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Abstract: Lake surface water temperature (LSWT) is a crucial water quality parameter that modu-
lates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term
perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery
have been developed. This work aims to test, implement and automate six methods. These are
performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from
Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are
then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with
the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons
with areas smaller than two (2) km2 of the city of San Pedro de la Paz, South-Central Chile. The six
methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, R2 > 0.67).
The main difference between series is their bias. Thus, after a simple calibration, all series adequately
describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our
research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 ◦C)
and temporal (7–25 ◦C) trends throughout the year. Differences in geographical pattern might result
from the northern island’s heat impact and the existence of the Biobío river to the east. Our work
represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially
useful in medium and small-sized ones.

Keywords: water surface temperature; Google Earth Engine; lakes; remote sensing; Landsat

1. Introduction

Water temperature modulates many physical and biochemical processes in lakes and
reservoirs. It determines vertical stratification [1], regulates species and nutrient cycle
distribution and dissolved gas concentration [2].

Today, the World’s lakes share the same problem: increased eutrophication, related
to nutrients increase, mainly phosphorus and nitrogen [3]. Nutrient concentration and
water temperature modulate the frequency of harmful algal blooms (HABs), which has
been rising across the globe [4]. For the above, a correct knowledge of the lake surface
water temperature (LSWT), which is a crucial quality parameter [5,6], is vital.

The traditional method to measure LSWT is taking field samples. However, addition-
ally to being localized, inhomogeneous between measuring stations, it is costly logistically
and economically inefficient. It explains why spatial remote sensing methods that get
LSWT over large surface areas play a fundamental role nowadays [7].
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At the moment, local and global databases of LSWT have been established using
remote sensing techniques. Numerous attempts have been launched to establish regional
lake databases. For instance, there is a long-term dataset of lake surface water temperature
over the Tibetan Plateau using AVHRR [8], other addressing sub-alpine lakes using a
variety of sensors [9], and another monitoring European lakes using AVHRR [8]. Now,
concerning worldwide lakes, Copernicus [10] monitors the Earth using satellite and in-situ
sensors. LSWT for 258 large lakes in the world (surface area > 500 km2) for 1995–2009 is
freely available in [11]. Although the Copernicus project could be extended to medium
and small lakes, according to what we know today, there are no global databases that
provide temperature in these cases. A good solution is an initiative implemented in the
United States: a platform that shows LSWT for over 11,000 US lakes in real-time and a
5-day forecast [12]. This initiative includes large, medium and small lakes. Nevertheless,
there is no such initiative in South America. That led us to develop this work. This article
is intended for individual researchers who wish to obtain LSWT from remote sensing
methods for any specific lake, especially a medium or small-sized one. Having said that,
this effort is the first step in developing a satellite database covering all of South America’s
lakes, which will be inspired in the future by [12,13] works.

However, computing water temperature from remote sensing images is time-consuming
and complex because of the processing data chain [14]. Today, the Google Earth Engine
(GEE) platform provides a helpful solution. It is an innovative tool for geospatial analysis
that uses cloud processing. The user does not need the latest computer with high process-
ing efficiency, just a basic internet connection [14]. GEE provides the possibility to analyze
satellite data files [15], estimate satellite-derived bathymetry [16] and drought assessment [17],
among many others.

All of the aforementioned points imply that this effort will employ the GEE platform
to extract LSWT in any lake, particularly those of small and medium size (surfaces of up to
100 km2 [18]). This small spatial scale is an additional difficulty as not just any satellite will
serve. A sensor with adequate spatial resolution is required. Landsat files, the most used
data set in the GEE platform [14], have proven to be helpful for this purpose [5,6,19,20].
Landsat sensors have a temporal resolution of 16 days and a spatial resolution of 30 m,
except for their thermal bands with a spatial resolution of 60–120 m. Besides, Landsat 7 and
8 had a lag of 8 days, so together, they provided four (4) satellite images for every 32 days.
Landsat 9 has launched in October 2021, taking over Landsat 7. Thus, Landsat 8 and 9
now provide together four (4) images every 32 days [21]. Landsat 1-8 image collections are
available through the GEE platform [22]. These collections are in their original version (in
digital numbers) (see, e.g., in [23]). For the same collections, there is also the reflectance
and brightness temperature product at the top of the atmosphere (ToA) (see, e.g., in [24]).
It is even possible to find the surface reflectance and brightness temperature product (see,
e.g., in [25]).

The spatial pattern of the satellite temperature is an advantage over the other types
of temperature measurements. First, the satellite image generally encompasses the whole
surface of small lakes, which is technically impossible over certain large lakes or seas. Sec-
ond, we obtain spatial fields with a resolution of 30 m using Landsat images. Additionally,
the grid could be lowered further (to 10 m) by using newer satellites such as Sentinel.

Numerous methods exist for deriving LSWT from satellite data [7]. In most cases,
a radiometric correction is required to convert the satellite’s original images to radiance at
the top of the atmosphere (ToA). The temperature at the Earth’s surface is then computed
using an atmospheric correction. The radiative transfer equation removes the atmospheric
component. Here, specific atmospheric profiles are required. A model of these parameters
is available on NASA’s Atmospheric Correction Parameter Calculator [20,26,27] (details
in Section 3.2.1). On the other hand, well-known algorithms eliminate the atmospheric
component: the mono window algorithms (MWA) [28] and the split-window algorithm
(SWA) [6,29,30]. The algorithms are an alternative to the radiative transfer equation. All
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these methodologies must be validated using ground measurements, particularly in the
Southern Hemisphere (SH) [31].

