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Abstract: The conventional fuzzy c-spherical shells (FCSS) clustering model is extended to cluster
shells involving non-crisp numbers, in this paper. This is achieved by a vectorized representation of
distance, between two non-crisp numbers like the crisp numbers case. Using the proposed clustering
method, named vector fuzzy c-spherical shells (VFCSS), all crisp and non-crisp numbers can be
clustered by the FCSS algorithm in a unique structure. Therefore, we can implement FCSS clustering
over various types of numbers in a unique structure with only a few alterations in the details used
in implementing each case. The relations of VFCSS applied to crisp and non-crisp (containing
symbolic-interval, LR-type, TFN-type and TAN-type fuzzy) numbers are presented in this paper.
Finally, simulation results are reported for VFCSS applied to synthetic LR-type fuzzy numbers; where
the application of the proposed method in real life and in geomorphology science is illustrated by
extracting the radii of circular agricultural fields using remotely sensed images and the results show
better performance and lower cost computational complexity of the proposed method in comparison
to conventional FCSS.

Keywords: imaging; fuzzy set; algorithms and clustering; satellite images

1. Introduction

Use of clustering models is a wide field of research in image processing and pat-
tern recognition and they have been applied in different areas such as business, geology,
engineering systems, etc. [1–3]. The objective of clustering is to explore the structure of
the data and to partition the data set into groups with similar individuals. While the
proposed method in this paper is objective-function based, generally clustering models
may be objective-function, hierarchical or heuristic based. Hard clustering methods restrict
each point of the data set to exactly one cluster [4]. Since Zadeh [5] presented fuzzy sets
which introduce the idea of partial membership of belonging defined by a membership
function, fuzzy clustering has been applied in various areas. After that, research in this
field has been extended to apply fuzzy states to crisp cases. In the literature on fuzzy
clustering, the fuzzy c-mean (FCM) clustering algorithms are the best-known methods [2,6].
Hadi et al. [7–9] presented some models to apply the FCM clustering model to crisp and
non-crisp numbers. Using these models, the FCM can be stated in a single structure like
the conventional FCM case. Sasha and Das [10] proposed an axiomatic extension of the
possibilistic fuzzy clustering model in three directions: joint contribution function, choice
of the dissimilarity measure, and the penalty function. Yu et al. [11] proposed a Suppressed
Possibilistic C-Means (S-PCM) clustering model by creating a suppressed competitive
learning approach into the Possibilistic C-means (PCM) to address the shortcoming of the
PCM so as to develop the between-cluster relationships. Sasha and Das [12] presented a
class of generalized FCM algorithms. They stated that the Consistent Membership-degree
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Weighting Function (CMWF) based clustering scheme can be generalized to other FCM
variants with different distance measures.

The fuzzy C-shells (FCS) presented by Dave is a novel algorithm in clustering spher-
ical shells and it has been simplified to adaptive FCS (AFCS) for elliptical shells [13,14].
Krishnapuram et al. utilized the fuzzy C-spherical shells algorithm (FCSS) [15] to decrease
the computational costs of FCS using an algebraic (non-Euclidean) distance measure. In
this model, the prototypes can be determined directly, and the coupled nonlinear equations
solution is not necessary. For two-dimensional (2D) cases, Man and Gath utilized the fuzzy
C-rings (FCR) algorithm [16] for clustering ring data, while Gath and Hoory presented
the fuzzy C-ellipses (FCE) model [17] for ellipse data. Krishnapuram et al. created the
fuzzy C-quadric shells (FCQS) model [18], that detects quadrics like ellipses, circles, lines,
or hyperbolas. The clustering models for detecting rectangular shells have been devel-
oped in the literature, such as the norm-induced shell prototypes (NISP) model by Bezdek
et al. [19] and the fuzzy C-rectangular shell (FCRS) model by Hoeppner [20]. Wang [21]
proposed a type of alternating optimization-based possibilistic c-shell model for clustering
template-based shapes. Song et al. [22] proposed the information fuzzy C-spherical shells
(IFCSS) model that addresses the intertwined robust fuzzy clustering problems of outlier
detection. The model-based fuzzy c-shells clustering proposed by Hadi et al. [23] to cluster
any shells (in 2-dimensions) that can be demonstrated by a fixed structure model in polar
coordinates (but with arbitrary scale and centre for each shell). Song et al. [22] has been
utilized the basic FCSS model for the clustering phase to reduce the difficulty of prototype
initialization and minimize the number of hyper-parameters.

In this paper, the vector form of fuzzy c-Spherical Shells (VFCSS) over non-crisp
numbers is presented. Using the proposed VFCSS, all crisp and non-crisp numbers can
be clustered by the Fuzzy c-Spherical Shells algorithm. This approach can be applied on
fuzzy and non-fuzzy numbers with unique structures. In this paper, the proposed VFCSS
is applied over crisp numbers, symbolic numbers, fuzzy numbers (LR-type fuzzy numbers,
TFN-type fuzzy numbers and normal fuzzy numbers). Simulations are applied on all
introduced number classes and results are presented. Furthermore, the VFCC is utilized in
the simulation results section to extract the radii of circular agriculture fields from remotely
sensed images.

The rest of this paper is arranged as follows. The conventional FCSS clustering that is
applied over crisp numbers is presented in Section 2. This section defines different types of
non-crisp numbers and reviews the different metrics for them and presents the proposed
VFCSS method. Simulation results of VFCSS applied over LR-type fuzzy numbers and
satellite images (represented as symbolic-interval numbers) and discussion are presented
in Section 3. Finally, the conclusion is presented in Section 4.

