappa (%) 89.68 ± 1.27 94.07 ± 1.83 93.63 ± 0.18 94.02 ± 5.26 96.45 ± 2.05 98.18 ± 0.62 99.27± 0.10
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Table 6. Classification results of different methods on the BS dataset.

Class SVM-RBF [14] DRCNN [45] ROhsi [40] SSAN [46] SSRN [29] A2S2K-ResNet [47] DSSIRNet

1 90.94 ± 0.76 84.75 ± 7.20 98.16 ± 0.80 91.13 ± 9.24 98.74 ± 1.35 92.06 ± 3.74 99.96 ± 0.12
2 45.45 ± 31.12 61.00 ± 24.79 68.77 ± 7.56 93.03 ± 4.82 97.47 ± 5.04 100.0 ± 0.0 98.60 ± 1.74
3 94.21 ± 4.87 94.49 ± 0.31 65.81 ± 2.35 87.05 ± 8.24 99.91 ± 0.16 87.45 ± 11.10 100.0 ± 0.0
4 75.12 ± 16.17 82.55 ± 9.35 24.09 ± 9.61 92.99 ± 5.89 96.37 ± 2.96 91.41 ± 1.83 95.74 ± 2.90
5 77.99 ± 9.78 65.47 ± 18.90 52.17 ± 10.31 88.89 ± 10.02 91.05 ± 4.40 82.84 ± 9.50 93.48 ± 3.88
6 65.25 ± 9.65 75.40 ± 11.26 49.14 ± 8.59 50.33 ± 20.13 95.43 ± 4.54 88.66 ± 1.86 96.20 ± 2.97
7 95.65 ± 1.74 99.06 ± 0.03 73.38 ± 3.12 100.0 ± 0.0 100.0 ± 0.0 99.18 ± 0.88 100.0 ± 0.0
8 75.38 ± 16.84 84.20 ± 10.22 54.27 ± 11.85 87.28 ± 5.22 98.37 ± 1.48 97.89 ± 0.70 100.0 ± 0.0
9 81.04 ± 7.52 86.44 ± 7.23 70.27 ± 6.01 71.65 ± 25.43 93.94 ± 4.49 89.98 ± 5.69 99.40 ± 1.18
10 97.01 ± 1.47 87.18 ± 3.05 96.70 ± 3.14 80.24 ± 9.14 99.40 ± 0.42 92.19 ± 3.97 95.41 ± 4.21
11 85.08 ± 7.46 89.70 ± 1.69 83.50 ± 1.99 86.12 ± 7.07 99.82 ± 0.14 96.76 ± 3.64 99.83 ± 1.10
12 58.10 ± 25.59 93.45 ± 3.47 53.60 ± 26.50 67.31 ± 18.24 98.99 ± 0.06 97.00 ± 2.13 99.08 ± 1.54
13 71.65 ± 7.51 77.06 ± 21.13 57.01 ± 4.27 87.07 ± 6.81 99.52 ± 0.94 89.25 ± 7.76 100.0 ± 0.0
14 58.24 ± 7.58 96.95 ± 0.05 98.87 ± 1.58 92.66 ± 5.06 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

OA (%) 78.80 ± 2.41 86.56 ± 5.77 67.21 ± 4.47 84.17 ± 5.60 97.75 ± 0.44 91.56 ± 0.73 98.14 ± 0.81
AA (%) 76.50 ± 1.92 84.12 ± 4.01 67.55 ± 4.82 83.98 ± 9.54 97.78 ± 0.13 93.19 ± 0.62 98.40 ± 0.67

Kappa (%) 76.98 ± 3.08 84.57 ± 5.18 64.46 ± 4.86 82.87 ± 8.06 97.32 ± 0.47 90.84 ± 0.79 97.96 ± 0.88

For the UP dataset and SV dataset, as shown in Tables 4 and 5, the classification results
of all methods exceed 90%. The DRCNN uses multiple input spatial windows, so the OA
values are higher than that of SVM_RBF, ROhsi, and SSAN. A2S2K-ResNet can adaptively
select 3D convolution kernel to jointly extract spectral spatial features, so its OA values
are higher than that of SSRN. Compared with these methods, the OA values obtained
by DSSIRNet on the UP dataset are 7.82%, 3.52%, 4.74%, 4.96%, 1.69%, and 1.09% higher
than that of SVM-RBF, DRCNN, ROhsi, SSAN, SSRN, and A2S2K-ResNet, respectively.
The OA values obtained on the SV dataset are 8.61%, 2.72%, 5.07%, 4.71%, 2.55%, and
0.99% higher than that of SVM-RBF, DRCNN, ROhsi, SSAN, SSRN, and A2S2K-ResNet,
respectively. In particular, the proposed DSSIRNet method achieved 100% prediction rate
in the three categories of grassland, painted metal plate, and bare soil of UP dataset; on the
SV dataset, seven categories achieved 100% prediction rate.