The objective of this work is to evaluate several strategies for retrieving the LSWT
series using GEE and Landsat 7 (L7) and 8 (L8) archives in two lagoons with areas smaller
than 2 km2. Following the test, we compile LSWT field data and create a climatology
for the lakes. The work is presented in four (4) parts: Section 2 presents the study area.
Section 3 shows the data, methods and a work strategy. Section 4 shows the results and the
discussion, to conclude in Section 5.

This article is the first step in developing a lake’s environmental characteristics
database using remote sensing throughout Latin America. The significance of select-
ing these specific lagoons (San Pedro Lagoons, see Section 2) stems from their geographic
location. Because they are urban lagoons, they are particularly susceptible to environmental
degradation [32,33].

2. Study Area

The study area is in the Biobío region, close to the ocean, in south-central Chile.
A temperate climate characterizes this area [34].

The lake basins analyzed are sub-basins of Biobío, Chile’s second-longest, one of the
most flowing [35] and the region’s core river basin [36].

Laguna Grande and Laguna Chica are lakes located inside the city of San Pedro de la
Paz. However, they are referred to as lagoons because they are relatively small (surface
areas < 2 km2). The significance of studying these lakes stems from their unique geographic
location. They are components of a larger hydrological system that also includes wetlands
and estuaries [37]. The lake and wetland ecosystem support vast biodiversity, a diverse
range of species, including fish, reptiles, amphibians, birds and mammals [37]. These
lagoons are the city of San Pedro de la Paz’s primary attraction [38]. Both lagoons’ water
quality is determined by their drainage basins, which may be used for forestry, agriculture,
tourism or urban purposes [3,39].

The commune of San Pedro de la Paz (see Figure 1) is home to unique environmental
heritage [37]. It contains two lake ecosystems habitat within an urban area, providing
a diversity of ecosystem services and relevant water security in one of the most Chile’s
most affected locations by climate change [37,38]. Thus, understanding how temperature
behavior evolves in these two bodies of water is crucial for understanding how both water
bodies’ trophic condition evolve now and probably in the future under more severe anthro-
pogenic conditions. Unfortunately, it is already commonly recognized that both lagoons
are already undergoing a serious eutrophication process [3]. Thus, if this knowledge is
applied appropriately throughout the lagoons management and preservation process, it
can potentially impact the ecosystem services provided by these lagoons.

The dimensions of the studied lakes are shown in Table 1. The described study area is
shown in Figure 1.

Table 1. Dimensions of the studied lakes [3].

PARAMETER L. CHICA L. GRANDE

Lake area (km2) 0.82 1.55
Mean depth (m) 10.3 8.1

Maximum depth (m) 17 13.5
Maximum length (km) 1.9 2.7

Height (m.a.s.l.) 5 4
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Figure 1. (a) Study lagoons. Water temperature (WT) stations (Desagüe (D), Centro (C), Sur (S) and
Centro 2 (C2)) are represented by red dots. Water bodies are in cyan. Air temperature (AT) station is
in yellow dot. (b) Zoom out of the study lagoons area. (c) South America. (d) Google Earth image of
the study area.

3. Data and Methodology

This section is divided into three parts. In the first (Section 3.1), we present the data
collected for the study. The second (Section 3.2) presents the different remote sensing
methods applied to the satellite data. The third part (Section 3.3) details the distinct steps
of the work strategy.

3.1. Data
3.1.1. In Situ

The Chilean Directorate of water resources (DGA) provides the local LSWT time
series. DGA is a state agency responsible for managing, verifying and disseminating water
information in Chile. It makes available physical-chemical parameters of water quality
(temperature, specific conductivity, pH, dissolved oxygen, oxygen saturation, chlorophyll,
% turbidity and Disco Secchi transparency) in different Chilean lakes (see in [40]). In the
study area, the physical-chemical parameter measurement stations (Centro (C), Desagüe
(D), Sur (S) and Centro 2 (C2) stations) are all located in Laguna Grande de San Pedro
(see Figure 1, water temperature (WT) station in red dots and Table 2). Between 1988 and
2016, there are historical series of LSWT (at 0 m). Samples are collected at various intervals
throughout the day, between 9 a.m. and 6 p.m. (UTC-4). Samplings was conducted between
1988 to 2013 at stations C, D, and S. Regrettably, these stations are no longer operational.
Since 2014, samplings has been conducted at station C2, although only three-time sampling
between 2014 and 2016 is known. It explains why we used stations C, D and S instead.
This data (in C, D and S stations) is only continuous between 1990 and 2009, with at
least one measurement for each season. The remainder of the period includes sporadic
measurements of one, two, or no measurements at all per year. Between 1988 and 2016, the
percentage of missing data in C, D and S stations is 28%, assuming four (4) measurements
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per year. However, because there is only 7.5% missing data from 2000 to 2009, we use the
latter period for calibration.