2. Methods

The goal of the FCSS algorithm is minimizing the following objective function regard-
ing fuzzy membership uik and cluster centroid vi [15]:

Jm(U, V, R) =
n

∑
k=1

c

∑
i=1

um
i,kd2(xk, vi, ri) (1)

d2(xk, vi, ri) =
(
‖xk − vi‖2 − ri

2
)2

= ((xk − vi)
T(xk − vi)− ri

2)
2

(2)

where X = {x1, x2, · · · , xn} is a set of features vectors and k is a finite set of p-dimensional

vectors over the crisp numbers (xk =
[

xk,1, xk,2, · · · , xk,p

]T
for, k = 1, 2, · · · , n). c is the
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number of clusters, and m > 1 is the fuzziness index. The matrix U = [ui,k]c×n is called the
fuzzy membership degree that has the following constraint:

ui,k ∈ [0, 1], i = 1, 2, · · · , c, k = 1, 2, · · · , n
c
∑

i=1
ui,k = 1, k = 1, 2, · · · , n (3)

where uik is the grad of membership of the k-th number to the i-th cluster. V = {v1, v2, · · · , vc}
is the cluster prototypes set. vi =

[
vi,1, vi,2, · · · , vi,p

]T ∈ Rp, i = 1, 2, · · · , c is the centre of
the i-th cluster. R = {r1, r2, · · · , rc} is the set of cluster radii.

By creating a Lagrange function, we can minimize Jm(U, V, R) subject to the con-
straints in (3) and conclude updated relations as follows:

L(V, R, U, λ) =
n

∑
k=1

c

∑
i=1

um
i,k((xk − vi)

T(xk − vi)− ri
2)

2 −
n

∑
k=1

λk

(
c

∑
i=1

ui,k − 1

)
, (4)

ui,k =

 c

∑
j=1

(
d2(xk, vi, ri)

d2
(

xk, vj, rj
)) 1

m−1
−1

=

 c

∑
j=1

(
((xk − vi)

T(xk − vi)− ri
2)

(
(

xk − vj
)T(xk − vj

)
− rj

2)

) 2
m−1
−1

, f or i = 1, 2, · · · , c and k 1, 2, · · · , n

{
vi = − 1

2
[
qi,1, qi,2, · · · , qi,p

]T

ri =
√

vT
i vi − qi,p+1

, f or i = 1, 2, · · · , c. (5a)

Where :



qi = − 1
2 H−1

i ωi (5b)

Hi =
n
∑

k=1
um

i,kgkgT
k (5c)

ωi =
n
∑

k=1
um

i,ksk (5d)

sk = 2
(
xT

k xk
)

gk, f or k = 1, 2, · · · , n (5e)

gk =
[

xk,1, xk,2, · · · , xk,p, 1
]T

, f or k = 1, 2, · · · , n (5f)

In this part, we first define concepts of various types of non-crisp numbers. Then we
review some dissimilarity definitions between two non-crisp numbers [24–33].

2.1. Definition of Various Non-Crisp Numbers

A symbolic number (SN) X̃ is said to be a symbolic number where its membership
function can be expressed as:

µX̃(x) =
{

1, αX̃ ≤ x ≤ βX̃
0, Otherwise

. (6)

We denote a symbolic number (SN) X̃ with its start point (αX̃) and its end point (βX̃)
with X̃ =

(
αX̃ , βX̃

)
SN .

Let L (and R) be decreasing, shape functions from R+ to [0, 1] with 0 ≤ L(x) ≤ 1 for
all x > 0; L(x) = 1 for x = 0; L(x) = 0 for all x ≥ 1. A fuzzy number X̃ is called LR-type if
shape functions L and R and four parameters

(
m1X̃ , m2X̃

)
∈ R2,

(
αX̃ , βX̃

)
∈ R+2

exist and
the membership function of X̃ is as follows:

µX̃(x) =


L
(

m1X̃−x
αX̃

)
, m1X̃ ≥ x

1, m1X̃ ≤ x ≤ m2X̃
R
(

x−m2X̃
βX̃

)
, m2X̃ ≤ x

(7)
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where αX̃ > 0, βX̃ > 0 are called the left and right spreads respectively. Symbolically, X̃ is
denoted by

(
m1X̃ , m2X̃ , αX̃ , βX̃

)
LR.

Let (TFN) X̃ be a trapezoidal fuzzy number. The parameterization of X̃ is denoted
by X̃ =

(
x1X̃ , x2X̃ , x3X̃ , x4X̃

)
TFN where x1X̃, x2X̃, x3X̃ and x4X̃ are called the center, inner

diameter, left outer radius and right outer radius respectively. The TFN X̃ is demonstrated
in Figure 1.
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Let (TAN) X̃ be a triangular fuzzy number. The expressed membership function for
X̃ =

(
xL

X̃
, xC

X̃
, xR

X̃

)
TAN

is as follows:

µX̃(x) =



0, f or x ≤ xL

x−xL
X̃

xC
X̃
−xL

X̃
, f or xL ≤ x ≤ xC

xR
X̃
−x

xR
X̃
−xC

X̃
, f or xC ≤ x ≤ xR

0, f or x ≥ xR

(8)

We will present various metrics of papers [24–33].

2.2. Various Metrics for Symbolic Numbers

Suppose x̃k and ṽi aretwosymbolicnumbers in p dimensionsspace, x̃k = {x̃k,1, x̃k,2, · · · , x̃k,p},
x̃k,j =

(
αx̃k,j

, βx̃k,j

)
SN

for j = 1, 2, · · · , p and ṽi =
{

ṽi,1, ṽi,2, · · · , ṽi,p
}

, ṽi,j =
(

αṽi,j
, βṽi,j

)
SN

for j = 1, 2, · · · , p.
Dissimilarity defined for symbolic numbers in [24] is as follows:

d2(x̃k, ṽi) =
p

∑
j=1

 (1− z)2
(

αx̃k,j
− αṽi,j

)2

+z2
(

βx̃k,j
− βṽi,j

)2

 (9)

where 0 ≤ z ≤ 0.5 is center distance weight. In [25,26], dissimilarity defined for symbolic
numbers can be obtained from the following equation:

d2(x̃k, ṽi) =
p

∑
j=1

γj


(

αx̃k,j
− αṽi,j

)2

+
(

βx̃k,j
− βṽi,j

)2

 (10)



