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Abstract: We present an algorithm for computing ice drift in the marginal ice zone (MIZ), based
on partial shape recognition. With the high spatial resolution of Sentinel-1 and Sentinel-2 images,
and the low sensitivity to atmospheric influences of Sentinel-1, a considerable quantity of ice floes
is identified using a mathematical morphology method. Hausdorff distance is used to measure the
similarity of segmented ice floes. It is tolerant to perturbations and deficiencies of floe shapes, which
enhances the density of retrieved sea ice motion vectors. The PHD algorithm can be applied to
sequential images from different sensors, and was tested on two combined image mosaics consisting
of Sentinel-1 and Sentinel-2 data acquired over the Fram Strait; the PHD algorithm successfully
produced pairs of matched ice floes. The matching result has been verified using shape and surface
texture similarity of the ice floes. Moreover, the present method can naturally be extended to the
problem of multi-source sea ice image registration.
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1. Introduction

The importance of sea ice motion mainly arises from its impact on climate studies.
Information on sea ice motion is required by studies including (1) regional exchange of sea
ice, e.g., sea ice drifting towards lower latitudes, where it finally melts, (2) the formation of
leads and ridges by ice divergence and shear, (3) air-sea ice-ocean interaction (energy fluxes)
as regional ice motion imposes a velocity boundary condition on the ocean surface [1],
and (4) the formation and maintenance of polynyas [2]. In the context of the shrinking
Arctic Sea ice and the expansion of open water, marine transport and offshore activities in
the Arctic are expected to increase steadily, especially in the marginal ice zone (MIZ) [3].
In the MIZ, drifting ice plays an important role in protecting the stable morphology of
the inner ice from wave penetration [4], and impacts human accessibility to the Arctic
Ocean [5]. Therefore, monitoring of sea ice features such as ice islands and multi-year (MY)
ice becomes necessary to prevent hazards [6].

In the literature, different approaches to retrieve sea ice motion from various sources
of satellite remote sensing data can be found. Most of these algorithms derive the drift of
patterns or features in two sequential sea ice images by means of pattern matching (PM),
feature tracking (FT), or the optical flow approach [7]. Maximum-cross-correlation (MCC)
and normalized cross-correlation (NCC) have been applied in PM algorithms [8,9]. Another
method used in PM algorithms is phase-correlation (PC) [10]. Compared to MCC and
NCC methods, PC can capture rotated features [11]. FT algorithms such as scale invariant
feature transform (SIFT) [12] and speed-up robust feature (SURF) [13] identify key points
in the image, and then track the motion of these key points. The oriented FAST and rotated
BRIEF (ORB) algorithm is proposed to improve the computationally efficient and robust
features to image noise of FT algorithms [14].

Most of the aforementioned algorithms are performed for continuous ice cover [8,14]
or piecewise continuous ice cover [7,9]. Sea ice motion in summer MIZ of low sea ice
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concentration (SIC), however, remains largely unstudied. MCC and NCC are based on
the similarity of sub-domains in the images. As opposed to closed sea ice, sub-domain
images in the MIZ are characterized by the presence of a constantly moving collection of
discrete floes and open water. When larger leads (open water) exist between the ice floes,
they rotate and transit with almost no interaction between each other, which reduces the
similarity between the sub-domains in sequenced images, and therefore the floes show
only a weak correlation (the lower the sea ice concentration, the more difficult for MCC
and NCC methods). Compared to patterns or specific image features, the shape of floes is
more invariant between sequenced images in the MIZ. Therefore, the invariance properties
of floe shapes in multisource satellite data (e.g., SAR and optical sensor) become more
distinct. We therefore propose this method for sea ice motion retrieval, especially in the
MIZ, where existing methods perform less well.

There are two shape-based ice drift algorithms in the literature. One uses a suite of
geometrical ice floe parameters (perimeter, major and minor axes, centroid position, and
surface and convex area) to identify and track ice floes [15], and another uses the Euclidean
distance of the ice floe centroid to the nearest boundary pixel in n directions as a descriptor
for floe matching [16]. However, the shape of the same ice floe in two sequenced images
may be altered by melting, breaking off, or joining/rafting with surrounding floes, in
which case the sea ice motion retrieval requires recognition of partial shape similarity. The
Hausdorff distance used in this study has the advantage that it can naturally be extended
to the problem of finding the best partial shape similarity between two point sets.

