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Abstract: Widespread harmful cyanobacterial bloom is one of the most pressing concerns in lakes
and reservoirs, resulting in a lot of negative ecological consequences and threatening public health.
Ocean color instruments with low spatial resolution have been used to monitor cyanobacterial bloom
in large lakes; however, they cannot be applied to small water bodies well. Here, the Multi-Spectral
Instrument (MSI) onboard Sentinel-2A and -2B and the Operational Landsat Imager (OLI) onboard
Landsat-8 were employed to assemble the virtual constellation and to track spatial and seasonal
variations in floating algae blooms from 2016 to 2020 in a small eutrophic plateau lake: Lake Xingyun
in China. The floating algae index (FAI) was calculated using Rayleigh-corrected reflectance in the
red, near-infrared, and short-wave infrared bands. The MSI-derived FAI had a similar pattern to
the OLI-derived FAI, with a mean absolute percentage error of 19.98% and unbiased percentage
difference of 17.05%. Then, an FAI threshold, 0.0693, was determined using bimodal histograms of
FAI images for floating algae extraction. The floating algae had a higher occurrence in the northern
region than the southern region in this lake, whilst the occurrence of floating algae in summer and
autumn was higher than that in spring and winter. Such a spatial and seasonal pattern was related
to the variability in air temperature, wind speed and direction, and nutrients. The climatological
annual mean occurrence of floating algae from 2016 to 2020 in Lake Xingyun exhibited a significant
decrease, which was related to decreases in nutrients, resulting from efficient ecological restoration
by the local government. This research highlighted the application of OLI-MSI virtual constellation
on monitoring floating algae in a small lake, providing a practical and theoretical reference to monitor
aquatic environments in small water bodies.
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1. Introduction

With the dual effects of climate warming and intensified human activities, lake eu-
trophication and cyanobacterial bloom are extending across the globe [1–4], in particular in
some shallow lakes, such as Lake Taihu (China), Lake Erie (U.S.), Lake Peipsi (Estonia),
and Lake Bogoria (Kenya). Widespread cyanobacterial blooms pose an urgent demand
to manage, mitigate, and restore perspectives in these inland water ecosystems. The ag-
gregation of cyanobacteria in the surface water forms cyanobacterial scums, reducing the
penetration of light radiation into the water column and impacting the growth of other
phytoplankton, zooplankton, and fishes, significantly weakening the ecological functions of
inland lakes [4,5]. Moreover, cyanobacteria could release Microcystin, which could threaten
the safety of the drinking water and the health of animals on land and of human beings [6].
The Microcystin concentration in waters has been a critical indicator for evaluating the
quality of drinking water by the World Health Organization (WHO), the Environmental
Protection Agency (EPA) in the United States, and the EU Water Framework Directive [7].
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Consequently, the monitoring of spatial and temporal variability in harmful algae blooms is
critical to maintaining regional economic development and to safeguarding human health.

Satellite remote sensing has the capability of monitoring lake environments fast, such
as floating algae blooms and water quality [8]. Over past years, a lot of studies employed
ocean color instruments, such as the Moderate resolution Imaging Spectroradiometer
(MODIS) (2000–present), Medium Resolution Imaging Spectrometer (MERIS, 2003–2012),
and Ocean Land Colour Instrument (OLCI, 2016~) to monitor algae blooms in some large
lakes around the world [9–12], owing to the fine spectral resolution and frequent revisit
time (~1 day). However, the areas of many lakes were small; for example, 63.48% of global
lakes are less than 100 km2 in size [13] (Figure 1a). The coarse spatial resolution of ocean
color instruments (~300 m) does not obtain subtle details in small-sized lakes [14,15], which
largely restricts the applications of remote sensing in aquatic environments [16].
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Figure 1. (a) The distribution of lake number proportion and lake area proportion along the lake area
(in log10 space) in global lakes. The statistics was from the Global Lakes and Wetlands Database
(GLWD). Small and medium lakes less than 50 km2 were the most common global lakes. (b) The
location of a eutrophic plateau lake in Yunnan Province, China (Lake Xingyun) and the examples for
false true color images from VIIRS, OLCI, and MSI. Ocean color instruments such as VIIRS and OLCI
did not perform clear images for this small lake.