Remote Sens. 2021, 13, 4482 5 of 20

where γj is weight vector and Πp
j=1γj = 1. In the section Allocation step: definition of the

best partition of [25,26], dissimilarity is defined as follows:

d2(x̃k, ṽi) =
p

∑
j=1

γi,j


(

αx̃k,j
− αṽi,j

)2

+
(

βx̃k,j
− βṽi,j

)2

 (11)

where Πp
j=1γi,j = 1. The last dissimilarity defined for symbolic numbers is suggested

in [27] as follows:

d2(x̃k, ṽi) =
p

∑
j=1


(

αx̃k,j
− αṽi,j

)2

+
(

βx̃k,j
− βṽi,j

)2

 (12)

2.3. Various Metrics for Fuzzy Numbers

Suppose we have two LR-type fuzzy numbers x̃k and ṽi in a p dimensions space,
x̃k =

{
x̃k,1, x̃k,2, · · · , x̃k,p

}
, x̃k,j =

(
m1x̃k,j

, m2x̃k,j
, αx̃k,j

, βx̃k,j

)
LR

for j = 1, 2, · · · , p and ṽi ={
ṽi,1, ṽi,2, · · · , ṽi,p

}
, ṽi,j =

(
m1ṽi,j

, m2ṽi,j
, αṽi,j

, βṽi,j

)
LR

for j = 1, 2, · · · , p. Yang et al. [29,30,32]

expressed the metric d(x̃k, ṽi) with the following definition:

d2(x̃k, ṽi) =
n
∑

j=1
d2
(

x̃k,j, ṽi,j

)
d2
(

x̃k,j, ṽi,j

)
=
(

m1x̃k,j
−m1ṽi,j

)2
+
(

m2x̃k,j
−m2ṽi,j

)2
+((

m1x̃k,j
− lαx̃k,j

)
−
(

m1ṽi,j
− lαṽi,j

))
2 +

((
m2x̃k,j

+ rβx̃k,j

)
−
(

m2ṽi,j
+ rβṽi,j

))2

(13)

where l =
∫ 1

0 L−1(w)dw and r =
∫ 1

0 R−1(w)dw.
In the TFN numbers case, the Yang distance definition for two TFN numbers x̃k and

ṽi in p dimensions space, x̃k =
{

x̃k,1, x̃k,2, · · · , x̃k,p

}
, x̃k,j =

(
x1x̃k,j

, x2x̃k,j
, x3x̃k,j

, x4x̃k,j

)
TFN

for j = 1, 2, · · · , p and ṽi =
{

ṽi,1, ṽi,2, · · · , ṽi,p
}

, ṽi,j =
(

v1ṽi,j
, v2ṽi,j

, v3ṽi,j
, v4ṽi,j

)
TFN

for

j = 1, 2, · · · , p, is obtained from (13) by setting l = r = 1
2 , m1 = 2x1−x2

2 , m2 = 2x1+x2
2 ,

α = x3 and β = x4 as follows:

d2(x̃k, ṽi) =
p
∑

j=1
d2
(

x̃k,j, ṽi,j

)
d2
(

x̃k,j, ṽi,j

)
=

(
2x1x̃k,j

−x2x̃k,j
2 −

2v1ṽi,j
−v2ṽi,j
2

)2

+


(

2x1x̃k,j
−x2x̃k,j
2 − 1

2 x3x̃k,j

)
−(

2v1ṽi,j
−v2ṽi,j
2 − 1

2 v3ṽi,j

)


2

+


(

2x1x̃k,j
+x2x̃k,j
2 + 1

2 x4x̃k,j

)
−(

2v1ṽi,j
+v2ṽi,j
2 + 1

2 v4ṽi,j

)


2 (14)

Dissimilarity defined for two TFN numbers x̃k, ṽi in [28] is as follows:

d2(x̃k, ṽi) =
p

∑
j=1

(
x1x̃k,j

− v1ṽi,j

)2
+
(

x2x̃k,j
− v2ṽi,j

)2

+
(

x3x̃k,j
− v3ṽi,j

)2
+
(

x4x̃k,j
− v4ṽi,j

)2 (15)
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In the next state for LR-type fuzzy numbers suppose m1x̃k,j
= m2x̃k,j

= mx̃k,j
and

m1ṽi,j
= m2ṽi,j

= mṽi,j
. The Yang distance definition for this state is as follows:

d2(x̃k, ṽi) =
p

∑
j=1



(
mx̃k,j

−mṽi,j

)2

+
((

mx̃k,j
− lαx̃k,j

)
−
(

mṽi,j
− lαṽi,j

))2

+

 (
mx̃k,j

+ rβx̃k,j

)
−
(

mṽi,j
+ rβṽi,j

) 2


(16)

To achieve the robust clustering method versus noisy input numbers, Yang et al. in [31]
define an exponential based metric. Dissimilarity defined for LR-type fuzzy number x̃ and
prototype ṽ in [31] is as follows:

d2(x̃k, ṽi) = 1− exp
(
−bd2(x̃k, ṽi)

)
(17)

where d2(x̃k, ṽi) is obtained from (16) and b is a fixed coefficient [see [31]].
In [33] Rong et al. offer two metrics for triangular fuzzy numbers. Dissimilarity defined for

triangular-type fuzzy numbers x̃k and ṽi in p dimensions space, x̃k =
{

x̃k,1, x̃k,2, · · · , x̃k,p

}
, x̃k,j =(

xL
k,j, xC

k,j, xR
k,j

)
TAN

for j = 1, 2, · · · , p and ṽi =
{

ṽi,1, ṽi,2, · · · , ṽi,p
}

, vi,j =
(

vL
i,j, vC

i,j, vR
i,j

)
TAN

for j = 1, 2, · · · , p, is as follows:

d2
(

x̃k,j, ṽi,j

)
= α1

6 (xL
k,j − vL

i,j)
2
+
( α1

6 + α2 +
α3
6
)
(xC

k,j − vC
i )