Today, an enormous amount of Earth observation data is freely available for mapping
Arctic Sea ice in the MIZ, including active and passive high spatial resolution satellite
missions, such as Sentinel-1 (S-1) and Sentinel-2 (S-2). Sea ice drifting, however, hampers
the registration of images from different sensors, and impedes long-term monitoring of
individual floes. Thus, to overcome this limitation of sea ice monitoring, fine (pixel-to-pixel)
sea ice motion information is required. In this paper, we propose an algorithm (PHD) with
two main objectives: (1) mapping the drift of discrete floes in the MIZ based on partial
shape matching, and (2) pixel-to-pixel registration of ice floes in S-1 and S-2 images.

2. Data
2.1. Sentinel-1 Data

S-1 synthetic aperture radar (SAR) data acquired in extra wide swath mode with
medium resolution were used in this study, a stitched mosaic of 16 S-1 tiles of 30 July 2019 is
presented in Figure 1. The S-1 mission consists of two satellites, with S-1A and -B launched
in April 2014 and 2016, respectively. These two satellites improve temporal resolution, and
a large archive already exists. Each tile covers approximately 400 km × 400 km, with a
pixel size of 40 m. The large spatial coverage and high spatial resolution of S-1 enables
detailed observations of sea ice floes, which, in turn, may be a plus for feature matching. We
processed the data on Google Earth Engine (GEE), which provides Level-1 Ground Range
Detected (GRD) products. Orbit file application, noise removal, radiometric calibration,
and terrain correction were applied. The final pixels contain values of normalized radar
cross-section (radar backscatter intensity, denoted as σ0) in HH and HV polarization. For
further analysis, we used HH polarization, due to high contrast between ice and open
water in HH images [17].

2.2. Sentinel-2 Data

S-2 L2A data were also used in this study, encompassing atmospheric-corrected surface
reflectance. Stitched mosaics of 198 S-2 tiles of 30 July 2019 are shown in Figure 1. S-2 is
a polar-orbiting, optical mission for land- and coastal region-monitoring and emergency
services. The mission is a constellation of two satellites, S-2A and S-2B, each one equipped
with an optical imaging sensor MSI (Multi-Spectral Instrument). S-2A and -B were launched
in 2015 and 2017, respectively. MSI provides 13 spectral bands between 443 and 2202 nm,
and spatial resolutions between 10 and 60 m. S-2 provides high spatial resolution optical
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images of Arctic Ocean offshore areas up to once a day [18–21]. We used Band 3 (560 nm),
due to the high contrast between ice and open water in this wavelength region [16]; clouds
were masked using the ‘QA60’ band.
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Figure 1. (a) Location of S-1 and S-2 images; (b) S-2 band-3 mosaic image from 30 July 2019; (c) S-1
HH polarization mosaic image from 30 July 2019.

3. Methodology

The methodological approach follows three consecutive steps of image segmentation,
ice floe extraction, and ice floe matching, which are described in the following sections.

3.1. Image Segementation

To segment MIZ from landfast ice (LFI) and densely packed ice in S1 and S2 data, we
utilized mathematical morphology, a theory based on the analysis of spatial patterns, which
concerns the characterization of how a structuring element (SE) fits into an image [22].
Inner ice cover, LFI, and sea ice in the MIZ show distinct textures in satellite imagery
(Figure 2). The loose MIZ is characterized by a collection of bright discrete particles/floes
on a dark background, and the consolidated inner ice cover and LFI have a continuous or
piecewise continuous bright texture (Figure 2). To delete LFI and densely packed ice, a
morphological opening followed by a morphology closing are applied to the image, with a
SE of larger size than that of the ice floes of MIZ:

A′ = (((A	 B)⊕ B)⊕ B)	 B (1)

where A is the backscatter (S-1) or surface reflectance (S-2) image, B is a disk-shaped
structuring element of 400 × 400 pixels, and 	 and ⊕ is erosion and dilation operation,
respectively. The morphological opening of an image is defined as an erosion followed by
a dilation; the morphological closing of an image is defined as a dilation followed by an
erosion. Opening can remove small bright spots and connect dark features; this tends to
remove discrete ice floes, and close up open water of MIZ. Morphology closing can remove
small dark cracks and connect bright features; this tends to remove lead and close up ice
cover of inner ice/LFI. The output result A′ is shown in Figure 3. Due to its low mean
density in A′, MIZ can be identified using multi-Otsu segmentation; a threshold with a
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value of 0.16 was used, and sections with a value larger than the threshold were deleted
from further processing [23].
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Figure 3. (a) Output of morphological closing (A′) of the S-1 images; (b) histogram of the S-1 backscatter of A′;
(c) segmentation result. Masked features are shown in white color.

3.2. Ice Floe Extraction

To extract ice floes, the watershed transform method was utilized [24]. A subset of
the original image is shown in Figure 4a. First, an elevation map of the image was found
using the Sobel gradient (Figure 4c) [25], then markers of the water background and the
floes were identified (Figure 4d), based on the extreme values of the grayscale histogram of
the subset of image (Figure 4b). Finally, we used the watershed transform to fill regions of
the elevation map, starting with the markers determined above. Based on the watershed
segmentation result (Figure 4e), we then disconnected ice floes and removed small size
brash ice by utilizing a morphology dilation, followed by a morphology erosion (Figure 5).
Furthermore, zigzag shaped objects, collections of brash ice, or multiple connected ice floes
were removed by thresholding of roundness:
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R = 4× π× S/P2 (2)

where S and P are the area and the perimeter of the object, respectively. Since ice floes
tend to have higher roundness, objects of roundness less than 0.7 were removed (Figure 4f).
Small ice floes (less than 10,000 pixels) were also removed, due to their limited information
of floe edges. In the next section, we provide further details of the algorithm for matching
objects using the partial shape similarity concept; in particular, connected ice floes can also
be matched.
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3.3. Ice Floe Matching

As a third step, we applied the Hausdorff Distance for matching the extracted ice
floes (Figure 6). The Hausdorff distance measures the extent to which each point of a set
lies near some point of another set, and vice versa [26]. Thus, this distance can be used to
determine the degree of resemblance between two ice floes or objects. Given two finite
point sets X =

{
x1, · · · , xp

}
and Y =

{
y1, · · · , yp

}
, the Hausdorff distance is defined as:

H(X, Y) = max(h(X, Y), h(Y, X)) (3)

where:
h(X, Y) = sup

x∈X
inf
y∈Y
‖ x− y ‖ (4)

‖ · ‖ is some underlying norm on the points of X and Y, sup represents the supremum,
and inf represents the infimum. h(X, Y) identifies the point x ∈ X that is farthest from any
point of Y, and measures the distance from x to its nearest neighbor in Y (Figure 6). For
computing the Hausdorff distance under rigid motion of ice floe (translation and rotation),
we used the Euclidean norm (L2). We fixed the set X, and allowed set Y to move. The
minimum value of the Hausdorff distance under rigid (Euclidean) motion ME(X, Y) then
gives the best transformation of Y with respect to X:

ME(X, Y) = min
t,θ

H(X, (RθY)⊕ t) (5)

where H is the Hausdorff distance as defined in Equation (3), ⊕ is the standard Minkowski
sum notation, (RθY)⊕ t = {Rθy + t|b ∈ Y}, and Rθ is the standard rotation matrix. The
distance is small when there is a Euclidean transform that brings every point of Y near
some point of X, and vice versa.