In addition, there is a meteorological station with air temperature data at approxi-
mately 2 km from the lagoons (see Figure 1, AT station yellow dot), next to the Biobío
River. The data are daily mean air temperature, continuous between 1979 and 2016 (see
Table 2). The percentage of missing data is 0%. This data is going to be mentioned only for
discussion purposes in Section 4.

The details of this database are shown in Figure 2 (see Table 2).
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Figure 2. LSWT available data in sampling stations: Desagüe (WT D), Centro (WT C), Sur (WT S)
and Centro 2 (WT C2). Air temperature near study area (AT).

Table 2. Available LSWT sample stations: Desagüe (D), Centro (C), Sur (S) and Centro 2 (C2).
Seasonal samplings: 4 per year. (I) Used sample stations: D, C and S. Available data: LSWT in the
period 1988–2013, 28% of missing data. Used data: LSWT in the period 2000–2009, 7.5% of missing
data. (II) Centro 2 sample station: available LSWT data in the period 2014–2016, 75% of missing
data. Available air temperature station: AT. Available data: mean daily temperature in the period
1979–2016, 0% of missing data.

Station Coordinates
(Decimal Degrees) Period

D −36.8495, −73.1091
C −36.8620, −73.1136 1988–2013
S −36.8688, −73.1161

C2 −36.8582, −73.1105 2014–2016

AT −36.8378, −73.0617 1979–2016

3.1.2. Satellite

The USGS makes available through the GEE platform all of the satellite images
collections selected here (see Table 3). The following collections between 2000 and 2020
are used: (i) Landsat 7 and 8 Tier 1, and (ii) Landsat 7 and 8 Surface Reflectance Tier 1.
The Landsat satellite mission always passes across the study area at approximately 10:40
(local time, UTC-4) (this information can be retrieved from each image’s metadata).

Collections (i) are in digital numbers, and collections (ii) already include surface
brightness temperature. Collections (ii) have been corrected using the Landsat Ecosystem
Disturbance Adaptive Processing System and Land Surface Reflectance Code software
(more details in Section 3.2.4). The USGS resampled them to a spatial resolution of 30 m
using cubic convolution. The collections are then pre-filtered, splitting them into images of
higher quality (Tier 1), lower quality (Tier 2) and real-time [21]. In our case, we select Tier 1
collections. Then, we filter these collections by selecting images with cloud cover <30%.
Furthermore, we consider the BQA band, which contains information on each image’s
low-quality pixels. We remove low-quality pixels from all remaining images. Finally, lake’s
mask is required. The masks for all Chilean continental water bodies are available on the
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page [41]. This page belongs to the National Environmental Information System (SINIA).
These masks (see water bodies in Figure 1) are used to filter the collections and get the
study area’s images.

Table 3. Satellite data. Available and used period. From the latter: possible and resulting images after Tier 1 and cloud
cover <30% filters.

Available
Period

(DD/MM/YYYY)

Used Period
(DD/MM/YYYY)

Posible
Images

Tier 1
Images

Images Min and Max
Image Collection Filtered of Images

by Clouds per Year

L7 Tier 1 15/4/1999 1/1/2000–31/12/2009 205 128 76 4 and
12L7 Surface Reflectance Tier 1 –present 1/1/2000–7/10/2020 401 298 168

L8 Tier 1 11/2/2013 11/2/2013–13/9/2020 173 146 85 10 and
13L8 Surface Reflectance Tier 1 –present

We observe the following after applying these filters. The number of images for L7
ranges between four (4) and twelve (12) images. The maximum (12) was reached in 2014,
while the minimum (4) was reached in 2003. Now, per month there are 1 to 2 images
available in December, January and February (summer in SH). Instead, in June and July
(winter in SH), it is reduced to 1 or no images. Each year, L8 has between ten (10) and
thirteen (13) images per year. Meanwhile, there are 1 to 2 images per month and sometimes
0, with May, July, and October being more frequent. Thus, 168 L7 and 85 L8 images
are retrieved from a total possible 401 and 173 images accessible in GEE, respectively.
The database details are available in Table 3.

3.2. Satellite Data Processing

We compare six (6) methods that allow computing LSWT. One technique is based
on the radiative transfer equation (M1), two are split-window algorithms (M2, M3), there
is one mono-window algorithm (M6) and USGS created two other approaches (M4, M5).
For convenience we refer to them as M1 (Landsat 7, ref. [20]), M2 (Landsat 8, ref. [6,30]),
M3 (Landsat 8, ref. [29]), M4 and M5 (Landsat 7 and 8, Section 3.2.4) and M6 (Landsat
7, ref. [28]).

The six methods’ required input is summarized in Table 4. These methods are imple-
mented in the GEE platform. The source codes may be found available at [42].

Table 4. Required input of six methods (M1 to M6).

