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Abstract: Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the
above-ground biomass and hence to carbon storage. Estimation of GSV at regional to global scales
depends on the use of satellite remote sensing data, although accuracies are generally lower over
the sparse boreal forest. This is especially true of boreal forest in Russia, for which knowledge of
GSV is currently poor despite its global importance. Here we develop a new empirical method in
which the primary remote sensing data source is a single summer Sentinel-2 MSI image, augmented
by land-cover classification based on the same MSI image trained using MODIS-derived data. In
our work the method is calibrated and validated using an extensive set of field measurements from
two contrasting regions of the Russian arctic. Results show that GSV can be estimated with an RMS
uncertainty of approximately 35–55%, comparable to other spaceborne estimates of low-GSV forest
areas, with 70% spatial correspondence between our GSV maps and existing products derived from
MODIS data. Our empirical approach requires somewhat laborious data collection when used for
upscaling from field data, but could also be used to downscale global data.

Keywords: growing stock volume; boreal forest; Russian arctic; tree allometry; Sentinel-2

1. Introduction

Growing stock volume (GSV), defined as the total volume of all living tree stems
(excluding branches, including bark) in an area of interest or unit area such as a hectare [1],
is an essential structural parameter describing a forest. Its use in assessing commercial
forestry is well established [2]. It is also of direct ecological and climatological significance,
being closely related to the concept of above-ground biomass (AGB) and hence carbon
storage [3]. Remote sensing methods have a long history of development for estimation of
GSV [1,4–10], and a number of approaches have evolved since the 1990s, exploiting space-
borne visible and near-infrared (VNIR) imagery, radar, and more recently the incorporation
of airborne measurements from airborne laser scanners and UAV (unmanned aerial vehicle,
commonly referred to as a ‘drone’) observations. The simplest approaches are based on
multispectral analysis of freely-available VNIR imagery having a spatial resolution of the
order of 10 m or coarser [11–17]. Useful enrichment of the available feature space has been
demonstrated using multitemporal datasets [18–21], incorporating texture measures [14,22]
and field-derived or satellite-derived three-dimensional information [23–30]. Other ap-
proaches are based on the use of ultra-high-resolution VNIR imagery (usually not free of
cost) [31,32], radar imagery [1,33–46], or combinations of VNIR and radar imagery [47–53].
We should also note approaches based on the direct use of spaceborne laser profiling [54]
and those that explicitly incorporate a landscape characterisation, derived from satellite
data, into a VNIR [55] or radar [56] analysis. Finally, Zharko et al. [57] have demonstrated
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the utility of winter VNIR imagery in sparsely forested areas subject to snow cover, where
the optical contrast between snow and vegetation can be exploited.

Figure 1 attempts to give a simple overview of the current situation regarding remote
sensing estimation of GSV. It has been compiled from quantitative data abstracted from
many publications [13,14,16,21–23,25,27,32,33,37,40,47,48,50,56–60]. As Figure 1 shows,
typical accuracies for spaceborne methods are approximately 20 to 40% RMSE, becoming
somewhat poorer at lower values of GSV.
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Figure 1. Schematic illustration of the accuracy achieved by remote sensing estimates of GSV, based
on a survey of the literature. (See main text for details.) Horizontal axis shows the mean GSV of the
plot or plots included in the studies, and the vertical axis shows the estimated error in the calculated
GSV expressed as a percentage of the mean. Methods are roughly classified as airborne (using data
from ALS (Airborne Laser Scanning) or UAVs), optical (satellite data from Sentinel-2 and Landsat),
ultra-high resolution satellite data (with spatial resolution of 1 m or finer), radar (satellite radar data),
or ‘multiple’, using more than one data type. ‘Present’ summarises the performance of the method
developed in the present work. The dashed line is an empirical fit to the data except for the ‘airborne’
class, and has the formula RMSE = 436 (GSV)−1/2, where RMSE is in % and GSV in m3 ha−1.