As mentioned above, the shape of the same ice floe in two sequenced images may be
altered by melting, breaking off, or joining/rafting with surrounding floes, in which case
the sea ice motion retrieval requires a recognition of partial shape similarity. The Hausdorff
distance has the advantage that it can naturally be extended to the problem of finding the
best partial shape similarity between two point sets. For simplicity, the computation of
h(X, Y) determines the distance of the point of set Y that is farthest from any point of X,
that is, each point of Y is ranked by the distance to the nearest point of X, and the largest
ranked point determine the distance. A natural definition of the distance for K of the q
model points (1 ≤ K ≤ q) is given by taking the Kth ranked point of X (rather than the
largest ranked one):

hK(X, Y) = Kth
b∈Bmin

a∈A
‖ a− b ‖ (6)
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where Kth
b∈B denotes the Kth ranked value in the set of distance. This definition of the

distance has the advantage that it automatically selects the K best matching points of ice
floe X, because it identifies the subset of ice floe X of size K that minimizes the directed
Hausdorff distance. In general, some fraction 0 ≤ f ≤ 1 of the points of floe X must be
considered to compute hK(X, Y).

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 6. Schematic showing the principle of the Hausdorff distance. The dotted lines indi-
cate ℎ(𝑋, 𝑌) and ℎ(𝑌, 𝑋) of the red and blue curves, which represent the outlines of two floes. 

As mentioned above, the shape of the same ice floe in two sequenced images may be 
altered by melting, breaking off, or joining/rafting with surrounding floes, in which case 
the sea ice motion retrieval requires a recognition of partial shape similarity. The 
Hausdorff distance has the advantage that it can naturally be extended to the problem of 
finding the best partial shape similarity between two point sets. For simplicity, the com-
putation of ℎ(𝑋, 𝑌) determines the distance of the point of set 𝑌 that is farthest from any 
point of 𝑋, that is, each point of 𝑌 is ranked by the distance to the nearest point of 𝑋, 
and the largest ranked point determine the distance. A natural definition of the distance 
for 𝐾 of the 𝑞 model points (1 ≤ 𝐾 ≤ 𝑞) is given by taking the 𝐾th ranked point of 𝑋 
(rather than the largest ranked one): ℎ௄(𝑋, 𝑌) = 𝐾௕∈஻௧௛ min௔∈஺ ‖𝑎 − 𝑏‖ (6)

where 𝐾௕∈஻௧௛  denotes the 𝐾th ranked value in the set of distance. This definition of the 
distance has the advantage that it automatically selects the 𝐾 best matching points of ice 
floe 𝑋, because it identifies the subset of ice floe 𝑋 of size 𝐾 that minimizes the directed 
Hausdorff distance. In general, some fraction 0 ≤ 𝑓 ≤ 1 of the points of floe 𝑋 must be 
considered to compute ℎ௄(𝑋, 𝑌). 

Practically, a Voronoi surface 𝑑(𝑥) of a set 𝑌  was defined for the calculation of ℎ௄(𝑋, 𝑌). For each location x, it provides the distance from x to the nearest point y ∈ 𝑌. 
Figure 7 illustrates the Voronoi surface of floes Y (31 July 2019) of a S-1 subset, where 
brighter (whiter) parts of the image correspond to higher Hausdorff distance values. We 
can use the Voronoi surface to determine the place where the floes X (30 July 2019) might 
be in Y (31 July 2019), i.e., we located each floe of 30 July 2019 to the Voronoi surface of 
the floes in the 31 July dataset under rigid motion (which gave the lowest Hausdorff dis-
tance). 

Figure 6. Schematic showing the principle of the Hausdorff distance. The dotted lines indicate
h(X, Y) and h(Y, X) of the red and blue curves, which represent the outlines of two floes.

Practically, a Voronoi surface d(x) of a set Y was defined for the calculation of hK(X, Y).
For each location x, it provides the distance from x to the nearest point y ∈ Y. Figure 7
illustrates the Voronoi surface of floes Y (31 July 2019) of a S-1 subset, where brighter
(whiter) parts of the image correspond to higher Hausdorff distance values. We can use
the Voronoi surface to determine the place where the floes X (30 July 2019) might be in Y
(31 July 2019), i.e., we located each floe of 30 July 2019 to the Voronoi surface of the floes in
the 31 July dataset under rigid motion (which gave the lowest Hausdorff distance).
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Figure 7. The grey scale background is the Voronoi surface of the extracted floes of an S-1 subset
from 31 July; floes are labelled by date. The same color refers to same floe at different dates.