2
+ α3

6 (xR
k,j − vR

i,j)
2

+ α1
6

(
(xL

k,j + xC
k,j)− (vL

i,j + vC
i,j)
)2

+ α3
6

(
(xR

k,j + xC
k,j)− (vR

i,j + vC
i,j)
)2

d2
1(x̃k, ṽi) =

p
∑

j=1
d2
(

x̃k,j, ṽi,j

)
(18− 1)

d2
2(x̃k, ṽi) = 1− exp

(
−b.d2

1(x̃k, ṽi)
)
(18− 2)

(18)

where α1, α2 and α3 are positive, fixed and known coefficients while α1 + α2 + α3 = 1 and
b is a fixed coefficient also.

The main key point in the proposed Vector Fuzzy c-Spherical Shells (VFCSS) Clus-
tering is how to define crisp vectors from parameters of affected numbers. According to
any used metric, we define a crisp vectors set Y = {y1, y2, · · · , yn} a corresponding input
numbers set (X̃ for non-crisp numbers and X for crisp numbers) and W = {w1, w2, · · · , wc}
and a corresponding centers set (Ṽ for non-crisp numbers and V for crisp numbers). These
definitions allow us to demonstrate a distance and a Lagrange function in the proposed
VFCSS as follows:

d2 =
(
‖yk − wi‖2 − ri

2
)2

= ((yk − wi)
T(yk − wi)− ri

2)
2

(19)

L(W, U, λ) =
n

∑
k=1

c

∑
i=1

um
i,k((yk − wi)

T(yk − wi)− ri
2)

2
+

n

∑
k=1

λk

(
c

∑
i=1

ui,k − 1

)
(20)

By this definition, similar to the crisp case and (5), the membership value of ui,k can
update from the next equation in the proposed VFCSS:

ui,k =

 c

∑
j=1

(
d2(yk, wi, ri)

d2
(
yk, wj, rj

)) 1
m−1
−1

=

 c

∑
j=1

(
((yk − wi)

T(yk − wi)− ri
2)

(
(
yk − wj

)T(yk − wj
)
− rj

2)

) 2
m−1
−1

(21)

Let the independent parameters of the ith center (except radius ri) be denoted by the
set {ti}. After creating the Lagrange function (20), we must calculate the derivation of the
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Lagrange function with respect to parameters ti, ri and set the resulting equation equal to
zero for all ti’s as follows:

∂L
∂ti

= ∂L
∂wi

. ∂wT
i

∂ti
= 0, f or all ti

∂L
∂ri

= ∂L
∂wi

. ∂wT
i

∂ri
= 0

 f or i = 1, 2, · · · , c (22)

As tis are independent and we have ∂L
∂wi

. ∂wT
i

∂ti
= 0 for all tis, furthermore ∂L

∂wi
is fixed

while ∂wT
i

∂ti
is changing because of changing the metric (in fixed ti), therefore from (22) we

can conclude that ∂L
∂wi

= 0. Suppose the vectors {wi}c
i=1 and {yk}n

k=1 are p̂-dimensional,
then we can extract the updating relation of wi and ri similar to vi and ri in the crisp
numbers case as follows:{

wi = − 1
2 [qi,1, qi,2, · · · , qi,p̂]

T

ri =
√

wT
i wi − qi,p̂+1

, f or i = 1, 2, · · · , c (23a)

Where :



qi = − 1
2 H−1

i ωi (23b)

Hi =
n
∑

k=1
um

i,kgkgT
k (23c)

ωi =
n
∑

k=1
um

i,ksk (23d)

sk = 2
(
yT

k yk
)

gk, f or k = 1, 2, · · · , n (23e)

gk =
[
yk,1, yk,2, · · · , yk,p̂, 1

]T
, f or k = 1, 2, · · · , n (23f)

Subsequentlybymultiplyingbothsidesof the firstphraseof (23a) (wi = − 1
2
[
qi,1, qi,2, · · · , qi,p̂

]T)

by ∂wT
i

∂ti
, we can get the updating equation of the ti parameter. For simplicity, we replace

∂wT
i

∂ti
by ξti , that is the normalized vector of the ∂wT

i
∂ti

vector. Therefore, the updated relation
for the ti parameter can be obtained as follows:

ξti = Norm

(
∂wT

i
∂ti

)
, f or all tis and i = 1, 2, · · · , c (24)

ξti wi = −
1
2

ξti

[
qi,1, qi,2, · · · , qi,p̂

]T ⇒ ti =?, f or all tis and i = 1, 2, · · · , c. (25)

To complete the VFCSS description, we will apply the proposed VFCSS clustering
method over various crisp and non-crisp numbers.

In this part, we apply the proposed VFCSS clustering of Section 4 over crisp and
various non-crisp numbers with the metrics that are introduced in Section 3.

2.4. VFCSS Applied to Crisp Numbers

The VFCSS can be applied over crisp numbers. In this state according to the definition
of Euclidean distance, the definition of the Y and W sets are as follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j = xk,j

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j = vi,j

(26)

where k = 1, 2, · · · , n, i = 1, 2, · · · , c and j = 1, 2, · · · , p. In this case Y = X and W = V.

Therefore, we can conclude p̂ = p. In this case ξti = Norm
(

∂wT
i

∂ti

)
=

∂wT
i

∂ti
that is obtained

from Table 1.
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Table 1. ξ for VFCSS applying over crisp numbers.

dti vi,j, f or j = 1, 2, · · · , p

ξti = Norm
(

∂wT
i

∂ti

)
=

∂wT
i

∂ti


(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1,

(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



Then using (25), parameter ti can be obtained as (5). We can conclude the VFCSS
applied over crisp numbers is equivalent with this concept in the first Equation of (5a).