The work presented in this paper is focused specifically on estimation of GSV in the
Russian boreal forest. The Boreal forest generally, and the Russian part in particular, is
poorly inventoried [1,61] and yet its importance in our understanding of the global climate
system is high [62]. Globally, the boreal forest accounts for 31% of the area, 20% of the GSV,
and 13% of the above-ground biomass of all forest whereas Russia, which is dominated by
boreal forest, accounts for 20% of the global forest area [63]. However, a recent study based
on remote sensing data has shown that the growing stock of Russian forests is 39% higher
than the value of official statistics in the State Forest Register [61]. Multispectral VNIR
remote sensing-based GSV estimation for boreal forest is particularly challenging because
of the low canopy coverage, combined with the fact the field layer is often composed of
dwarf shrubs that are spectrally not very different from the forest canopy [64]. Although
airborne methods have undoubted potential to improve our ability to estimate GSV for
boreal forests, it will often be impractical to obtain airborne data, especially over large
areas. There is thus an incentive to develop simple optimised estimation algorithms that
exploit freely and frequently available satellite data. In the present work, we develop
one such algorithm that uses an empirical estimation function combining both Sentinel-
2 MSI imagery and a land-cover classification derived from this imagery and trained
using MODIS (Moderate Resolution Imaging Spectrometer) data. The novel feature of
this new method is thus the inclusion of land-cover as a potentially informative source
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of information on GSV, in addition to the multispectral bands of the MSI imagery itself.
The explicit aim of this approach is to minimize its dependence on multiple data sources
that may be difficult to acquire on a routine basis. The algorithm is locally tuned, and
developed for two contrasting areas of the Russian boreal forest. Although we do not assert
that these represent the complete range of types of boreal forest in Russia, their contrasting
natures allow the method’s potential for generalisation to be assessed to some extent.

2. Materials and Methods

Field data were collected as part of the project “Multiplatform remote sensing of
the impact of climate change on northern forests of Russia”, a Russian-UK collaboration
that ran from 2018 to 2021. The broad aim of this project was to develop a systematic
understanding of the distribution of biomass in the Russian boreal forest, its changes
during the first 20 years of the present century, and the climatic influences on it. Field-
work took place in July–August 2018 in and around the Khibiny mountains in north-
western Russia, and in July–August 2019 in the vicinity of Yakutsk, Sakha Republic, in
north-eastern Russia (Figure 2). The boreal forest in the Khibiny region is dominated
by pine, spruce, and birch species, and lies within the area of Russian forest classed
as ‘accessible’ [65]; whereas around Yakutsk it is dominated by larch, pine, and birch
species and is classed as ‘hard-to-reach’. Logistical support for the Khibiny fieldwork
was provided by the Khibiny Educational and Scientific Station (67◦38′N, 33◦44′E) [66],
a facility of the Geography Faculty of Moscow State University that is part of the IN-
TERACT (International Network for Terrestrial Research and Monitoring in the Arctic:
https://eu-interact.org/field-sites/khibiny-educational-and-scientific-station/ accessed
on 1 November 2021) network. Logistical support for the Sakha fieldwork was provided
in part by the Spasskaya Pad Scientific Forest Station (62◦14′N, 129◦37′E) of the Institute
for Biological Problems of the Cryolithozone, Siberian Branch of the Russian Academy of
Sciences. The Spasskaya Pad station is also part of the INTERACT network.
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Figure 2. Location of study areas within the Russian boreal forest. Background map shows dominant forest types and is
simplified from [67] using original data from [68]. Map prepared by the authors.

Within each of the two main study areas, a number of sample plots of 20 m × 20 m
area were established, geolocated using non-differential GPS. Plots were accessed by road
vehicle and on foot, and were selected to span, as far as practicable, the range of forest type
and condition characteristic of the areas. The plots were judged by eye to be homogeneous
in tree density. Where the number density of trees was particularly high, smaller plots
were occasionally chosen.