Since the approach introduced above requires significant computation time when
applied to a large dataset, we applied some techniques for more efficient computation.
Firstly, based on the ice floe extraction result, each floe was labelled with the UTM (Uni-
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versal Transverse Mercator) coordinate (X, Y) of its center. For the matching process, we
considered only floe pairs with a Euclidean distance of less than 10 km. Additionally, a
threshold τ of the Hausdorff distance could be set, and we could stop computing once
the Hausdorff distance of current translation was below τ (e.g., 5% of floe size). Secondly,
we assumed that floes tend to keep a similar area in sequential images, without strong
formation of leads or ridges. Once a floe and its neighboring floes had been extracted
in sequential images, we arranged a priority calculation according to the area similarity
of each floe pair. Moreover, the computing stopped partway if the floe pairs showed a
Hausdorff distance below τ.

4. Experimental Results and Discussion
4.1. Ice Floes Drift of MIZ

Sequential S-1 and S-2 images acquired on 30 July 2019 and 31 July 2019 (16 Sentinel-1
and 198 Sentinel-2 images, respectively) over the Fram Strait were processed to estimate
the motion of MIZ ice floes. The algorithm identified 8228 ice floes (4394 of 30 July, and
3834 of 31 July), and produced 1388 pairs of matched ice floes (position and number of
matched ice floes are shown in Figure 8), i.e., 34% of the extracted ice floes are matched
(with the parameter setting presented in the first row in Table 1). Most of the floes were
extracted from the S-2 images. When clouds were present in the S-2 images, we filled the
clouded areas with pixels of S-1 images.
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Table 1. The statistics of the algorithm with different parameter settings (f = fraction of the points of
floe X, τ = threshold of the Hausdorff distance, l = circumscribed circle diameter of floe X, ∇θ = step
size of rotation,∇l = step size of translation, N = number of matched floes pairs, T = computing time.
Accuracy is the percentage of correct matches).

f τ/l ∇θ/2π ∇l/l N T [s] Accuracy

0.8 1/50 1/20 1/10 1388 1849 100%
0.8 1/50 1/12 1/6 1155 1289 98%
0.8 1/30 1/20 1/10 1787 1603 95%
0.6 1/50 1/20 1/10 2147 1718 93%

To validate the results, we manually checked 100 of the matched floes pairs (randomly
selected by numbers from 1-1388). The manual check was necessary due to the lack of valid
reference data. Ice buoy data may work, but it is rare, and would only be available for one
or two floe pairs. The criterion for the manual validation check was that the matched floe
pairs must have similar shapes, areas, and surface textures in the satellite images. Table 1
shows the accuracy and computing speed for these floes with different parameter settings.

Using a sufficiently fine-scaled parameter setting, the algorithm retrieves accuracies
near 100%. Table 1 indicates that the values of ∇θ/θ and ∇l/l significantly affect the
computing time. With increasing step size of translation and rotation from 1/20 to 1/12,
the computing time near-linearly decreases from 1849 s to 1289 s, but leads to 2% of
mismatched floes. The parameter f also shows a higher effect on accuracy than computing
time; its sensitivity may also be related to SIC, because with higher SIC more leads and
ridges may be present on the floes. The parameter f also shows a high effect on the value
of N, which defines the number of matched floes pairs. As the f-value decreases, pairs of
floes with a smaller proportion of similar edges can also be matched, but there will also
be some non-matching floes. The parameter τ has a significant effect on both computing
time and accuracy and, therefore, can be a key parameter for algorithm tuning. Optimum
values of these parameter are achieved when the accuracy requirements are met within the
shortest time possible.

To derive the ice floes drift in the MIZ, we calculated a drift vector from each pair of
matching ice floes. For this, the starting and end position of the vector are the centroids of
the floe in the two sequential images. To illustrate the ice floe motion on a large scale, inverse
distance weighting (IDW) was used to retrieve the ice displacement vectors on a 204 × 164
polar stereographic grid (Figure 9). It can be observed from Figures 8 and 9 that the above-
mentioned processing may include interpolation inside the MIZ, and extrapolation at the
edge of MIZ.