Table 6 shows the classification results of different methods on the BS dataset. Com-
pared with the other three datasets, the BS dataset has the highest spatial resolution, so the
classification model is very important for the effective extraction of spatial context informa-
tion. Obviously, the classification performances based on 3D-CNN (SSRN, A2S2K-ResNet,
and DSSIRNet) are higher than other methods, because 3D-CNN can extract spectral and
spatial features at the same time. A2S2K-ResNet extracts joint spectral spatial features
directly, which may lose spatial context information, so its OA values are lower than that
of SSRN. The proposed DSSIRNet method utilized the DIR module to realize the joint
extraction of spectral spatial features, and combined the global 3D attention module to
focus on the spectral and spatial context features that contribute greatly to the classification,
so it achieved the best classification performance.

Figures 5–8 show the visual classification results obtained by seven methods on
four datasets. Taking Figure 5 as an example, the classification maps obtained by SVM_RBF,
DRCNN, ROhsi, and SSAN have some noise, especially in the corn-notill, grass-pasture, oats,
and soybean-mintill classes. The 3DCNN-based methods (including SSRN, A2S2KResNet and
DSSIRNet) extract the spectral spatial features more effectively. Compared with other meth-
ods, DSSIRNet greatly improves the regional consistency and make some categories more
separable, such as grass-trees, hay-windrowed, and wheat. As can be seen, the probability of
misclassification among the categories of SVM_RBF, DRCNN, ROhsi, and SSAN is large, and
the misclassification rate among other methods is small. In particular, the proposed DSSIRNet
method has the smallest misclassification rate and a clear category boundary, which is closest to
the ground real map, which shows the effectiveness of the proposed DSSIRNet method.
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4. Experimental Analysis
4.1. Parameter Analysis of Erasing Probability

In order to verify the efficiency of random erasing strategy under small spatial blocks,
we studied the influence of erasing probability and spatial blocks smaller than 20 × 20
on the classification performance, and showed the comparison results with the surface
graph, as shown in Figure 9a–d. It can be seen from Figure 9 that under the same patch
size, the OA value reaches the highest value at p = 0.15, and then the OA values of each
dataset begin to decrease with the increase of p. From the perspective of patch, for the same
parameter p, with the increase of patch size, the OA value obtains the highest value of each
dataset when the patch size is 9. To sum up, for these hyperspectral datasets, appropriate
size of image block (i.e., 9 × 9) and erasing probability (i.e., 0.15) are taken, which not only
reduces the computational complexity, but also improves the classification accuracy.

4.2. Run Time Comparison

In addition to classification accuracy, running time is also an important indicator in
HSI classification tasks, especially in practical applications. Table 7 shows the running time
of all methods on four datasets. Compared with other methods based on deep learning,
SVM_RBF takes the least time. Because DRCNN uses multiple input space windows for
learning, the running time of this method is long. ROhsi sends large space blocks to input
2D-CNN model for training, so the running time is longer than DRCNN. For SSAN, it
uses RNN and 2D-CNN to learn spectral spatial features at the same time, where running
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time is only longer than SVM_RBF. For 3D-CNN models, i.e., SSRN, A2S2K-ResNet, and
DSSIRNet, although the proposed DSSIRNet costs slightly more time on SV and BS datasets
due to a large number of layers, the running time of it is less than that of DRCNN and
ROhsi methods. Therefore, DSSIRNet has moderate computational complexity and can be
used in practical applications.
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Table 7. Running time of seven methods on four datasets (s).