Previous studies have monitored algal blooms using Landsat TM and ETM+
images [8,17,18]. However, lakes change quickly, particularly floating algae had differ-
ent variations day to day [19,20]. As such, Landsat with a semi-monthly revisit time is
insufficient to track spatiotemporal variations in algae blooms in the lakes [19]. Recently,
several high-quality instruments with higher spatial resolutions than ocean color sensors,
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including the Sentinel-2 MSI (Multiple Spectral Instrument, 2A: 2015~; 2B: 2017~) and
Landsat-8 OLI (Operational Land Imager, 2013~), were launched. These moderate-high
spatial resolution instruments (10–60m) provide an opportunity to monitor small-sized
lakes and to understand the variability in algae blooms profoundly [21–23]. Furthermore,
Pahlevan et al. [24] demonstrates that the radiometric performance between Sentinel-2
MSI and Landsat-8 OLI is consistent and that they could provide comparable observations
in inland lakes. The harmonized images of MSI and OLI have also been used to moni-
tor phytoplankton bloom [25], lake water clarity [26], chlorophyll-a, and turbidity in the
rivers [27].

This research aims to use MSI and OLI to generate a time series of cyanobacterial
blooms (where they form floating scums) in a small eutrophic lake to support the analysis
on how and why the floating algae varies. Specifically, we aim (1) to evaluate the agreement
of Rayleigh-corrected reflectance between MSI and OLI; (2) to adapt an algorithm to detect
floating algae from OLI and MSI imagery based on the floating-algae-index (FAI); and
(3) to generate the spatial and seasonal variations in floating algae from 2016 to 2020 and,
subsequently, to relate the variability to the meteorology and nutrients. This research is
anticipated to extend the application of the high spatial resolution image on monitoring
lakes and to improve the spatial details of aquatic remote sensing.

2. Materials and Methods
2.1. Study Area

Lake Xingyun (24◦17′–24◦23′ N, 102◦45′–102◦48′ E) is a eutrophic freshwater lake with
an elevation of approximately 1722 m in Yunnan province located in the Yunan-Guizhou
Plateau of China. It has a surface area of 34.71 km2 and an average water depth of 5.3 m
(Figure 1) with a 10.5 km length and 5.8 km width. Lake Xingyun is in the subtropical
monsoon climate with an 848.7 mm precipitation and averaged air temperature of 15.9 ◦C.
The summer and autumn are cloudy and rainy, particularly for the period from June to
October. Due to economic development, Lake Xingyun has been eutrophic since 1993 and
frequent floating algae blooms recently occurred, raising a concern to monitor the spatial
and temporal variation in floating algae. The common ocean color instruments had coarse
spatial resolutions (~300 m) so those small lakes could not be observed sufficiently. For
example, OLCI and VIIRS imagery in Lake Xingyun does not show the spatial details
of lakes. In contrast, Sentinel-2B MSI image exhibited evident floating algae scums over
waters (Figure 1).

2.2. Satellite Data Processing

Landsat-8 (LC08) OLI (2013~present), Sentinel-2A (S2A) MSI (2015~present), and
Sentinel-2B (S2B) MSI (2017~present) were employed to extract the floating algae in
Lake Xingyun. The online browse images were first examined visually, and a total of
152 scenes MSI and OLI Level-1 imagery with minimal cloud cover from 2016 to 2020
were obtained from the European Space Agency (ESA) (https://scihub.copernicus.eu,
accessed on 16 September 2021) and the United States Geological Survey (USGS) (https:
//earthexplorer.usgs.gov, accessed on 16 September 2021), respectively. The annual and
monthly available number of images of minimal cloud-cover are presented in Table 1. Due
to the relatively long revisit frequency of MSI and OLI virtual constellation, (e.g., ~ 6 days
for S2A+ LC08 and ~3.8 days for S2A+S2B+ LC08 in [28]), OLI or MSI images with minimal
cloud did not include several months in 2016–2018 owing to frequent cloudy and rainy
days. These data are well georeferenced and calibrated radiance data at visible and infrared
bands, with the wavelengths at 443, 482, 561, 655, 865, 1609, and 2201 nm for OLI and 444,
497, 560, 665, 704, 740, 783, 843, 865, 1613, and 2200 nm for MSI [29]. There was a slight
difference in wavelength and spectral response functions between Sentinel-2A and 2B MSI,
but their band-averaged radiance or reflectance had minor differences [30], so that they
were usually regarded as the same in previous studies [31,32]. We removed the absorption

https://scihub.copernicus.eu
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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of water vapor, ozone, and Rayleigh scattering to obtain Rayleigh-corrected reflectance
(Rrc, dimensionless) using Equation (1) [33,34].

Rrc =
πLt,λ

F0,λcosθ0
− Rr,λ (1)

where λ is the wavelength (nm), Lt is the at-sensor radiance, Rr is the Rayleigh reflectance,
F0 is extraterrestrial solar irradiance, θ0 is the solar zenith angle.

Table 1. Temporal image data of OLI and MSI from 2016 to 2020 used in this study. These data
include 35 OLI scenes and 117 MSI images, where the number in the parentheses is the image number
from MSI.