Data suitable for estimating the GSV per plot were collected by measuring all stem
diameters d (diameter at breast height-DBH-at 1.3 m) and tree heights h, together with
tree genera, in each 20 m × 20 m plot. Trees were counted and measured only if their
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https://eu-interact.org/field-sites/khibiny-educational-and-scientific-station/


Remote Sens. 2021, 13, 4483 4 of 17

heights exceeded 2 m. (A height threshold was quicker to implement in the field than the
equivalent DBH threshold of approximately 3 cm. The data collection protocol in this study
also complied with previous studies of forests near the treeline, where the tree was defined
as woody vegetation over 2 m tall. The resulting data are more complete in the number
of stems per site, which is important in comparing to previous data.) Diameters were
measured using a Haglöfs Mantax 40 cm tree caliper or by passing a flexible measuring
tape around the stem, and heights were measured using an optical clinometer (Suunto
PM5, Silva Clino Master CM and similar) with a measuring tape to determine the distance
from the observer to the base of the tree. The accuracy of both methods was estimated to
be 5%. In total, 1858 trees were measured across a total of 33 field plots (total area sampled
was 8675 m2).

Stem volumes V of individual trees were calculated from their geometrical measure-
ments making use of the collection of allometric formulae compiled by Zianis et al. [69].
Although this compilation is explicitly for European trees, we propose that the shapes
of individual trees in Siberia will not differ substantially from those of similar species in
Europe. We justify this assumption on the basis of, first, our own informal observations
and, second, the fact that the published formulae do not suggest large variations in stem
volume between different tree species of the same genus, height, and DBH. Specifically,
we proceeded as follows. For a given tree genus (e.g., Betula), all the allometric formulae
contained within the compilation of Zianis et al. [69] for trees of the same genus were
applied using the measured tree dimensions, and the median value of the calculated stem
volumes was adopted as the value for that particular tree. The formulae were transcribed
into the programming language GNU Octave [70] in order to facilitate the huge number
of calculations required by this method. Some obvious errors in the published formulae
(wrong units specified for the measurement of tree stem volume, height, or DBH, which
produced errors of more than one order of magnitude) were corrected. By comparing the
within-species and between-species variations of GSV within each genus, we estimate the
uncertainty arising from this approach as 0.007 m3. On this basis, we estimate the uncer-
tainty arising from the application of the Zianis et al. formulae to be of the order of 10%,
so including the uncertainty in the measurements themselves, we estimate the fractional
uncertainty in a calculated value of V to be 25%. By extrapolating the height-volume and
diameter-volume relationships established from our measurements, we estimate that the
proportion of total tree GSV that we did not sample was less than 0.1%.

Four Sentinel 2 Multispectral Imager (MSI) images were used in this study, consisting
of a summer image and a winter image for each of the two main study areas (Table 1).
Selection criteria were that the images should provide good coverage of all the field plots,
should have no identifiable cloud or smoke cover over the field plots and be generally
as free of cloud as possible, and that they should correspond to the year in which the
corresponding field data were collected. In practice, application of these criteria required
that three of the four images were supplied at level 1C (top-of-atmosphere reflectance)
whereas one was available at level 2A (atmospherically corrected). The Sakha summer
image exhibited several areas of cloud and smoke that were not adequately removed using
the supplied cloud mask layer, and these were masked out manually. Following these
steps, the images were clipped to rectangular areas large enough to include all the training
plots. The resulting areas after masking (shown in Figure 3) were 7795 km2 (Khibiny) and
22,042 km2 (Sakha). The rather large difference in area (factor 2.8) was mainly a consequence
of the spatial distribution of the field plots, controlled by the practical difficulties of access
in the study areas.
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Table 1. Sentinel-2 MSI images processed in this study. Cloud cover for each image is the arithmetic
mean of the cloud cover reported in image metadata for all tiles contributing to the image. The figure
in brackets [] is the percentage image area actually masked out, including smoke contamination.

Study Area Image Date Processing Level Cloud Cover (%)

Khibiny 2018.04.17 1C 0
2018.07.02 1C 0.35

Sakha
2019.04.02 1C 1.03
2019.07.24 2A 0.93 [13.29]
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Figure 3. Location of field plots in the Khibiny (a) and Sakha (b) study areas. The backgrounds are
true-colour (432) composites of the summer Sentinel-2 images identified in Table 1.