Method Input Reference

M1
Atmospheric parameters [43]

Water emissivity Equation (6) or [44]
L7 Tier 1 (Table 3) [45]

M2 L8 Tier 1 (Table 3) [23]

M3 L8 Tier 1 (Table 3) [23]

M4 L7 Surface Reflectance Tier 1 (Table 3) [46]

M5 L8 Surface Reflectance Tier 1 (Table 3) [47]

M6 Atmospheric parámeters GEE code provided by [28]
Collection L7 Tier 1 (Table 3) [45]

3.2.1. Method 1 (M1)

The authors of [20] determined the surface temperature using this approach (M1).
This is accomplished by clearing the surface radiance (Lsup) from the radiative transfer
equation, as shown in the Equation (2). This equation subtracts atmospheric effects from the
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satellite data considering three atmospheric parameters (see input in Table 4): atmospheric
transmittance (τ), emitted radiance (Lup) and absorbed radiance (Ldown). NASA’s Atmo-
spheric Correction Parameter Calculator [26,27] enables the calculation of these parameters
(as described in [20]). It is a free online platform that utilizes atmospheric profiles from
the National Centers for Environmental Prediction (NCEP/NOAA) applying MODTRAN
4.0 to retrieve the radiative transfer equation’s required parameters [20]. The procedure is
outlined below.

The thermal band (band 6, 10.40–12.50 µm) is the sole band used in this method (see
input in Table 4). According to [20] band B6 2 is used because it has higher radiometric
precision than band B6 1 [48]. The digital levels (DN) are transformed to radiance ToA (Lλ)
with the equation:

Lλ = Mλ ∗ DN + Aλ (1)

where Mλ: band specific multiplicative rescaling factor, Aλ: band specific additive rescal-
ing factor.

Then the surface radiance (Lsup) is obtained from the radiative transfer equation,
as follows:

Lsup =
Lλ − Lup − τLdown(1− ε)

ετ
(2)

where Lup, Ldown and τ are the atmospheric parameters (obtained from the page [43]).
Water’s emissivity is required. It is typically assumed to have values between 0.97 and

1 [20]. We empirically determined the emissivity of the water near 0.9875 in both lagoons,
using the Equation (6). We also checked against the ASTER Global Emissivity Dataset
100-meter V003 values, which are also available in GEE (from [44]) and found a nearly
identical number (0.9866) (see input in Table 4).

The radiance at the Earth’s surface obtained in Equation (2) is transformed into surface
brightness temperature (T) (equal to the surface temperature), through

T =
K2

ln(1 + K1
Lsup

)
(3)

where K1 and K2 are thermal conversion constants.

3.2.2. Method 2 (M2)

The authors of [6,30] retrieved LSWT using this approach (M2). It uses only L8
archives as input (see input in Table 4) and applies an SWA as atmospheric correction.
The method is described in detail below.

From L8, the thermal spectrum is represented in bands 10 and 11, while the visible
spectrum is represented by bands 4 and 5. For bands 4, 5, 10 and 11, we use Equation (1) to
convert DN to ToA radiance. The thermal bands are then converted to brightness tempera-
ture ToA (T) using Equation (3) while bands 4 and 5 are converted to ToA reflectance (ρλ)
using the following formula:

ρλ =
Mρ ∗ Lλ + Aρ

sin(θ)
(4)

where Mρ: band specific multiplicative rescaling factor, Aρ: band specific additiva rescaling
factor, θ: sun elevation angle.

From the ToA reflectance, the NDVI is obtained according to

NDVI =
NIR− R
NIR + R

(5)

where NIR and R are the ToA reflectance of bands 5 and 4, respectively.
Then, the emissivity (E) is calculated according to

E = 0.004Pv + 0.986 (6)
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where

Pv =
( NDVI − NDVImin

NDVImax − NDVImin

)2
(7)

Finally, the surface temperature can be calculated with

T(◦C) =
TB

1 + TB
ρ ∗ λ ∗ ln(E)

(8)

where TB: average temperature between bands 10 and 11, λ: wavelength at 11.197 µm, ρ =
hC
σ = 14388.15 µmK, E: emissivity, h: Planck’s constant (6.626× 10−34 JK−1), σ: Boltzmann’s

constant (1.38×10−23 JK−1), C: speed of light (2.998 × 108 ms−1).

3.2.3. Method 3 (M3)

As with method 2, the (M3) method [29] is an L8 method (see input in Table 4) that
employs an SWA as atmospheric correction.

The DN of bands 10 and 11 from L8 files are converted to ToA radiance using the
Equation (1). Then, to ToA brightness temperature using the Equation (3). Finally, the sur-
face temperature (T) is obtained through the SWA:

T = 5.1424 + 0.95578T10 + 0.83653(T10 − T11) (9)

where T10 and T11 are the brightness temperatures of bands 10 and 11, respectively.

3.2.4. Methods 4 and 5 (M4 y M5)

The USGS developed these methods (M4 and M5) and generated ready-to-use surface
temperature products for Landsat 4–8 collections [46,47] (see input in Table 4). On the
GEE platform these products are accessible. It is classified as USGS Landsat (4–8) Surface
Reflectance Tier 1. We use the Landsat 7 and 8 Surface Reflectance (SR) Tier 1 collections.