Month 2016 2017 2018 2019 2020 Total

Jan 2(1) 1(0) 4(3) 4(3) 8(6) 19
Feb 2(1) 0 5(4) 6(5) 7(5) 20
Mar 2(1) 2(1) 4(3) 6(6) 7(6) 21
Apr 0 1(1) 2(1) 7(6) 6(5) 16
May 0 1(0) 4(3) 6(6) 6(5) 17
Jun 0 0 1(1) 1(0) 1(1) 3
Jul 1(1) 0 0 1(1) 2(1) 4

Aug 1(1) 0 5(5) 1(1) 2(2) 9
Sep 1(1) 0 0 3(2) 1(1) 5
Oct 1(0) 0 2(0) 3(2) 1(1) 7
Nov 4(2) 3(3) 5(3) 3(2) 3(3) 18
Dec 1(1) 3(3) 3(3) 5(3) 1(1) 13
Total 15 11 35 46 45 152

Specifically, OLI and MSI Rrc data were estimated using the latest ACOLITE software
package (https://github.com/acolite, accessed on 16 September 2021). The gains were
set to unity. In the processing, ancillary data (e.g., meteorology and ozone) and a digital
elevation model (DEM) were used. The MSI data with 10 m, 20 m, and 60 m resolutions
were mapped at the spatial resolution of 10 m for the floating algae extraction, while the
OLI data were at 30 m.

To eliminate the influence of the land adjacency effects (LAEs), we used a statistical
method to exclude those pixels with potential impacts of LAEs [35]. The ratio between Rrc
for examined pixel and referenced pixels (assumed to be not affected by LAEs) along the
transect from land to water tended to be approximately 1 when the pixel was away from
five pixels to the land, suggesting that LAEs could be neglected (at least minimized) after
excluding five pixels near the land.

2.3. Floating Algae Extraction
2.3.1. Floating Algae Index (FAI)

The significant peak at the near-infrared band of reflectance caused by the floating
algae is the theoretical principle to distinguish it from water pixels using optical satellite
image data. For example, MSI-derived Rrc image captured an obvious algae scums on
12 November 2020, and Rrc at the near-infrared (i.e., Rrc(NIR)) in the pixel covered by
floating algae was significantly higher than that in the normal waters. Rrc(NIR) in the thick
scums (Pin 3 in Figure 2c) was also higher than that in thin scums (e.g., Pin 3 in Figure 2c).
The FAI proposed by [9] was selected to extract floating algae in Lake Xingyun from MSI
and OLI image data. MSI and OLI do not equip the band near ~1240 nm; thus, we adapted
the original FAI using the band of ~1600 nm.

FAI = Rrc,NIR − R′rc,NIR (2)

R′rc,NIR = Rrc,red + (Rrc,SWIR − Rrc,Red)×
λNIR − λRed

λSWIR − λRed
(3)

https://github.com/acolite


Remote Sens. 2021, 13, 4479 5 of 18

where Rrc,Red, Rrc,NIR, and Rrc,SWIR are Rayleigh-corrected reflectance of the red band
(~660 nm), NIR band (~865 nm), and short-wave infrared (SWIR) band (~1600 nm) of
MSI and OLI, respectively.
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Figure 2. (a) Sentinel-2B MSI FRGB shows floating algae (i.e., scums) in Lake Xingyun on 11 Novem-
ber 2020. Pins 1 to 3 are three stations that represent the water, thick algae scum, and thin algae
scum pixels, respectively. (b) Corresponding spatial distribution of floating algae index (FAI), and
(c) the Rrc spectra extracted from the MSI image pixels. (d) Histogram of FAI for panel (b) in Lake
Xingyun. FAI of image with floating algae exhibits a typical bimodal histogram, where µw and µFA

are the mean values of water peak and floating algae peak, respectively, and σw and σFA are the
corresponding standard deviations. T estimated using Equation (2) is FAI threshold to distinguish
the floating algae.

2.3.2. Land and Cloud Masking

The pixels of land and cloud with high FAI values mat be incorrectly recognized as
floating algae. The water boundary was extracted using a scheme of normalized difference
water index (NDWI) segmentation, ensuring that each image had an accurate water bound-
ary. Some studies used the FMask method to recognize clouds over the lakes [3], but this
approach did not include samples of floating algae [36], suggesting that FMask could not
distinguish floating algae and cloud pixels well [19]. The ocean color community usually
used the threshold of Rrc at the NIR and SWIR bands, such as 0.018 at 2130 nm for MODIS
image [37], to remove clouds, yet these thresholds may remove pixels covered by floating
areas as well. In this study, we interactively outlined the clouds using ENVI software to
remove cloud pixels manually.