Land-cover classifications were produced for the two study areas from the available
MSI images using the Semi-Automatic Classification plugin (version 6.4.5: [71]) for QGIS
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version 3.14 [72]. Training data for these classifications were produced by generating
classified point objects from the MODIS-based Russian land cover map [73,74] available
through the VEGA system of the Space Research Institute of the Russian Academy of
Sciences [75]. The ‘Point object’ tool in the VEGA system was used to generate the classified
point objects. VEGA superimposes a grid over the MODIS land-cover map for a chosen
extent, and if a node of this grid falls into a pixel that is surrounded by pixels of the same
land-cover class, then the grid node becomes a point object of this land-cover class. The
points are then filtered to provide a similar number of points for each land-cover class.
Square buffers of 30 m × 30 m were applied to these point objects, and spectral signatures
for any of the VEGA-defined land-cover classes were calculated over the eight available
10-m resolution bands (i.e., bands 2, 3, 4, and 8 of the summer and winter images) using
the pixels which intersected with the square buffers.

Some manual intervention was required to remove obviously incorrect point training
data. In all cases, these were observed to be a consequence of the mismatch in spatial
resolution between the MSI images and the MODIS data used to generate the training
points (for example, a point classified as needleleaf forest that actually lay within a small
lake). In total, 7578 classified points in 13 land-cover classes, and 6524 classified points
in 10 land-cover classes were generated for Khibiny and Sakha, respectively. The two
combined 8 band Sentinel 2 summer and winter images, one for Khibiny and one for
Sakha, were then classified using the relevant spectral signatures and the maximum
likelihood algorithm. The sets of image classes were then reduced to include only those
occurring within 3 × 3 pixel neighbourhoods of the centre locations of the field plots
(8 and 5 remaining classes in Khibiny and Sakha respectively2). These image classes were
further generalised, as described in Section 3, to four and three in number, respectively, as
our method of estimating GSV depends on limiting the number of potential explanatory
variables.

Modelling of GSV per unit area, G, was based on individual summer Sentinel-2 MSI
band values and land-cover classifications. To better accommodate the dynamic range in
the calibration data, and to ensure that the model could not generate non-positive values of
G, the empirical model was defined such that the natural logarithm of G, lnG, was a linear
function of the variables. The generic model had the form

lnG = a0 +
n

∑
i=1

aiBi +
m

∑
j=1

bjCj (1)

where Bi is the pixel value in band i of the Sentinel-2 MSI image, and Cj is the number of
pixels (out of a maximum of nine) in the 3 × 3 neighbourhood of the pixel to be modelled
that are assigned to merged land-cover class j. Because the number of available MSI bands
was 4 (bands 2, 3, 4, and 8), the value of n could have been anything from 0 to 4. And as the
number of generalised land-cover classes was four (Khibiny) and three (Sakha), the value
of m could have been anything from 0 to these values. Thus the total number of parameters
in the model defined by equation (1) could be as many as 7 or 8. We chose, however, to limit
the actual number (i.e., the sum of n + m) to three in each case. The choice of MSI bands i to
include in the model, and the number and merging of land-cover classes j, were determined
experimentally using the field-based estimates of G as training data. The values of the
coefficients ai and bj were determined through linear least-squares regression analysis, and
performance was assessed using leave-one-out error analysis. Separate modelling exercises
were performed for the two study areas, and the optimal models (i.e., those that resulted in
the smallest RMSE errors in lnG) were applied to the entire MSI image area. Non-forest
areas, as defined by the land-cover classifications, were masked out, as were water bodies,
identified by applying a threshold of 0.3 to calculated values of the normalised difference
water index (NDWI: [76]). Small water bodies are particularly abundant in the Sakha study
area. A 10-m buffer was applied to all detected water bodies to remove marginal pixels.
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A graphical summary of the processing chain by which the GSV G was estimated is
given in Figure 4.

Figure 4. Workflow of GSV modelling. MODIS data are classified (1) to produce a land cover
classification (MLCC) from which point training data are extracted within the VEGA system. The
solid rectangle shows the new method: The point data are used to train (2) a classifier operating on
the 10-m resolution bands (2, 3, 4, and 8—band numbers shown within the symbols) of a winter and a
summer Sentinel-2 MSI image, with a 10-m resolution land-cover classification (LCC) as output. This
is simplified (3) to a generalised land cover classification (GLCC) as described in the text and Table
4, then quantified (4) to generate a multi-band image in which each ‘band’ represents the number
of pixels within a 3 × 3 neighbourhood corresponding to a particular class in the GLCC. The GSV
estimator function is produced using equation (1), with the summer MSI image and the 3 × 3 class
counts image as inputs, trained using field estimates of GSV (5). Finally, the GSV estimates for the
whole study area are produced using the estimator function, class counts, and MSI summer image (6).