These products have been generated from the Landsat Ecosystem Disturbance Adap-
tive Processing System (LEDAPS [46]) and Land Surface Reflectance Code (LaSRC [47]).
It generates Top-of-Atmosphere (ToA) Reflectance and ToA Brightness Temperature (BT)
from metadata encoded calibration parameters. After applying atmospheric correction
routines to Landsat ToA Reflectance, SR is generated. LEDAPS also takes additional input
data into account, including water vapor, ozone, atmospheric pressure, aerosol optical
thickness and digital elevation. The data are then fed into the Solar Spectrum radiative
transfer model using Landsat ToA Reflectance and ToA BT. LaSRC also incorporates addi-
tional input data including water vapor and ozone from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and digital elevation from the Earth Topography Five Minute
Grid (ETOP05) [46,47].

The product is already reflectance or surface brightness temperature. Thus, the user
just needs to apply the pretreatment to the thermal bands (10 and 11) and multiply them
by 0.1; a scaling factor taken from [46,47].

3.2.5. Method 6 (M6)

The M6 method is a statistical mono-window algorithm (SMWA). It is a linearization
of the radiative transfer equation. It is dependent on surface emissivity (Equation (10)):

T = Ai
Tb
ε

+ Bi
1
ε
+ Ci (10)

where Tb: ToA brightness temperature in the TIR channel, ε: surface emissivity, Ai, Bi and
Ci: algorithm coefficients.

The algorithm coefficients are determined from linear regressions of radiative transfer
simulations. They are calibrated from dataset of air temperature, water vapor and ozone
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profiles (the work in [49] cited by the authors of [28]). The GEE code is already available
by [28] (see input in Table 4).

3.3. Work Strategy

This section details the work strategy, whose flow diagram is shown in Figure 3. Three
subsections are included here: (i) LSWT series calculation (Section 3.3.1), in which LSWT
series are obtained using the six methods (Section 3.2), (ii) calibration process (Section 3.3.2),
in which the LSWT series are calibrated using in situ data (Section 3.1.1) and (iii) LSWT
field data set and climatology (Section 3.3.3), in which the calibration is extended to two
dimensional (2D) × time LSWT data field from which a seasonal climatology is created to
demonstrate the results.

3.3.1. LSWT Series

In Section 3.2, six methods are detailed to retrieve long-term LSWT series (see flow
diagram in Figure 3). For each method (M1 to M6), three LSWT series are obtained, one in
each sampling station (D, C and S). However, for simplicity, we refer to the series by their
method, regardless of their location. The LSWT series are denoted: tM1, tM2, tM3, tM4,
tM5 and tM6.

1. LSWT series

Remove cloud cover 
and apply BQA filters

Sattellite 
collections

Method 1
2000-2009

Method 6
2000-2020

Method 4
2000-2020

Method 5
2013-2020

Method 2
2013-2020

Method 3
2013-2020

2. Calibration process

3. LSWT field and climatology

Linear fit

Apply the linear fit 
to the spatial 2D x 
time LSWT field

LSWT 
climatology

Figure 3. Work strategy flow chart. Within stage 1: preprocessing and six methods to retrieve LSWT series. Within stage 2:
calibration of the LSWT series through a linear fit. Within stage 3: Extending the linear fit to a 2D × time LSWT field and
building a climatology.

Certain characteristics of method 1 (M1) should be discussed in detail. This method
produces a series (tM1) that spans 2000–2009 (see Figure 3). While it is conceivable to
extend it till 2020, this method is the only strategy in this study that could not be automated
in the GEE platform. It requires manually extracting atmospheric parameters from the
website [43]. For this reason, we limited it to the period 2000–2009, which coincides with a
time of increased in situ data continuity (see Table 2 and Figure 2).

All time series were screened for outliers. The term ‘outlier’ refers to values that
exceed three scaled median absolute deviations.
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3.3.2. Calibration Process

The aim of this section is to calibrate the LSWT series to the in situ series. To accomplish
this, we fit LSWT series linearly.

The calibration or adjustment shall be performed between distinct pairs of series. We
keep the following in mind in advance. The L7 LSWT series (tM1, tM4 and tM6) may be
directly calibrated against the real data since they share the same time period from 2000 to
2009 (see diagram in Figure 3 and in-situ data in Figure 2). However, the L8 series does not
begin until 2013, when no in-situ data are available. As a result the in-situ data cannot be
used to calibrate the L8 series. However, the tM4 and tM6 series are present throughout
the entire period (2000–2020). Then using the already calibrated tM4 (or tM6), it is possible
to calibrate all the others. The series tM1–tM6 are then denoted by the abbreviations tM1c,
tM2c, tM3c, tM4c, tM5c and tM6c. All these time series plus the local LSWT data series are
shown in Figure 4.

Additionally, we conduct a statistical analysis of the six remote sensing series (tM1- to
-tM6) as well as the in situ data series. We employ a variety of comparison statistics: bias
(Equation (11)), Willmott’s index of agreement (d, Equation (12)), root mean square error
(RMSE; Equation (13)) and the square of the correlation coefficient (R2, Equation (14)).

bias =
1
n

n

∑
i=1

(Xi −Yi) (11)

d = 1−

n
∑

i=1
(Xi −Yi)

2

n
∑

i=1
(|Xi − X|+ |Yi − X|)2

(12)

RMSE =
[ 1

n

n

∑
i=1

(Xi −Yi)
2
] 1

2
(13)

R2 =


n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)2

√
n
∑

i=1
(Yi −Y)2


2

(14)

where Xi and Yi are the ith observations of datasets X and Y, X and Y are the mean values
of X and Y, and n is the number of observations.