2.3.3. FAI Threshold to Distinguish Floating Algae

The determination of the FAI threshold to distinguish floating algae and water pixels
is the most crucial task. Previous studies used FAI gradient images to determine thresh-
old [38]. The several attempts found that the maximum of FAI gradient imagery was easily
influenced by intensity of floating algae in Lake Xingyun. In fact, the FAI image with
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floating algae always presented a bimodal histogram (Figure 2d), where the left histogram
with low FAI was water and the right peak with high FAI corresponded to floating algae
area. Thus, we employed a histogram of the FAI image to determine this critical value.

For each FAI image after masking clouds and lands, the histogram of FAI was gener-
ated. The FAI image with unimodal histogram was not used to determine the FAI threshold
due to the failed assumption with this approach. For the bimodal histogram or multimodal
histogram, the threshold of FAI was determined using Equation (4), as illustrated in Figure 2d.

T =
µw × σFA + µFA × σw

µw + µFA
(4)

where µw and µFA are the mean values of water peak and floating algae peak, respectively,
and σw and σFA are the corresponding standard deviations. They are the parameters of
each Gaussian distribution and could be calculated in the fittings of functions.

The method was applied on each image to determine the FAI threshold to extract
floating algae, and it obtained satisfactory performance. However, in some images where
algae scums are small, this method failed due to fewer algae pixels forming a nearly
unimodal histogram. After several examinations, the final FAI threshold, about 0.0693, was
determined using the mean minus standard deviation of all FAI thresholds of images. We
did not use the value that means − 2 × standard deviation by Hu et al., (2010) [38] due to
the short study period and insufficient satellite images. This value was finally chosen as a
time-independent FAI threshold to extract floating algae.

2.4. Evaluation of Agreement between MSI and OLI Data

Although MSI and OLI had comparable performances in monitoring waters [24], they
still have different spectral settings, including center wavelength bandwidth and signal-to-
noise ratio (Figure 3). Here, the agreement of MSI- and OLI-derived Rrc were evaluated
based on the same-day images. We choose three scenes same-day MSI and OLI with
minimal clouds from 2016 to 2020, including an image with floating algae. The averaged
time difference between OLI and MSI data was about 5.6 min, suggesting nearly the same
water environment as Lake Xingyun in the evaluation. These images were processed to
generate Rrc data in ACOLITE. Then, these three MSI Rrc data were resampled to 30 m (i.e.,
the resolution of OLI) using a sharpening scheme in SeaDAS software [39]. After removal
of the clouds and lands, about 300,000 OLI-MSI matchups were obtained to evaluate the
consistency of Rrc and FAI. Detailed results can be found in Section 3.1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 3. Relative Spectral functions of Landsat-8 (L8) OLI, Sentinel-2A (S2A) MSI, and Sentinel-2B 

(S2B) MSI at the red (a), near-infrared (NIR) (b), and shortwave infrared (SWIR) (c) bands. 

2.5. Meteorological Data 

Daily air temperature (°C), wind speed (m s−1), and precipitation (mm) in Yuxi mete-

orological station near Lake Xingyun were download from the National Meteorological 

Information Center, China (http://data.cma.cn) from 2016 to 2020. Monthly data were cal-

culated to analyze the relations with temporal variations in floating algae. 

2.6. Performance Metrics 

Several statistical metrics were used to compare the differences between satellite de-

rived products, such as Rrc data and FAI value. These metrics included the coefficient of 

determination (R2), the mean absolute percentage difference (MAPD), and the unbiased 

percentage difference (UPD). Their equations were defined as follows: 

𝑀𝐴𝑃𝐷 =  
1

𝑁
∑

|𝑋𝑖 − 𝑌𝑖|

𝑋𝑖

𝑁

𝑖=1

× 100% (5) 

𝑈𝑃𝐷(%) =  
1

𝑁
∑

|𝑋𝑖 − 𝑌𝑖|

𝑋𝑖 + 𝑌𝑖

𝑁

𝑖=1

× 200% (6) 

where N is the number of data pairs, and Xi and Yi denote the ith data pairs evaluated. 

3. Results 

3.1. Agreement between OLI and MSI 

Figure 4 shows a comparison of Rrc estimates and FAI values between MSI and OLI 

in Lake Xingyun. The consistency of Rrc between OLI and MSI was evaluated using 

300,000 matchups. Overall, there are no obvious overestimations or underestimations for 

Rrc estimates among any of the three bands at ~665 nm, ~859 nm, and ~1610 nm, and the 

point-pairs are evenly distributed along both sides of the 1:1 line, while the slope was 

slightly higher than the unity. Specifically, Rrc measurements in the red band had better 

agreement than other bands (R2 = 0.85, MAPD = 12.68%, UPD = 12.66%) (Figure 4b), where 

most of the points (e.g., 0.03–0.1) were distributed evenly along with the unity. Although 

Rrc matchups at the band at ~865 nm and ~1610 nm were distributed along line 1:1, some 

of the points slightly deviated the unity line (Figure 4a,c), suggesting worse Rrc agreement 

in the NIR and SWIR bands than red band (865 nm: R2 = 0.78, MAPD = 11.91%, and UPD 

= 17.75%; 1610 nm: MAPD = 17.64% and UPD = 24.31%). The slight deviation for Rrc meas-

urements between MSI and OLI in the NIR and SWIR bands could be related to the low 

SNRs. 