3. Results

Tables 2 and 3 summarise the data calculated for the field plots (locations shown
in Figure 3) in the Khibiny and Sakha study areas. Tables 2 and 3 include an indication
of the composition of each plot as a percentage GSV represented by each of the main
tree genera (i.e., last four columns of Table 4), and these were used to guide a process of
generalisation of the land cover maps to maximise the correspondence (by minimising the
Kramér V-statistic on contingency tables: [77]) between the land cover and the composition.
These generalisations are shown in Table 4 and the resulting generalised maps are shown
in Figure 5. The names allocated to these generalised classes are arbitrary and have no
ecological significance, and in particular the use of the same generalised names between the
two study areas does not imply any ecological equivalence between them. We emphasise
that no inferences are drawn from the names of these classes.

Table 2. Locations and calculated forest parameters of the field plots in the Khibiny (K) study area. * Site K18 was a recent
burn site with very little regeneration, and not used in the analysis. ‘Per hectare’ values were calculated by extrapolation
from the measured plots.

Site No
Centre Coordinates All Trees, per ha Mean Percentage V, per Genus

Lat Long n a (m2) V (m3) H (m) Betula Picea Pinus Other

K01 67.58203 33.18883 1575 21.9 94.2 7.0 68 10 22 0
K02 67.58228 33.18628 200 5.3 36.9 9.2 13 87 0 0
K03 67.58414 33.19546 1500 23.1 187.0 14.2 1 0 99 0
K04 67.59514 33.19341 16,800 28.9 96.9 5.8 93 0 4 2
K05 67.59296 33.19844 8000 69.6 444.4 10.5 11 0 88 1
K06 67.58821 33.19638 2700 29.6 136.5 7.1 14 0 84 2
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Table 2. Cont.

Site No
Centre Coordinates All Trees, per ha Mean Percentage V, per Genus

Lat Long n a (m2) V (m3) H (m) Betula Picea Pinus Other

K07 67.58583 33.19092 1900 21.8 119.7 7.9 13 0 85 2
K08 67.67161 33.62433 975 18.0 125.6 8.6 26 71 0 3
K09 67.67110 33.62790 900 7.4 24.7 5.8 95 0 0 5
K10 67.66619 33.63556 1550 5.1 14.7 4.1 100 0 0 0
K11 67.55072 33.84543 2000 38.5 198.6 8.6 11 89 0 0
K12 67.55111 33.84805 4900 44.8 227.7 9.0 48 49 0 2
K13 67.49549 34.28193 2500 41.8 226.1 8.4 10 10 80 0
K14 67.49772 34.27876 1450 13.5 56.2 7.8 73 27 0 0
K15 67.51534 33.97614 3200 31.2 163.3 8.5 16 84 0 0
K16 67.51642 33.95854 1100 18.3 90.9 8.2 13 87 0 0
K17 67.63669 32.94625 800 17.2 81.7 9.8 47 53 0 0

K18 * 67.63816 32.91997 400 0.6 1.4 2.7 92 0 0 8
K19 67.67987 32.82885 850 19.4 112.4 9.0 5 95 0 0
K20 67.62647 32.72848 875 13.4 73.9 6.4 8 20 71 2
K21 67.64500 32.75837 1600 9.0 32.6 5.2 10 0 67 23
K22 67.66966 32.84158 2400 20.7 94.0 7.4 47 49 0 4

Table 3. Locations and calculated forest parameters of the field plots in the Sakha (S) study area.