According to the authors of [50,51], bias is the averaged difference between two
datasets, d is the proportion of agreement (0, no agreement, and 1, perfect agreement),
RMSE denotes the overall difference between two datasets and R2 represents the propor-
tion of shared variance.

3.3.3. LSWT Field Data Set and Climatology

After testing the behavior of the calibrated methods, we apply the linear fit to a spatial
two-dimensional (2D) × LSWT data field.

We have three (3) choices to build the LSWT field: (i) tM1c between the years 2000
and 2009, 76 images; (ii) tM4c or tM6c between the years 2000 and 2020, 168 images;
and (iii) tM2c, tM3c, or tM5c between the years 2013 to 2020, 85 images (see Table 3).
Table 5 provides the number of images per month available for climatology construction.
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Table 5. Available data sets to build climatology: (i) tM1c (2000–2009), 76 images; (ii) tM4c or tM6
(2000–2020), 168 images y; (iii) tM2c, tM3c or tM5c (2013–2020), 85 images. Number of images per
month: mean, minimum (Min.) and maximum (Max.) values.

Data Set Mean Images per
Month (Month)

Min. Images per
Month (Month)

Max. Images per
Month (Month)

i 7 2 (June) 13 (February)
ii 14 6 (June) 26 (February)
iii 7 4 (October) 9 (April, December)

The LSWT data field generated with one of these databases will cover a significant
portion of the surface area of the lagoons, equivalent to a 2261-pixel grid of 30 × 30 m2.
This is not the original surface; we first applied a 30 m buffer to the lagoons’ surface shapes
to avoid water–land interface pixels.

From the above, we begin by constructing a 2D × time database spanning the years
2013–2020, from which we first extract a monthly climatology. To accomplish this, the Jan-
uary values are averaged, followed by February’s, and so on, until 12 final values are
obtained. Climatology enables us to determine the typical pattern (so called normals) of a
variable’s seasonal mean cycle. The climatology approximates what occurs in the area with
respect to the LSWT and shows the method’s scope.

4. Results and Discussion

The results are shown below according to Section 3.3 order.

4.1. LSWT Series

Six LSWT time series (tM1, tM2, tM3, tM4, tM5 and tM6) are obtained for the lagoons.
One for each remote sensing method (M1 to M6). Each series demonstrate the same
temporal fluctuation in LSWT (see Figure 4). The most significant difference between them
turned out to be their bias. This is evidenced, before calibrating, in Tables 6 and 7 . It led us
to perform the calibration process using a simple linear fit.

Both tables (Table 6 and bias values of Table 7) indicate that the closest series to the
in situ series prior to calibration are tM1 and tM6. This is because M1 and M6 use local
atmospheric variables as input, which help calibrate the results. The farthest series from
the in situ series is tM3. This particular SWA (M3, Section 3.2.3) has been developed and
commonly used in marine water bodies [52] including estuaries [53], but not in freshwater
bodies. As a result, M1 and M6 performed the best, without calibrating.

Table 6. Mean (µ) and standard desviation (σ) of LSWT time series before (Bf cal) and after (Af cal)
calibration. Average values at Laguna Grande sampling stations (St.: D, C y S).

Time Serie Period Bf Cal Af Cal
σ (°C)

µ (°C)

in situ 2000–2009 16.18 4.34
tM1 16.54 16.18 3.96

tM2
2013–2020

15.22
16.00

3.90
tM3 8.67 4.00
tM5 14.43 3.89

tM4 2000–2020 15.22 16.06 3.90
tM6 16.98 16.36 4.29

4.2. Calibration Process

Different pairs were calibrated with a linear fit considering all the series: tM1 to tM6
and the in-situ series. Note that all the series (tM1 to tM6 and the in situ series) are monthly
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interpolated before the adjustment. As mentioned in Section 3.3.2, according to the period
in which the time series is initially present, we calibrate tM1, tM4, and tM6 directly with
the in situ series. Then we calibrate tM2, tM3 and tM5 with the already calibrated tM4.

The statistics calculated to compare (bias, d, RMSE and R2) are shown in the Table 7.
The calibrated tM1 to tM6 series are shown in Figure 4. We show only one sampling station
(C) because in all three (D, C and S), LSWT has the same behavior. Indeed, after calibration
the series are at the same level (bias = 0 in Table 7), which is clear in Figure 4). Therefore,
after a simple calibration, all the methods describe the LSWT variable adequately.

Note here that air temperature has a significant effect on the lake thermal dynam-
ics [1,54]. This is evidenced in Figure 2. Other factors are wind and precipitation [55].
Under specific hypotheses the air temperature variation implicitly contains and provides
pertinent information about the other significant processes involved [54,56]. Indeed, a sim-
ple model allows to get the LSWT using almost only the air temperature as an input
variable: the air2water model [1,57]. With in-situ data (see Figure 2) we tested that model
in our study area and the Pearson correlation between the air2water results and tM4 series
is 0.92. This opens the possibility of integrating numerical models and satellite data in the
future, as in [13]. However, this generally applies to small lakes with little atmospheric cir-
culation. In other circumstances wind may become a substantial forcing factor modulating
the LSWT [58,59].