Figure 3. Relative Spectral functions of Landsat-8 (L8) OLI, Sentinel-2A (S2A) MSI, and Sentinel-2B
(S2B) MSI at the red (a), near-infrared (NIR) (b), and shortwave infrared (SWIR) (c) bands.

2.5. Meteorological Data

Daily air temperature (◦C), wind speed (m s−1), and precipitation (mm) in Yuxi
meteorological station near Lake Xingyun were download from the National Meteorological
Information Center, China (http://data.cma.cn, accessed on 16 September 2021) from 2016
to 2020. Monthly data were calculated to analyze the relations with temporal variations in
floating algae.

http://data.cma.cn
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2.6. Performance Metrics

Several statistical metrics were used to compare the differences between satellite
derived products, such as Rrc data and FAI value. These metrics included the coefficient of
determination (R2), the mean absolute percentage difference (MAPD), and the unbiased
percentage difference (UPD). Their equations were defined as follows:

MAPD =
1
N

N

∑
i=1

|Xi −Yi|
Xi

× 100% (5)

UPD(%) =
1
N

N

∑
i=1

|Xi −Yi|
Xi + Yi

× 200% (6)

where N is the number of data pairs, and Xi and Yi denote the ith data pairs evaluated.

3. Results
3.1. Agreement between OLI and MSI

Figure 4 shows a comparison of Rrc estimates and FAI values between MSI and OLI
in Lake Xingyun. The consistency of Rrc between OLI and MSI was evaluated using
300,000 matchups. Overall, there are no obvious overestimations or underestimations for
Rrc estimates among any of the three bands at ~665 nm, ~859 nm, and ~1610 nm, and the
point-pairs are evenly distributed along both sides of the 1:1 line, while the slope was
slightly higher than the unity. Specifically, Rrc measurements in the red band had better
agreement than other bands (R2 = 0.85, MAPD = 12.68%, UPD = 12.66%) (Figure 4b), where
most of the points (e.g., 0.03–0.1) were distributed evenly along with the unity. Although
Rrc matchups at the band at ~865 nm and ~1610 nm were distributed along line 1:1, some
of the points slightly deviated the unity line (Figure 4a,c), suggesting worse Rrc agreement
in the NIR and SWIR bands than red band (865 nm: R2 = 0.78, MAPD = 11.91%, and
UPD = 17.75%; 1610 nm: MAPD = 17.64% and UPD = 24.31%). The slight deviation for Rrc
measurements between MSI and OLI in the NIR and SWIR bands could be related to the
low SNRs.
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Figure 4. Scatter density plots to show the agreement of Rrc(red) (a), Rrc(NIR) (b), Rrc(SWIR1)
(c), and corresponding FAI (d) between MSI and OLI in the entire Lake Xingyun. There were
300,000 concurrent matchups used for this assessment.
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The FAI of OLI and MSI was calculated by the three bands above exhibited good
agreements, with an MAPD of 19.98% and an UPD of 17.05% (Figure 4d). Although some
FAI matchups deviated from the unity line, these point pairs were low in scatter density.
After removing matchups with a scatter density less than 10, the calibration coefficients
between OLI and MSI were established: MSI‘(FAI) = 0.9416 ×MSI(FAI) + 0.0019 (R2 = 0.88,
p < 0.001). With this equation, MSI-derived FAI were converted to the same level of OLI
(i.e., MSI‘(FAI)).

3.2. Performance of the Algorithm

Figure 5 presents examples of extracting floating algae in LC08 OLI, and S2A and S2B
MSI images. The FAI images had similar patterns with the false-color composite image
(FRGB), suggesting the validity of FAI on floating algae identification. The histograms
of FAI showed obvious bimodal patterns, and the threshold to split those two peaks was
located near 0.06. The extracted area of floating algae by FAI ≥ 0.0693 was consistent with
the false-color composite image shown. Likewise, this approach did not recognize the
clouds pixels as the floating algae because FAI was initially designed to reduce the thin
clouds on the water.
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Figure 5. Examples of distinguishing the floating algae and waters from images of Landsat-8 (LC08) OLI on 5 December
2016, of Sentinel-2A (S2A) MSI on 17 January 2019, and of Sentinel-2B (S2B) MSI on 12 November 2020 in Lake Xingyun. The
first column is the false-color image composited by the red, NIR, and blue bands. The second column is the FAI image, and
the third column is the corresponding histogram of FAI. The fourth column is the extracted floating algae using FAI≥ 0.0693,
where blue is the water and green is the floating algae.