Site No
Centre Coordinates All Trees, per ha Mean Percentage V, per Genus

Lat Long n a (m2) V (m3) H (m) Betula Larix Pinus Other

S01 62.25452 129.62300 1800 26.6 207.5 10.2 1 99 0 0
S02 62.25328 129.61670 2400 9.5 47.1 8.7 87 11 0 2
S03 62.25242 129.61390 2800 16.3 100.7 10.0 38 60 1 0
S04 62.23995 129.64990 3550 18.2 93.5 5.3 0 3 97 0
S05 62.24525 129.64030 3250 23.4 191.7 7.4 4 95 0 1
S06 61.42577 131.07350 5000 21.0 155.8 12.9 100 0 0 0
S07 61.42620 131.07630 3275 30.0 231.8 12.1 30 70 0 0
S08 62.08837 131.48700 6900 15.1 74.4 6.3 16 84 0 0
S09 62.08819 131.49170 3100 26.1 212.3 12.4 0 100 0 0
S10 62.05120 128.87790 375 1.6 8.7 3.6 2 98 0 0
S11 62.04870 128.87580 825 10.6 62.2 7.7 0 0 100 0

Table 4. Generalisation of land cover maps. Column 2 gives the land cover classification from the
VEGA system; column 3 shows the generalisation by merging these classes. Generalised class names
are arbitrary and have no ecological significance.

Study Area VEGA Land Cover Classification Generalisation

Khibiny

Shrub tundra
Low vegetation

peatlands

Evergreen dark needleleaf forest
Needleleaf forest

Evergreen light needleleaf forest

Broadleaf shrubs
Small-leaf forest

Humid grassland

Mixed with needleleaf majority
other

Broadleaf forest

Sakha

Deciduous needleleaf forest
Needleleaf forest

Evergreen light needleleaf forest

Broadleaf forest Small-leaf forest
Mixed with needleleaf majority

otherRecent burns
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Figure 5. Generalised forest-cover map of the study areas. Non-forest areas are masked out.
(a) Khibiny; (b) Sakha. Site locations are identified.

The optimum model for the Khibiny area employed a single band (band 3: green) of
Sentinel-2 MSI data, together with the ‘low vegetation’ and ‘needleleaf forest’ generalised
classes. The optimum model for the Sakha area employed two MSI bands (2: blue and 3:
green), together with a single generalised land-cover class ‘Needleleaf forest’. Coefficients
of the optimum models are shown in Table 5, together with their accuracy estimates.
Figures 5 and 6 show the results of applying these models to the entire area represented
by the MSI images. The logarithmic values generated by applying Equation (1) were
transformed to linear values by exponentiation. Mean, standard deviation, and median
GSV estimated for forest areas in the Khibiny area were 102, 34, and 98 m3 ha−1. The
corresponding values for the Sakha area were 118, 91, and 99 m3 ha−1. These values
are comparable to the mean value of 72 m3 ha−1 deduced for boreal forest globally [63].
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The pseudocolour scales of Figures 6 and 7 are different, corresponding to the different
distributions of estimated GSV in the two study areas.

Table 5. Parameters and coefficients of the optimum GSV models defined by Equation (1), together
with r2 coefficient of the fit to the field data and an estimate of the uncertainty ∆lnG in fitting the
natural logarithm of GSV from leave-one-out estimation.

Study Area Parameter Coefficient r2 ∆lnG

Khibiny

10.823

0.679 0.53
MSI3 8.752 × 10−3

Low vegetation 0.2209
Needleleaf forest −0.0903

Sakha

11.963

0.787 0.34
MSI2 0.01129
MSI3 −0.02274

Needleleaf forest 0.11192
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4. Discussion

The premise of this study is that the inclusion of a land-cover classification, suitably
converted into quantitative data, can provide useful ancillary input to an empirical model
to estimate forest GSV from summer Sentinel-2 MSI imagery. This has proved to be the case,
at least in the two study areas investigated, as the optimum models in both cases selected
at least one of the land-cover classes as input. Some experimentation was performed to
include winter imagery but this did not materially improve the performance of the method.