Table 7. Pairs of series to be calibrated with their respective statistics (bias, Willmott’s index of agreement (d), root mean
square error (RMSE) and square of the correlation coefficient (R2)). Average values over the three sampling stations
(Desagüe (D), Centro (C) and Sur (S)) of Laguna Grande de San Pedro. Before and after calibration.

Time Serie Comparisson
Period R2 Before Calibration After Calibration

RMSE Bias d Bias d

in situ–tM1
2000–2009

0.74 2.08 −0.36 0.92
0

0.92
in situ–tM4 0.71 2.35 1.25 0.88 0.91
in situ–tM6 0.67 2.53 −0.30 0.90 0.91

tM4c–tM2
2013–2020

0.87 1.75 0.77 0.95
0

0.96
tM4c–tM3 0.89 7.46 7.33 0.61 0.97
tM4c–tM5 0.87 2.21 1.57 0.93 0.96

4.3. LSWT Field Data Set and Climatology

We consider that any method is optimal to build an LSWT data field in the lagoons
and their subsequent climatology from the calibration process results.

The average monthly climatology is depicted in Figure 5a. Both lagoons have compa-
rable seasonal cycles and temperature ranges (15.5–17 ◦C) (see Figure 6). Throughout the
year, the monthly LSWT temperature fluctuates between approximately 7 and 25 ◦C. How-
ever, there are some variations in the spatial temperature pattern between the two lagoons.
The temperature gradient in Laguna Grande (left water body, Figure 5a) is north–south,
whereas the gradient in Laguna Chica is east–west. As seen in Figure 1d, one explanation
for this might be the well-known heat island effect, which generates a temperature differ-
ential. As a result, temperature increases in areas next to cities and lowers in areas with
vegetational cover [60]. This significant effect may also be enhanced by the increased wind
speed associated with the existence of the Biobío River in the instance of Laguna Chica (see
Figure 1).
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Figure 4. Calibrated time series of LSWT (tM1c, tM2c, tM3c, tM4c, tM5c and tM6) and in situ series in Laguna Grande in
Centro (C) station for the period (a) 2000–2010 and (b) 2010–2020. The dates of the images used from landsat 7 and 8 can be
seen in black dots and red rhombuses, respectively. In situ data are in blue asterisks.

Figure 5b shows that the LSWT at 10:40 am (UTC-4) exhibits a seasonal variation,
reaching a maximum in Summer (defined as January, February and March) with values of
around 23 °C and its minimum in Winter (defined as July, August and September) with
temperatures near to 9 °C. Now the spatial distribution of LSWT can be appreciated in
Figure 5a. This spatial variation is ~1.5 °C. Similarly, in Figure 6, the spatial variation
in the LSWT climatology is displayed for each month (in each pixel of the spatial grid
detailed in Section 3.3.3). Thus, over these small lagoons, each month temperature swing
geographically by approximately 2 °C.

It is worth mentioning that satellite images and in situ data are collected at different
times. The in situ data is gathered at various times throughout the day (between 9 a.m. and
6 p.m., local time, UTC-4, Section 3.1.1). This illustrates a pervasive problem with inland
waters: a dearth of in situ data. A data shortage owing to the inherent difficulties of not
only installing aquatic sensors, or collecting data, but most importantly, maintaining the
monitoring and checking its quality and homogeneity over time, in water bodies that may
not be top priority for the financial authorities.

On the other hand, the satellite images are always provided at the same time: 10:40
UTC-4 (Section 3.1.2). The temporal gap between the two sensors, satellite and local,
may naturally lead to measurement inconsistencies, resulting in satellite data calibration
inaccuracies. If we have already passed the question of whether we were calibrating
against reliable data, will the lack of synchronization have an influence on the quality,
i.e., representativeness, of our satellite fields? Obviously, the answer will vary based on the
scientific issues we wish to address, i.e., what is the frequency target for the sectors we wish
to explore. If we were to build daily fields, we may be able to think, ‘Houston, we have a
problem’. However, our aim here is long term, monthly or even seasonal fields. Already,
the monthly comparison with air temperature data and its relationship to the fluctuation of
the lake data demonstrates that its monthly changes are rather steady in comparison to the
daily variation (Figure 4). Then, if we examine the monthly series’ climatological boxplot
data (Figure 6), we see that same stability is also present, demonstrating that the LSWT
fluctuates little within a single month. Due to the fact that our study examines monthly or
seasonal changes, this little difference is not significant.
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Figure 5. (a) Average annual climatology of the studied lakes obtained from the M5 method applying a buffer of 30 m (in
cyan). (b) Seasonal mean. Lagunas Grande and Chica de San Pedro to the left and right, respectively.
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Figure 6. Boxplot of the monthly climatology of the LSWT of San Pedro lagoons. (a) Laguna Grande
and (b) Laguna Chica. Outliers in red.