Figure 6 illustrates the applications of the FAI threshold of 0.0693 on extracting floating
algae in other lakes and reservoirs worldwide, such as Lake Dianchi (Yunnan, China), Nierji
Reservoir (Heilongjiang, China), Lake Clear (California, CA, USA) and Lake Turawskie
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(Turawa, Poland). Obvious floating algae could be found in these lakes using FRGB images
of Landsat-8 OLI and Sentinel-2 MSI. The floating algae extracted by FAI ≥ 0.0693 was
consistent with the FRGB image basically; however, the results had deviations from that
extracted by the unique FAI threshold of each lake. The specific value was determined using
a bimodal histogram of FAI derived by each OLI or MSI Rrc data. The proposed threshold
had 21.9% and 36.6% underestimations in Lake Dianchi and Lake Clear, respectively, while
it overestimated 46.5% in Lake Turawskie. The difference in floating algae distribution
possibly resulted from the different water constituents and phytoplankton types. A detailed
discussion is provided in Section 4.1.
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Figure 6. Application of the FAI method to detect the algal scums on other lakes worldwide: Lake Dianchi (24.85◦ N,
102.72◦ E, China), Nierji Reservoir (48.67◦ N, 124.67◦ E, China), Lake Clear (39.04◦ N, −122.81◦ W, U.S), and Lake Turawskie
(50.72◦ N, 18.13◦ E, Poland). The first row is the false RGB image composited by the red, near infrared, and blue bands; the
second row is the algae scums extracted using the FAI threshold of Lake Xingyun; and the third row is the algae scums
extracted using the adapted FAI threshold for each lake. The adopted value was determined using a bimodal histogram
of FAI derived by each OLI or MSI Rrc data. The geographic locations of these four lakes and reservoirs are shown in the
bottom map.
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3.3. Spatial and Temporal Variations in Floating Algae

The distribution of floating algae derived by each MSI or OLI image was used to
generated the climatological annual and monthly mean occurrences of floating algae in
Lake Xinyun from 2016 to 2020. The occurrence of floating algae for each pixel is the ratio
between the number of floating algae observations and total valid observations. Whilst the
maximum area of floating algae in each month was obtained. This spatial and seasonal
variability in floating algae was related to the variations in air temperature, wind speed,
wind direction, and precipitation subsequently.

Figure 7 mapped the spatial distribution of climatological mean floating algae occur-
rence from 2016 to 2020, where the last panel is the mean results for the entire studied
period. All regions in Lake Xinyun had significant floating algae, and the occurrence of
floating algae in the northern and eastern regions was higher than in other areas. The
occurrence of floating algae was between 10% to 15% in the northern and east area. The
annual mean occurrence of floating algae had different distributions in different regions.
For example, floating algae was mainly distributed in the northern region in the period
of 2016–2018, whereas it mainly occurred in the northwest area in 2019 and in the central
region in 2020 (Figures 7 and 8a). In general, the occurrence of floating algae exhibited a
decreasing trend from 2016 to 2020, where the mean occurrence was reduced to 5% in 2020
from 20% in 2016. Additionally, the maximum area of floating algae had a similar decrease
in Lake Xingyun (Figure 8a). It was greater than 10 km2 from 2016 to 2017 and was lower
than 5 km2 in 2020. Although the images to extract floating algae areas in 2016 and 2017
lacked some images in summer due to the cloudy and rainy conditions, it still captured
high floating algae occurrence.
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Figure 8. (a) Temporal distribution of MSI- and OLI-extracted floating algae area in Lake Xingyun from 2016 to 2020. The
orange points are the maximum area of the floating area in a month. (b–d) Monthly mean air temperature and wind speed,
daily wind direction of the maximum wind speed, and monthly precipitation from 2016 to 2020 in the meteorological station
(Yuxi) near Lake Xingyun.