2.5. The VFCSS Applied to Fuzzy Numbers

In this part, we apply VFCSS clustering to various introduced fuzzy type numbers,
see Section 3.

2.5.1. The VFCSS Applied to LR-Type Fuzzy Numbers

For LR-type fuzzy numbers, when the metric (13) is used, we define Y and W sets as
below:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j

=
[
m1x̃k,j

, m2x̃k,j
, m1x̃k,j

− lαx̃k,j
, m2x̃k,j

+ rβx̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j

=
[
m1ṽi,j

, m2ṽi,j
, m1ṽi,j

− lαṽi,j
, m2ṽi,j

+ rβṽi,j

]T

(27)

where k = 1, 2, · · · , n, i = 1, 2, · · · , c and j = 1, 2, · · · , p. It is observed in this case p̂ = 4p.

In this case, for all tis (ti ∈
{

m1ṽi,j
, m2ṽi,j

, αṽi,j
, βṽi,j

}p

j=1
), ∂wT

i
∂ti

and ξti are obtained in Tables 2

and 3.

Table 2. ∂wT

∂t for VFCSS applying over LR-type fuzzy numbers when metric (13) is used.

ti m1ṽi,j
, f or j = 1, 2, · · · , p m2ṽi,j

, f or j = 1, 2, · · · , p αṽi,j
, f or j = 1, 2, · · · , p βṽi,j

, f or j = 1, 2, · · · , p

∂wT
i

∂ti


4(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1, 0, 1, 0,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)︷ ︸︸ ︷
0, 0, · · · , 0, 0, 1, 0, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+2︷ ︸︸ ︷
0, 0, · · · , 0,−l,

4(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+3︷ ︸︸ ︷
0, 0, · · · , 0, r,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



Table 3. ξ for VFCSS applying over LR-type fuzzy numbers when metric (13) is used.

ti m1ṽi,j
, f or j = 1, 2, · · · , p m2ṽi,j

, f or j = 1, 2, · · · , p αṽi,j
, f or j = 1, 2, · · · , p βṽi,j

, f or j = 1, 2, · · · , p

ξti


4(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1, 0, 1, 0,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)︷ ︸︸ ︷
0, 0, · · · , 0, 0, 1, 0, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+2︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+3︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0


Finally, we can arrive at updated relations of parameters m1ṽi,j

, m2ṽi,j
, αṽi,j

and βṽi,j

from (25) as follows:

m1ṽi,j
= − 1

4
(
qi,4j−3 + qi,4j−1

)
+ l

2 αṽi,j

m2ṽi,j
= − 1

4
(
qi,4j−2 + qi,4j

)
− r

2 βṽi,j

αṽi,j
= 1

2l qi,4j−1 +
1
l m1ṽi,j

βṽi,j
= − 1

2r qi,4j − 1
r m2ṽi,j

 f or
{

i = 1, 2, · · · , c
j = 1, 2, · · · , p

(28)
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In the other state of LR-type fuzzy numbers, suppose m1x̃k,j
= m2x̃k,j

= mx̃k,j
and

m1ṽi,j
= m2ṽi,j

= mṽi,j
. Regarding the Yang distance definition of (16), Y and W are defined

as follows:
Y = {y1, y2, · · · , yn}, yk =

[
yk,1, yk,2, · · · , yk,p

]T
,

yk,j =
[
mx̃k,j

, mx̃k,j
− lαx̃k,j

, mx̃k,j
+ rβx̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T ,

wi,j =
[
mṽi,j

, mṽi,j
− lαṽi,j

, mṽi,j
+ rβṽi,j

]T

(29)

In this case p̂ = 3p. For this case ξti and updated relations of mṽi,j
, αṽi,j

and βṽi,j
are as

in Table 4 and (30).

Table 4. ξ for VFCSS applying over LR-type fuzzy numbers when metric (16) is used.

ti mṽi,j
, f or j = 1, 2, · · · , p αṽi,j

, f or j = 1, 2, · · · , p βṽi,j
, f or j = 1, 2, · · · , p

ξti


3(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1, 1, 1,

3(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




3(j−1)+1︷ ︸︸ ︷
0, 0, · · · , 0, 1,

3(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




3(j−1)+2︷ ︸︸ ︷
0, 0, · · · , 0, 1,

3(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



mṽi,j
= − 1

6
(
qi,3j−2 + qi,3j−1 + qi,3j

)
+ l

3 αṽi,j
− r

3 βṽi,j

αṽi,j
= 1

2l qi,3j−1 +
1
l mṽi,j

βṽi,j
= − 1

2r qi,3j − 1
r mṽi,j

 f or
{

i = 1, 2, · · · , c
j = 1, 2, · · · , p

(30)

As we cannot define Y and W to match (17) to (19), therefore the proposed VFCSS
cannot be applied on (19).

2.5.2. The VFCSS Applied to TFN-Type Fuzzy Numbers

For TFN numbers, when the metric (14) is used, we define Y and W sets as below:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j

=

[
2x1x̃k,j

−x2x̃k,j
2 ,

2x1x̃k,j
+x2x̃k,j
2 ,

2x1x̃k,j
−x2x̃k,j

−x3x̃k,j
2 ,

2x1x̃k,j
+x2x̃k,j

+x4x̃k,j
2

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j

=

[
2v1ṽi,j

−v2ṽi,j
2 ,

2v1ṽi,j
+v2ṽi,j
2 ,

2v1ṽi,j
−v2ṽi,j

−v3ṽi,j
2 ,

2v1ṽi,j
+v2ṽi,j

+v4ṽi,j
2

]T

(31)

It is observed p̂ = 4p. In this case ξti and updated relations of v1ṽi,j
, v2ṽi,j