Inspection of the GSV model output showed some anomalously high GSV values,
especially in areas that may be partly in shadow. This evidently points to the empirical,
nonphysical basis of the algorithm and suggests that the incorporation of topographic
data would have scope for improving its performance. However, we note that coverage of
both study areas in the ArcticDEM product (https://www.pgc.umn.edu/data/arcticdem/,
accessed on 1 November 2021) is at present incomplete, and that either this or the ASTER
GDEM—which does offer complete coverage—would require filtering for artefacts, thus
increasing the complexity of the algorithm. Some small shadow-affected areas were
removed by the median filtering noted earlier, and some further improvement was made
by truncating the predicted GSV values at an upper bound of 500 m3 ha−1, to limit the
extent to which values were extrapolated beyond the range of the calibration data. This
removed 1.7% of the pixels in the Sakha image. Far fewer anomalies (approximately 0.001%)
were noted in the Khibiny image, and GSV truncation was not applied. The distribution
of estimated GSV values was narrower than that for the Sakha image (e.g., a standard
deviation of 34 m3 ha−1 compared to 91 m3 ha−1) and no truncation was deemed necessary.

In contrast, the spatial correspondence between the modelled GSV and ultra-high-
resolution satellite imagery (Figure 8) and a large-scale MODIS-based GSV product (Figure 9)
is evidently good at both small and large spatial scales. Visual comparison (Figures 8 and 9)
is convincing. We also quantify the correspondence by constructing 2 × 2 contingency
tables between above- and below-median GSV values as classified using our method and
using the MODIS GSV product. These show accuracies (proportion of pixels agreeing
whether the GSV is above or below the median value) of 70.5% for the Khibiny study
area and 68.0% for the Sakha area. The relationship between our estimated GSV values
and those derived in the MODIS-based product is shown in Figure 10, demonstrating a
monotonic (if not linear) correspondence. We recall that the present algorithm was not
calibrated to the MODIS product, but only against field data. These observations lend
confidence in the present method.

The accuracy of this method is summarised in Table 5, whose results are interpreted as
implying that the RMS error in GSV estimation is approximately 35% for the Sakha study
site and approximately 55% for the Khibiny site. These values are included in Figure 1,
where they imply that the method is not obviously inferior to other approaches to GSV
estimation for sparse forests based on spaceborne optical or multispectral data. However,
we also note that up to approximately 25% uncertainty in GSV may be contributed by the
allometric estimation, so the algorithm’s performance may be considerably better than
these values imply. We thus propose that it is worth developing this approach. Its principal
disadvantage is that it is constructed on an empirical rather than a physical relationship.
This is compensated for by the fact that it is derived from a large number of field measure-
ments which are labour-intensive to acquire, although spaceborne laser altimetry from
GLAS and ICESat-2 could offer some scope for acquiring GSV estimates for calibration [78].
Additionally, the strong correspondence noted in Figure 9 suggests that its most useful
application may be as a downscaling tool from large-scale GSV estimates, where its re-
quirement for just two Sentinel-2 images (or similar) would be a major advantage. Obvious
future developments would be to attempt to derive the calibration data themselves from
potentially less time-consuming data collection methods, such as UAV surveys, or from
published databases of field measurements over a wider range of locations. Forest presence
data could be obtained at higher spatial resolution from Landsat-derived products [79,80].

https://www.pgc.umn.edu/data/arcticdem/
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5. Conclusions

We have developed a simple, empirically-based algorithm for spatial extrapolation
of GSV based on one summer and one winter Sentinel-2 MSI image, a large-scale Russian
land-cover classification, and field-plot scale GSV data used for parameter selection and
calibration of the algorithm. It has been applied to two contrasting regions of the Russian
boreal forest and produces convincing patterns of spatial variation as well as mean GSV
values consistent with what is expected for boreal forest in general. Over the limited range
of situations to which it has been applied, it appears that its accuracy is comparable to,
and perhaps better than, other local or regional-scale methods used to estimate GSV on
the basis of satellite imagery. The essence of the method is to optionally include a simple
description of land-cover, which is converted into a set of quantitative variables, along
with the values (reflectances, radiances, or digital numbers) from the available bands of the
MSI images. This approach is relatively undemanding of data availability. As it has been
implemented in the present work, it is trained using field data that are laborious to acquire;
but as a downscaling method for large-scale GSV products such as those generated from
MODIS imagery this requirement for field data would not be necessary.
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