Figure 9 presents the maps of climatological monthly mean floating algae occurrence
from 2016 to 2020 in Lake Xingyun. The occurrence of floating algae was high from June
to November, where the occurrence in June and July was highest (19.51% in June and
20.15% in July) and was lowest in February (0.005%). It should be noted that relatively high
floating algae occurrence (~15%) was reported in March in northern Lake Xingyun. The
spatial distribution of floating algae was different in different seasons. The floating algae
occurred in the entire lake in June and July, while the floating algae were mainly present in
the northern region in November.
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4. Discussion
4.1. Accuray and Applicability of the Algorithm

MSI and OLI had comparable radiometric performance to observe aquatic environ-
ments, and they are the candidates to build virtual constellations as well [24]. Although
MSI and OLI had different spectral settings, including central wavelength and bandwidth
(Figure 3), Rrc at the bands of red, NIR, and SWIR showed fair agreement (Figure 4),
ensuring consistent FAI values between MSI and OLI. Furthermore, we calibrated the
FAI of MSI to the same level of OLI, which can generate a consistent time series of float-
ing algae with MSI and OLI virtual constellation. Although the distribution of floating
algae scums extracted from MSI and OLI images were consistent with FRGB images
(Figures 5 and 6), the absolute accuracy with respect to the floating algae extractions were
not further examined using the images with higher spatial resolution (e.g., ~1 m) because
most of higher spatial resolution satellite images, such as Worldview-3 and Pléiades im-
agery [40], were commercial. In the future, the drone is anticipated to collect some aerial
images when Landsat-8/9 and Sentinel-2A/2B overpass over the lake. The drone im-
ages could be used to manually delineate the subtle spatial distributions of floating algae,
which would assist in validating and improving the results of floating algae extractions by
satellite images.
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The bimodal histogram of the FAI image was used to determine the FAI threshold by
splitting the floating algae and water modes. This approach required accurate removal
of clouds and lands; that is, FAI images only include floating algae and water pixels [38].
The land pixels could be removed using a threshold of NDWI [41]; however, it is still a
challenge to exclude clouds over turbid waters. The state-of-the-art algorithms to remove
clouds, such as FMask model, IdePIX approach, and the Rrc threshold in SWIR band, may
recognize the pixels contaminated by floating algae as clouds [19,36,37] (Figure 10). Among
these cloud masking methods in Figure 10, the Rrc threshold in SWIR band (Figure 10b)
had fair performance in masking clouds and lands and was easy to use, even though it
mistook some floating algae as clouds, meaning that the adaption of a threshold for a local
lake may obtain fair results to feasibly exclude clouds for an operational application. In
addition, a time series-based approach to analyze the frequency of cloud-like pixels was
also used to mask cloud based on the idea that the lake is relatively stable and that clouds
are dynamic. However, such methods did not perform as expected because the floating
algae was also dynamic. As such, it was still a challenge to mask clouds for waters covered
by floating algae scums.
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Figure 10. (a) RGB image of from Sentinel-2B MSI data on 13 December 2018 in Lake Xingyun.
(b–d) Examples of several common methods to mask clouds, such as single threshold in SWIR band,
e.g., Rrc(2184) > 0.018 (b), FMask (c), and IdePIX (d), on distinguishing the clouds over waters in
Lake Xingyun. FMask was used as the latest version 4.2, and IdePIX was as in SNAP 8.0.
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In small lakes such as Lake Xingun, stray-light from the land or clouds could increase
the high water albedo into satellite sensors, possibly influencing the extraction of floating
algae. As such, LAEs could not be ignored for high spatial resolution images and small
water bodies [42]. In general, operational satellite data processing in ocean color community
employed a window to remove potential pixels influenced by LAEs. For example, SeaDAS
software used a window of 7 × 5 to remove stray-light pixels, resulting in a data loss of
more than 50% [43]. Following the method proposed by Feng and Hu [35], we removed five
pixels near land to reduce LAEs. While efforts were made to remove adjacency effects, these
are complex and difficult to avoid completely [44]. The spatial pattern of FAI near land
in this study did not have apparent land adjacency effects, suggesting that the remaining
impact of LAEs is minimal and does not significantly affect our study’s main conclusions.

Despite the FAI threshold used in Lake Xingyun (i.e., 0.0693) capturing thick floating
scums in other lakes, it could not extract floating algae in other lakes (Figure 6), which had
significantly different constituents and optical properties from that of Lake Xingyun. Such
differences resulted in different Rrc spectra and FAI magnitudes [11]. In Lake Xingyun, the
density of cyanobacteria accounted for 94.87–99.48% of phytoplankton, and Microcystis
was dominant. However, algae and diatom are possibly the main phytoplankton in other
water bodies. The different phytoplankton groups could cause various interactions with
light as well [45]. Thus, it was almost difficult to extract floating algae in a broad region
using one FAI threshold [46]. After adapting the FAI threshold based on water conditions,
the proposed approach in this study was easy to extend to other areas.

The virtual constellation of MSI and OLI could improve, observing a frequency of
2.9 days [28], which meets the requirements for oceanologists and limnologists to study
aquatic environments [24]. In Lake Xingyun, the MSI-OLI virtual constellation did not
obtain enough cloud-free images from June to August due to the rainy and cloudy weather.
In fact, MODIS with daily revisits only occasionally acquired cloud-free images in the area
near Lake Xingyun in summer [47]. The cloud is still one of the challenges that hinder the
optical satellite observation of the lake in the study region.