, v3ṽi,j
and

v4ṽi,j
are as in Table 5 and (32).

v1ṽi,j
= − 1

8

(
qi,4j−3 + qi,4j−2 + qi,4j−1 + qi,4j − v3ṽi,j

+ v4ṽi,j

)
v2ṽi,j

= − 1
4

(
−qi,4j−3 + qi,4j−2 − qi,4j−1 + qi,4j + v3ṽi,j

+ v4ṽi,j

)
v3ṽi,j

= qi,4j−1 + 2v1ṽi,j
− v2ṽi,j

v4ṽi,j
= −qi,4j − 2v1ṽi,j

− v2ṽi,j

 f or
{

i = 1, 2, · · · , c
j = 1, 2, · · · , p

(32)

Table 5. ξ for VFCSS applying over TFN-type fuzzy numbers when metric (14) is used.

ti v1ṽi,j
, f or j = 1, 2, · · · , p v2ṽi,j

, f or j = 1, 2, · · · , p v3ṽi,j
, f or j = 1, 2, · · · , p v4ṽi,j

, f or j = 1, 2, · · · , p

ξti


4(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1, 1, 1, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)︷ ︸︸ ︷
0, 0, · · · , 0,−1, 1,−1, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+2︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+3︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0


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For TFN numbers when metric (15) is used, we define the Y and W sets as follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j =

[
x1x̃k,j

, x2x̃k,j
, x3x̃k,j

, x4x̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j =
[
v1ṽi,j

, v2ṽi,j
, v3ṽi,j

, v4ṽi,j

]T (33)

In this case p̂ = 4p, furthermore ξti and updated relations of v1ṽi,j
, v2ṽi,j

, v3ṽi,j
and v4ṽi,j

are as in Table 6 and (34).

v1ṽi,j
= − 1

2 qi,4j−3

v2ṽi,j
= − 1

2 qi,4j−2

v3ṽi,j
= − 1

2 qi,4j−1

v4ṽi,j
= − 1

2 qi,4j

 f or
{

i = 1, 2, · · · , c
j = 1, 2, · · · , p

(34)

Table 6. ξ for VFCSS over applying over TFN-type fuzzy numbers when metric (14) is used.

ti v1ṽi,j
, f or j = 1, 2, · · · , p v2ṽi,j

, f or j = 1, 2, · · · , p v3ṽi,j
, f or j = 1, 2, · · · , p v4ṽi,j

, f or j = 1, 2, · · · , p

ξti


4(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1,

4(p−j)+3︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+1︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)+2︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+2︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




4(j−1)+3︷ ︸︸ ︷
0, 0, · · · , 0, 1,

4(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



2.5.3. The VFCSS Applied to TAN-Type Fuzzy Numbers

If we use (18.1) as the metric when we apply VFCSS over TAN numbers, the definition
of Y and W is as follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j =

[√
α1
6 xL

k,j,
√

α1
6 + α2 +

α3
6 xC

k,j,
√

α3
6 xR

k,j,
√

α1
6

(
xL

k,j + xC
k,j

)
,
√

α3
6

(
xR

k,j + xC
k,j

)]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j =
[√

α1
6 vL

i,j,
√

α1
6 + α2 +

α3
6 vC

i,j,
√

α3
6 vR

i,j,
√

α1
6

(
vL

i,j + vC
i,j

)
,
√

α3
6

(
vR

i,j + vC
i,j

)]T (35)

In this case p̂ = 5p, furthermore ξti and updated relations of vL
i,j, vC

i,j and vR
i,j are as in

Table 7 and (36).
vL

i,j = −
√

3
8α1

(
qi,5j−4 + qi,5j−1

)
− 1

2 vC
i,j

vC
i,j = −

√
6

4(α1+3α2+α3)

(√
(α1 + 6α2 + α3)qi,5j−3 +

√
α1qi,5j−1 +

√
α3qi,5j

)
−

α1vL
i,j+α3vR

i,j
2(α1+3α2+α3)

vR
i,j = −

√
3

8α1

(
qi,5j−2 + qi,5j

)
− 1

2 vC
i,j

 (36)

Table 7. ξ for VFCSS applying over TAN-type fuzzy numbers when metric (18.1) is used.

ti vL
i,j, f or j = 1, 2, · · · , p vC

i,j, f or j = 1, 2, · · · , p vR
i,j, f or j = 1, 2, · · · , p

ξti


5(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1, 00, 1, 0,

5(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




5(j−1)︷ ︸︸ ︷
0, 0, · · · , 0, 0, 1, 0,

√
α1

α1+6α2+α3
,
√

α3
α1+6α2+α3

,

5(p−j)︷ ︸︸ ︷
0, 0, · · · , 0




5(j−1)︷ ︸︸ ︷
0, 0, · · · , 0, 0, 0, 1, 0, 1,

5(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



However, the proposed VFCSS cannot be implemented for the exponential based
metric of (18.1).

2.6. The VFCSS over Symbolic Numbers

Using the VFCSS method, the definition of the Y and W crisp vectors for dissimilarity
definitions of (12) is as follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j =

[
αx̃k,j

, βx̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j =
[
αṽi,j

, βṽi,j

]T (37)
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In this case p̂ = 2p. For this case ξti and updated relations of αṽi,j
and βṽi,j

are as in
Table 8 and Equation (38).