The retrieved sea ice motion indicated that, as opposed to the relatively smooth sea
ice motion field of closed ice cover, the motion in MIZ may show sharp and locally extreme
spatial gradients. Moreover, the study illustrated some interesting kinematic processes
of MIZ sea ice, such as shear flow parallel to the ice edge, interaction between MIZ ice
motion, and external conditions in the air and sea; these processes, however, are still
largely unstudied.

As mentioned in Section 3.2, we removed small sized brash ice by applying morphol-
ogy processing. Brash ice is an accumulation of floating ice made up of fragments with
diameters less than 2 m. It is usually present at the edge of the MIZ, and connected to open
water. The proposed method cannot be applied to brash ice area as the resolution of S-1 and
S-2 is too coarse for monitoring the heavily fragmented brash ice. In S-1 and S-2 images,
brash ice has a structure like algal spirals. Therefore, an algal spiral tracking algorithm
(e.g., by Kozlov et al., 2020 [27]) can be used to retrieve brash ice motion. Combining the
proposed method and Kozlov’s algal spiral tracking algorithm may allow for the retrieval
of the complete MIZ ice motion field.
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4.2. Ice Floes Imagery Registration

The Hausdorff distance approach can naturally be extended to the problem of co-
registration of multi-source sea ice imagery. For sea ice motion retrieval, the co-registration
process needs pixel-to-pixel information about the motion (displacement and rotation) of
the ice floes. For image co-registration, we utilized the approach of Section 3 to retrieve
the matching floe pairs and their rough, relative displacement and rotation (as we utilized
coarse computing step size and τ values to stop the computation partway, the retrieved
relative motion shows a coarse precision). Then, we used a smaller calculation step size
(1 pixel for location and 1◦ for rotation) to retrieve the rigid motion that generates the
minimum Hausdorff distance. After the floe pairs were matched as precisely as possible,
the ice floe images were sub-setted via their overlapping part (Figure 10). As shown in
Figure 10, ice floe images from S-1 and S-2 can be merged for further analysis. Using this
information, floes can be compared, and information about area change (e.g., due to melting
or break off), their rotation and motion speed can be extracted. When applied to sequenced
S-2 images, changes in surface albedo or melt pond evolution can be investigated
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5. Conclusions

In this paper we developed a sea ice motion tracking algorithm with two objectives:
(1) mapping the discrete floes drift of MIZ utilizing a partial shape matching approach, and
(2) co-registration of S-1 and S-2 images. The experimental case covering the Fram Strait in
July 2019 demonstrated the effectiveness of the method described here.

We used processed data from GEE. For S-1 GRD images, the preprocessing included
orbit file application, noise removal, radiometric calibration, and terrain corrections. For
S-2 Level 2A images, we first masked clouds, and then filled masked areas with S-1 data
for the extraction of ice floes. Then, we segmented different sea ice types based on their
different texture with the mathematical morphology method. To segment ice floes in
the MIZ, we used a combination of Sobel gradient and watershed transformation. The
Hausdorff distance was used to co-register the extracted ice floes. To enhance computation
time, we applied a stepwise approach for ice floe co-registration by using a more granular
calculation step size.

The proposed approach provides information about ice drift on a predefined grid,
or a Lagrangian observation, of each ice floe. One of the major advantages of using the
Hausdorff distance approach is that it can match ice floes with partial shape similarity,
which improves the algorithm’s agility for ice drift-retrieving from images with ice floes of
changing shapes due to melting or the building of leads and ridges. Several parameters
affect the efficiency of the algorithm. Increasing the step size of translation and rotation
will increase the computing speed, but will also decrease the accuracy and number of
matched floes. Decreasing parameters f and τ will increase the robustness of the algorithm
dramatically, but decrease computing efficiency. By validating calculated drift results
against manually matched floe pairs, we found that our algorithm had a high accuracy.
Depending on the parameter setting, correct floe match accuracies of 93 to 100% could
be retrieved.
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