4.2. Driving Factors of Floating Algae in Lake Xingyun

Variability in algae blooms in lakes can be influenced by both climate and human
activities. Warm water facilitates the growth of phytoplankton [48,49]. Winds can bring
nutrients from the bottom layer to the surface by mixing, and precipitation can mod-
ulate variations in nutrients [50,51]. The presence of multiple factors complicates the
understanding of the causes of floating algae blooms in lakes.

We found that the average occurrence of floating algae and the maximum area de-
creased since 2016 (Figures 7 and 8a). Air temperature did not significantly decrease and
wind did not have an increase (Figure 8b), suggesting that the meteorology was not the
main factor in regulating the annual variation in floating algae in Lake Xingyun. The total
nitrogen (TN) and total phosphorus (TP) in Lake Xingyun had significant decreases from
2016 to 2020 (Figure 11). TN reduced to 1.1 mg L−1 in 2020 from 2.4 mg L−1 in 2016, while
TP decreased to 0.14 mg L−1 in 2020 from 0.46 mg L−1 in 2016. The decrease in nutrients
in the lakes impedes the growth of cyanobacteria [52], so that floating algae is mitigated.
Similar findings were reported in other lakes with cyanobacterial scums, such as Lake
Taihu and Lake Chaohu [47,53,54]. In addition, the precipitation has been regarded as
another factor that influences the occurrence of floating algae in Lake Dianchi, a neighbor
eutrophic lake of Lake Xingyun [55], particularly on a long-term scale. The precipitation in
Lake Xingyun had a decreasing trend from 2016 to 2020 (p < 0.05) (Figure 8d), reducing the
loadings of the nutrients into lakes. The local environmental department carried out an
ecological project termed “Sewage Interception and Restoration Project” in the southern
region. This project was located between cropland and lake, largely mitigating agricultural
pollution into the lake [56].

The cyanobacterial scums mainly broke out in summer and autumn (Figures 8a and 9).
Such seasonal variations primarily resulted from temperature, which was an important
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factor that impacts the growth of phytoplankton in waters [49]. The high temperature facil-
itated the growth of cyanobacteria in summer and autumn, resulting in a high occurrence
of floating algae. Furthermore, the wind speed was low in summer and autumn (usually
<2.0 m s−1) (Figure 8c). The cyanobacteria were easily aggregated in the surface water to
form scums in weak mixing condition [57,58]. Similarly, Mu et al., (2019) showed that wind
speeds less than 2.35 m s−1 in the dry season and 2.01 m s−1 in the rainy season would
form cyanobacterial blooms in Lake Dianchi [55] and that wind speed had more effects on
seasonal variability in cyanobacterial blooms. Additionally, Bi et al., (2019) also demon-
strated that wind speed is a critical factor in regulating biomass in Lake Dianchi since wind
speed is an important factor of hydrodynamics and water stability in waters [59].
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Figure 11. The variation in annual mean TN and TP in Lake Xingyun from 2000 to 2018. The dark
region denotes the study period in this study.

The frequency of cyanobacterial blooms was higher in the northern region than in the
center and south regions of Lake Xingyun (Figures 7 and 9). The nutrient concentration in
the north was higher than in the south in Lake Xingyun [60], which was consistent with
the spatial pattern of floating algae. Additionally, the perennial southwest wind (Figure 8c)
in Lake Xingyun drifts the cyanobacteria to the northern lake area. In Lake Taihu, the wind
direction was also one of the reasons that cyanobacterial blooms were intensified in the
northern and western lake regions [61].

5. Conclusions

This research employed Sentinel-2 MSI and Landsat-8 OLI images to monitor spatial
and seasonal variability in floating algae in a small lake, Lake Xingyun, in the Yunan-
Guizhou Plateau of China. The Rayleigh-corrected reflectance (Rrc) was used to calculate
the floating algae index (FAI), which was subsequently used to recognize floating algae.
The consistency of Rrc and FAI between MSI and OLI was evaluated to provide a same-
level floating algae extraction from satellite imagery. A bimodal histogram was used
to determine the FAI threshold to distinguish floating algae. The spatial and seasonal
variability in floating algae in Lake Xingyun from 2016 to 2020 was performed. The
meteorology and nutrients were related to the variations in floating algae in Lake Xingyun.
The environmental project in 2015 significantly decreased the loadings of nutrients from
the watershed into waters, resulting in decreases in floating algae occurrence in the lake. In
the future, Sentinel-2A/B and Landsat-8/9 virtual constellations are anticipated to monitor
small water bodies to aid in aquatic environmental management.
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