αṽi,j
= − 1

2 qi,2j−1

βṽi,j
= − 1

2 qi,2j

}
f or
{

i = 1, 2, · · · , c
j = 1, 2, · · · , p

(38)

Table 8. ξ for VFCSS applying over symbolic numbers when metric (12) is used.

ti αṽi,j
, f or j = 1, 2, · · · , p βṽi,j

, f or j = 1, 2, · · · , p

ξti


2(j−1)︷ ︸︸ ︷

0, 0, · · · , 0, 1,

2(p−j)+1︷ ︸︸ ︷
0, 0, · · · , 0




2(j−1)+1︷ ︸︸ ︷
0, 0, · · · , 0, 1,

2(p−j)︷ ︸︸ ︷
0, 0, · · · , 0



Using the VFCSS method, the definition of the Y and W vectors for metric (9) is as
follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j =

[
(1− z)αx̃k,j

, zβx̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j =
[
(1− z)αṽi,j

, zβṽi,j

]T (39)

Using these definitions, dissimilarity between two symbolic numbers x̃k, ṽi is obtained
from the Euclidean distance between the two crisp vectors yk, wi. As the constraint 0 ≤
z ≤ 0.5 is added to constraint (3), therefore the Lagrange function (20) will change in this
case. Similar to the mentioned case, we can get the updated relations by performing the
same procedure.

For dissimilarity definitions of (10), using the VFCSS method, the definition of Y and
W vectors are as follows:

Y = {y1, y2, · · · , yn}, yk =
[
yk,1, yk,2, · · · , yk,p

]T
, yk,j =

[√
γjαx̃k,j

,√γjβx̃k,j

]T

W = {w1, w2, · · · , wc}, wi =
[
wi,1, wi,2, · · · , wi,p

]T , wi,j =
[√

γjαṽi,j
,√γjβṽi,j

] (40)

Using these definitions, dissimilarity between two symbolic numbers x̃k, ṽi is obtained
from the Euclidean distance between two crisp vectors yk, wi. As the constraint Πp

j=1γj = 1
is added to constraint (3), therefore the Lagrange function (20) will change in this case.
Similar to the mentioned case, we can get the updated relations by performing the same
procedure.

For dissimilarity definitions of (11), we cannot define two crisp vectors yk, wi such
that d2(yk, wi) = d2(x̃k, ṽi).

In the last two items, regarding the change in the Lagrange function caused by adding
other constraints to (3), we cannot use (25) for accessing updating relations. We must
rewrite the Lagrange function for each case separately. After this, we must solve the
resulting system of equations from corresponding derivations. Finally, we can obtain
updating relations of parameters similar to the introduced case in this paper.

3. Results and Discussion

Each presented non-crisp type number above with any of the corresponding metrics
can be simulated. In this section, we apply the VFCSS clustering method over LR-type
fuzzy numbers, while the Yang metric of (13) is used. Simulations are performed using
MATLAB software.

In LR-type fuzzy numbers, decreasing functions of L(x) and R(x) are presumed
linear (L(x) = R(x) = 1− x). In order to create fuzzy numbers, we use 2-dimension crisp
numbers X = {xk}n

k=1 that are produced randomly on the boundary of circles with a few
alternates and these are named crisp equivalents (CE) of fuzzy numbers, while 0 ≤ xk,j ≤ 1
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for j = 1, 2 (j represents each dimension). An LR-type fuzzy number x̃k is generated as
follows:

x̃k,j =
(

xk,j − 0.01, xk,j + 0.01, 0.02xk,j, 0.02xk,j

)
LR

(41)

The noise added to crisp numbers has a max absolute of 0.1 times the corresponding
circle radius. This is for performance evaluation of the proposed VFCSS performance
versus noise. In demonstration of LR-type fuzzy numbers in simulation result figures,
the distance between m1, m2 is in bold while α, β are demonstrated normally. To evaluate
the VFCSS clustering accuracy we use a Confusion Matrix (CM). A CM is a c× c matrix,
where CM(i, j) is the number of numbers from the ith class that are clustered as the jth
cluster. Furthermore, in the resulting membership grade matrix (U), it is assumed any
input number belongs to a cluster that has the maximum membership of it. In this paper,
VFCSS is applied to analyzed numbers in various states and results are reported as follows.

State 1. In the first state, in the first step the proposed VFCSS is applied to four classes
of numbers that are overlapping. The simulation result for this step is provided in Figure 2.
In the second step, VFCSS is applied to four classes of numbers that are complex and
overlapping. The simulation result for this step is provided in Figure 3. The CM of these
two steps is expressed in Table 9.

Table 9. CM of VFCSS applied over LR-type fuzzy numbers of Figures 2 and 3 (first and second steps
of state 1).

Output Clusters
Step First Step Second Step

Confusion Matrix


20,0, 0, 0
1, 18,0, 1
0, 0, 20,0
0, 1, 0, 19




20,0, 0, 0
0, 20,0, 0
2, 1, 16,1
0, 1, 1, 18

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 20 
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State 2. In this state, the input fuzzy numbers are not symmetric. On the other hand,
we do not use from (41) to create fuzzy numbers. The procedure for producing fuzzy
numbers in this state is as follows:

x̃k,j =
(

xk,j − 0.01, xk,j + 0.03, 0.04xk,j, 0.02xk,j

)
LR

(42)

In this state, we apply VFCSS clustering over LR-type fuzzy numbers with the same
conditions as for state 1. Simulation results of the corresponding two steps of this state are
demonstrated in Figures 4 and 5. The CM of these two steps is expressed in Table 10.
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Table 10. CM of VFCSS applied over LR-type fuzzy numbers of Figures 4 and 5 (first and second
steps of state 2).

Output Clusters
Step First Step Second Step

Confusion Matrix


18,1, 0, 1
0, 19,0, 1
0, 0, 20,0
0, 0, 0, 20




20,0, 0, 0
0, 19,0, 1
1, 2, 15,2
0, 1, 2, 17



State 3. In the third state, as we can represent an LR-type fuzzy number with its
mean ((m1 + m2)/2 from 41) as a crisp number, we apply a similar condition as for the two
previous states for crisp numbers. Therefore, conventional FCSS is applied over input crisp
numbers. Simulation results for the corresponding two steps of this state are demonstrated
in Figures 6 and 7. The CM of these two steps is expressed in Table 11.
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Table 11. CM of VFCSS applied over crisp numbers of Figures 6 and 7 (first and second steps of
state 3).