Still, to ensure that the climatology is representative throughout time, the best choice
is to utilize the M4 or M6 techniques to extract tM4 and tM6 (the longest series: years 2000
to 2020, with 168 images, Table 3). However, when we evaluate this option, we observe
a clear effect of mobile spatial gaps over time because of the error of the ETM+ sensor in
its Scan Line Corrector [21]. Thus, for each image, ±10% of the lagoons’ area is lost. As
a result, we disregard L7 methods (M1, M4 and M6). Rather than that, we opted for one
of the L8 methods (M2, M3 and M5). The graphic similarity between the related series
(tM2c, tM3c and tM5c) in Figure 4 is evident. Also the values of R2 between them with no
calibration are almost 1 and they share the same period (2013–2020). That is why we have
the option of selecting any of the three series. Following calibration, we select M5 (tM5c
series). The LSWT climatology in Figure 5a is made with the data set iii (Table 5).

It is worthwhile to engage in a debate that enables us to put our work into context
and define its future stages. Landsat 7 and 8 (and now 9) provide an enormous temporal
coverage (since 1999) and sufficient geographic resolution for lakes of different sizes, even
small ones. Additionally, we find a vast number of methods to obtain this parameter (and
we probably missed some). We note that any valid method may be acquired using the
simplest calibration process (a linear fit). Now, to build the spatial and temporal field of
data, we encounter several circumstances. There is a 10-year period (2000–2013) that L8
does not cover, but L7 does, although with its widely known gaps. As a consequence,
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the LSWT data field on the surface of the lagoons was built using Landsat 8 files, which was
an outstanding choice and produced great results. The next step, however, is to build the
LSWT fields with Landsat 7 data (since 1999). The question then becomes: what happens if
we interpolate the images to fill the spatial gaps present in the Landsat 7 files? How does
the LSWT data fields result? Additionally, it would also be prudent to improve the quality
of the data fields by merging them with MODIS data. With this, we could reconstruct data
fields throughout the last 21 years (1999–2020).

The ability to construct monthly lake surface temperature fields and climatology for
the previous 21 years enables establishing a first-order link with the eutrophication process
in both water bodies. This is critical when considering the extent of intervention these
lagoons’ basins have had. The intervention has been mainly for construction projects.
Several of them are so huge that they altered the wind and lighting influence on the water
column. This is a well-studied and well-known phenomenon [61–63] and it is of course
incredible, but not surprising, that it was not studied prior to construction. As a result,
this entails a change in the lake’s vertical structure and, consequently, its eutrophication
process. A phenomenon that we are now studying in great detail.

By developing techniques for determining long-term LSWT fields, we can gain a better
understanding of how climate change affects and operates in lake systems. Additionally,
by building vertical temperature profiles through CTDs, it is possible to investigate the
vertical stratification suffered by the lakes [64]. By combining this information with the land
use history that a lake basin has experienced may explain the cause of the variation in the
lake’s thermal regime, we may learn more about the eutrophication process, and probable
HABs occurrences. Thus, thanks to the efforts of space agencies that make their remote
sensed data freely available, together with big data processing platforms such as GEE,
that enables the online processing of massive amounts of data, it is the start of a low-cost
environmental monitoring system. It may be complemented with additional water quality
metrics or currently existing data on lake’s height [65], surface, or volume [66] changes.
This will be aided by the Surface Water and Ocean Topography (SWOT) satellite mission,
which will conduct the world’s first inventory of all terrestrial surface water bodies with a
surface area greater than 250 m2 (lakes, reservoirs, and wetlands), as well as the Copernicus
high resolution-LSTM mission, which will provide nearly daily surface temperature values
at approximately the same resolution.

5. Conclusions

The purpose of this study is to evaluate six different methods for estimating LSWT
using Landsat 7 and 8 archives. Landsat files that has been properly calibrated may be used
to obtain LSWT series for any lake, including medium and small-sized lakes. We used the
Google Earth Engine (GEE) platform as it reduces image processing work by automating
huge sets of image collections.

The six methods are described in detail in Section 3.2. One method is based on the
radiative transfer equation (M1), two are split-window algorithms (M2, M3), and one
is a mono-window algorithm based on the radiative transfer equation (M6). The USGS
developed two approaches (M4, M5). After calibration using in situ data, the six approaches
adequately characterize the seasonal variation of LSWT (Willmott’s index of agreement >
0.91, R2 > 0.67). M1 and M6 produce the best results without calibration. With calibration,
any method is appropriate.

The climatology field reveals that both lagoons display similar spatial (15.5–17 ◦C)
and temporal (7–25 ◦C) LSWT patterns throughout the year. The variations in geographical
patterns are most likely due to the island’s heat and the presence of the Biobío river.
The investigation of the origins of these shifting patterns within the lagoons, the strong
suspicion that some anthropogenic influence is causing harm to their environment or the
ecosystems of other lakes in South America, and the pursuit of strategies to cure or mitigate
these consequences all serve as motivations for this study.
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Having in situ data as near to the time the satellites pass over the research area would
help to enhance the calibration process. Thus, if no local data is available, we recommend
using the radiative transfer equation (M1) or the mono-window approach based on the
radiative transfer equation (M6) methods, as those techniques are those which are closer
to reality.

The work reported here is the first phase of a project to build a database of remote
sensing monitoring of all water bodies throughout Latin America. Regardless, we hope
that our work will enable several teams worldwide investigating small lakes to build their
own databases.
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