Dataset Method SVM_RBF DRCNN ROhsi SSRN SSAN A2S2K-ResNet DSSIRNet

IN 4.7 102.8 83.88 31.7 5.8 39.5 39.6
UP 24.3 142.3 175.5 57.7 23.6 118.5 100.1
SV 55.5 272.7 310.2 120.9 61.1 141.4 219.3
BS 2.5 19.3 27.5 6.9 4.8 10.7 12.7

4.3. Efficiency Analysis of Dense Connection of DIR Module

In this section, the efficiencies of the number of DIR modules on four datasets are
analyzed, as shown in Table 8. As a general module, the DIR module is densely connected,
and the joint spectral spatial features extracted by the module can be used most effectively.
Firstly, the two DIR blocks are densely connected, and the classification accuracy exceeds
that of other methods except 3D-CNN model. When using three DIR modules, the proposed
DSSIRNet method achieves the highest classification accuracy. On this basis, after adding
another module, the OA value of each dataset decreases significantly. Meanwhile, the
number of layers and complexity of the model increase rapidly, which will affect the
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effective utilization of features. In conclusion, when three DIR modules are adopted, the
feature extraction is the most effective and the ability to distinguish features is the strongest.

Table 8. Number of DIR modules on four datasets (OA%).

Datasets 2 Blocks 3 Blocks 4 Blocks

IN 96.29 97.18 93.91
UP 98.86 99.31 98.99
SV 96.98 99.35 98.85
BS 97.93 98.14 97.85

4.4. Ablation Experiment

In order to verify the performance of the random erasing (RE) strategy and the global
3D attention (G3D) module proposed in this paper, the ablation results of the two modules
(strategies) on four datasets are shown in Table 9. It can be seen that when the RE strategy
and G3D module are not adopted, the classification accuracy of the four datasets is the
lowest. Adding any of these methods will increase the OA value. Because the RE strategy
increases the number of available samples, it will have a greater impact on the final
classification performance than adding only G3D modules. Obviously, the optimal OA
value is obtained by adding both the two methods at the same time (i.e., the proposed
DSSIRNet), which can not only realize data augmentation, but also consider the spectral
spatial global context information.

Table 9. Ablation experiments with different modules or strategies (OA%).

Approach Datasets

Use RE? Use G3D? IN UP SV BS

no no 95.77 98.56 96.31 97.33
no yes 95.86 98.94 96.90 98.04
yes no 96.21 98.89 97.75 98.10
yes yes 97.18 99.31 99.35 98.14

4.5. Small Sample Comparative Analysis

Figure 10a–d show the OAs of all methods on different datasets with different numbers
of training samples. Specifically, four datasets are randomly selected from labeled samples,
with 1%, 3%, 5%, and 10% training samples in each class. As can be seen from Figure 10,
the proposed DSSIRNet method achieves the highest classification accuracy on all four
datasets. With the increase of training proportion, the OA values of all methods are
improved, and the performance differences between different models are reduced, but the
OA value of the proposed method is still the highest. At 1% training samples, compared
with other models based on deep learning, ROhsi and SVM_RBF have no advantages.
In 5% of the training samples, the OA value of ROhsi on UP and SV increased rapidly,
exceeding that of SVM_RBF. Compared with other methods, the proposed DSSIRNet
shows the best classification performance in the case of small samples. The reason is that
it adopts an effective data augmentation strategy and the DIR module to realize effective
feature extraction, which also proves that DSSIRNet has more advantages in the case of
small datasets.
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Figure 10. Classification results on four datasets under different training sample proportions: (a) IN,
(b) UP, (c) SV, and (d) BS.

5. Conclusions

In this paper, we propose a novel HSI classification network, DSSIRNet. DSSIRNet is
divided into three stages. The first stage adopts a random erasing strategy for augmentation
of the data of the original 3D cube. The two components of the second stage realize effective
joint spectral spatial feature extraction. The third stage classifies high-level semantic
features. The full combination of the three stages realizes the optimal classification effect of
HSI. In addition, this paper studies the random erasing strategy in small spatial blocks,
which can expand the data more effectively without adding parameters. In DSSIRNet, an
effective feature extraction module, the DIR module, is designed to fully extract image
features. This paper also designs a global 3D attention module to fully consider the global
context information of spectral and spatial dimension and further improve the classification
performance. The experimental results on four datasets prove the effectiveness of DSSIRNet.
In the future, we will study a deep learning framework for HSI classification tasks with
low parameters and small samples.
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