Output Clusters
Step First Step Second Step

Confusion Matrix


20,0, 0, 0
1, 18,0, 1
0, 0, 20,0
0, 1, 0, 19




8, 7, 4, 1
7, 8, 3, 2
1, 0, 19,0
0, 1, 1, 18



In this state it is observed, in the first step, the performance of the proposed VFCSS
(first step of state 3) and FCSS (first step of state 5) clustering methods are similar. While
in the second step, the proposed VFCSS can cluster input numbers well, while the con-
ventional FCSS cannot do this as well. Although in the simulation results the procedure
of producing fuzzy numbers is very simple and primary. Performance of the proposed
VFCSS can be improved further by a change in the procedure of producing fuzzy numbers
(41), as well.

State 4. In the last state, the application of the proposed model is illustrated in real
life. Geomorphology science and remotely sensed images are selected for simulation in
this state. Geomorphology is the study of landforms dealing with the terrain relief. It is the
morphology of the earth surface that works as the basic element separating geomorphology
into an autonomous science in the Earth sciences. By analyzing the geometry of landforms,
it is possible to study the relief and its properties from a validated perspective using
mathematical apparatus [34]. Furthermore, remotely sensed imagery has been used widely
in geomorphology due to the availability of satellite data, with its value measurable by the
point to which it can meet the investigative needs of geomorphologists. Geomorphologists
are therefore concerned with the Earth surface geometry and composition of the terrain
relief. They use this information to determine presently operating processes, as well as
predictive prior landforms and the events. They try to model geomorphological processes
and use a wide range of techniques to predict future land surface change [35]. Therefore,
in this paper, three georeferenced satellite images (obtained using Google maps) illustrated
in Figure 8 are utilized, where they are related to the US with coordinates (Upper Left:
37◦24′10”N, 105◦35′12”W and Lower Right: 37◦22′30”N, 105◦32′35”W). These images are
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used to estimate the area of the agricultural fields (by estimating the circle radius values).
For this purpose, using Arc GIS 10.5 software, the circles are extracted with the clip tool.
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If we demonstrate the extracted circles from images (a), (b) and (c) of Figure 8 by
red, green and blue color respectively, the resulting circles are as in Figure 9. It can be
observed, some of the resulting circles are non-overlapping while in some areas, as in the
worst case, all 3 circles are in contact and are specified by red, green, and blue colors. In
some area, two colors from RGB overlap and combined and cyan, yellow, and pink colors
result. Finally, in rare cases, by complete overlapping of the circles, white color results. For
this case, the resulting radius by conventional FCSS is reported in Table 12. We can observe
various values for each circle are obtained by conventional FCSS (in an un-regular manner,
it means the resulting radius from the first image in some cases is the min value, in other
cases is the max value, etc.). This ambiguity will be increased, by increasing the number of
available images. Furthermore, computational complexity will be increased by growing
the number of available images as well. For this reason, FCSS must be applied on image
circles separately.
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Table 12. Simulation results for state 4 and comparison of resulting radii with FCSS and VFCSS
algorithms.

Circle No Radius 1 2 3 4 5 6 7 8

Result by applying FCSS on image (a)
Figure 8 205 377 301 310 250 285 201 268

Result by applying FCSS on image (b)
Figure 8 212 380 307 314 258 297 211 279

Result by applying FCSS on image (c)
Figure 8 210 385 315 318 257 291 209 274

Result by VFCSS 209 381 306 315 255 293 208 274

However, on the other side, the proposed VFCSS method is applied on the resulting
fuzzy numbers and circles for three images of Figure 9 (considering the fuzzification process
of [36] and associated interval-symbolic numbers for each circle’s pixels). Simulation results
(reported in Table 12) show only one acceptable and moderate value for each circle; even by
increasing the available images that leads to more exact and nearer to the true radius value
(see [36]). Furthermore, the computation complexity in the proposed method is very low,
fixed, and equivalent with one time applying the FCSS, even by increasing the available
number of images.

For more remote sensing applications, Figure 10 shows the proposed model results on
a fish farm satellite image which is captured as Aquaculture farms off the coast of Greece



Remote Sens. 2021, 13, 4482 18 of 20

by Bernhard Lang [37]. The extracted circles and simulation results for circles radii with
VFCSS algorithm are shown. It should be noted that the fuzzy-related works can be utilized
without accessing a big dataset and just by a single image. These models can be applied
directly without any training and validation processes. The proposed model is a new fuzzy
clustering model which can be utilized for remote sensing applications. This fuzzy model
can be helpful for designing smart image processing systems. For lower-quality images, it
just is needed to add some simple preprocessing (noise removal, adjustment, etc.) to have
a high-quality image for the proposed model.
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4. Conclusions

In this paper, a vector form of fuzzy c-spherical shells clustering (VFCSS) has been
proposed. We can cluster non-crisp numbers that have spherical shells form using the
proposed VFCSS. These non-crisp numbers can be available, or we can produce them from
crisp number. It has been shown that we can improve the performance of conventional
fuzzy c-spherical shells clustering over crisp numbers using the proposed VFCSS. This fact
can be obtained by choosing a suitable procedure for producing non-crisp (fuzzy) numbers
from crisp numbers. Furthermore, simulation results show better performance and low-
cost computational complexity of the proposed VFCSS method versus the conventional
FCSS in real life application in morphology science. We implement our clustering model
over various types of geomorphology images for extracting the radii of circular agricultural
fields using remotely sensed images and, we applied our model on these types of images
to show that this clustering model can be utilized for remote sensing applications. To apply
new deep learning models on an application we need a big and proper dataset to train,
valid and test the models. The main uniqueness of fuzzy-related works is that we can
utilize them without accessing a big dataset. We can use these models directly without any
training and validation processes. Our model is a new fuzzy clustering model which can
be utilized for remote sensing wapplications.
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