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Abstract: Generating spatiotemporally continuous land surface temperature (LST) data is in great
demand for hydrology, meteorology, ecology, environmental studies, etc. However, the thermal
infrared (TIR)-based LST measurements are prone to cloud contamination with missing pixels.
To repair the missing pixels, a new XGBoost-based linking approach for reconstructing daytime
and nighttime Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements was
introduced. The instantaneous solar radiation and two soil-related predictors from China Data
Assimilation System (CLDAS) 0.0625◦/1-h data were selected as the linking variables to depict the
relationship with instantaneous MODIS LST data. Other land surface properties, including two
vegetation indices, the water index, the surface albedo, and topographic parameters, were also
used as the predictor variables. The XGBoost method was used to fit an LST linking model by the
training datasets from clear-sky pixels and was then applied to the MODIS Aqua-Terra LSTs during
summer time (June to August) in 2017 and 2018 across China. The recovered LST data was further
rectified with the Savitzky–Golay (SG) filtering method. The results showed the distribution of
the reconstructed LSTs present a reasonable pattern for different land-cover types and topography.
The evaluation results using in situ longwave radiation measurements showed the RMSE varies
from 3.91 K to 5.53 K for the cloud-free pixels and from 4.42 K to 4.97 K for the cloud-covered
pixels. In addition, the reconstructed LST products correlated well with CLDAS LST data with
similar LST spatial patterns. The variable importance analysis revealed that the two soil-related
predictors and the elevation variable are key parameters due to their great contribution to the
XGBoost model performance.

Keywords: land surface temperature; cloud contamination; reconstruction; XGBoost; MODIS; SG filtering

1. Introduction

Land surface temperature (LST) is a key parameter in environmental change, ecologi-
cal processes and land-atmosphere energy exchange for different spatial scopes [1–4]. It
enables monitoring of agricultural drought, urban heat, surface energy fluxes, and hydro-
logical and meteorological processes [5–11], etc. In situ measurement is a credible source to
acquire accurate LST data, but it is hard to obtain spatiotemporally continuous measure-
ments for large-scale areas [12]. Satellite remote sensing has provided the unique approach
to obtaining LST with satisfactory revisit cycle and global coverage [13,14]. Thermal in-
frared (TIR)-based methods, such as single-channel, split-window, and mono-window
algorithms [13,15–18], have been widely used to retrieve satellite-based LST data. Passive
microwave (PMW)-based approaches have also been used for LST estimation with the
advantage of better measurements through clouds [19,20]. Compared with LST retrieval
from PMW sensors, the TIR-based LST data has attracted more attention due to its finer
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spatial resolution and higher accuracy [13]. Many TIR-based LST products have been gen-
erated from different sensors, such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) [21], the FengYun-2 (FY-2) Visible Infrared Spin Scan Radiometer (VISSR) [22],
and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) [23], etc. However, the data availability of TIR-based LST products is
hampered by clouds or cloud shadows because TIR signals cannot penetrate thick clouds.
The presence of clouds hinders the full spatial coverage of LST measurements, which
greatly restricts the subsequent applications in many fields [24].

There have been many approaches to recovering the missing information and to
enhancing the usability of incomplete LST products. These approaches are generally catego-
rized into three types based on their different reference sources: (1) spatial information-based,
(2) multi-temporal observation-based, and (3) spatial-temporal information-based [25,26]. The
most widely-used methods are based on spatial information. For example, Jin [27] pro-
posed a neighboring-pixel (NP) approach for calculating the missing LST information based
on the surface energy balance (SEB) theory. Many spatial interpolation approaches, such as
geostatistical methods were also proposed to fill cloud-covered pixels [28,29]. However,
the recovered regions often yield unsatisfactory accuracy and blurred results when only
the spatial information was considered. The multi-temporal information-based methods
which utilize the information of time sequence images have also been well developed.
These approaches include the linear temporal approaches [30,31], the harmonic analysis
of time-series (HANTS) method [32], the Savitzky–Golay (SG) filtering method [33–35],
the diurnal temperature cycle (DTC) method [36,37], and the annual temperature cycle
(ATC) method [38,39], etc. Such approaches are appropriate for LST images with ade-
quate pixels and sufficient multi-temporal information, but generally ignore information
from geographically neighboring information and thus are only suitable for the images
with regular variation [25]. In other words, such approaches are very sensitive to abrupt
changes caused by land-cover change or sudden natural disasters [40]. The third category
are the spatiotemporal methods, i.e., hybrid methods, which take both the spatial and
temporal information into account. Several temporal NP approaches were developed
to reconstruct cloud-contaminated LSTs [41,42]. A two-step MODIS LST reconstruction
procedure was also developed by using multiple LST images with vegetation index and
the SEB-based correcting procedure [12]. Besides, some spatial-temporal fusion techniques
and the convolutional neural network have been introduced to generate high-resolution
seamless LSTs [43,44]. The spatiotemporal reconstruction method is suitable for filling large
data-missing regions with high accuracy and at reasonable computational cost. However,
such methods still underutilize the available spatial and temporal information, thus there
is room for further maximizing the availability of all available spatiotemporal informa-
tion [25]. For example, Yao et al. [45] proposed an enhanced hybrid method that fused
spatiotemporal information with information from other similar LST products to recover
MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) LST products.

Despite the achievements made on the reconstruction of satellite-based LST prod-
ucts, limitations still exist. The first one is that most of the studies have paid attention
on the reconstruction of daytime LST [26]. Few studies have been performed to recover
daytime and nighttime MODIS Aqua-Terra LST products simultaneously. Nighttime
LST reconstruction has been limited to a few studies that merged the information from
PMW-based data due to its low susceptibility to water vapor and cloud influence [46–52].
However, a wide scanning gap between orbits for PMW data and its relatively low spatial
resolution (tens of kilometers) often lead to the unsatisfactory fusion results [25]. An-
other limitation is the lack of evaluation for different land-cover types of reconstruction
results in previous studies. The spatial pattern of LST is directly affected by different
land-cover types [53,54]. Therefore, it is necessary to assess the reconstructed LST products
for different land-cover types. Additionally, LST is synthetically affected by many fac-
tors, such as land-cover types, topographic parameters, soil parameters, and atmospheric
forcing conditions [26,55–57]. Nevertheless, the influence of soil parameters (e.g., soil
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surface temperature (SST) and soil moisture (SM)) on LST or their interrelation has not
been evaluated.

To address the abovementioned limitations, the purpose of this study is to develop a
more practicable approach for reconstructing all-weather LST for cloud-covered pixels of
the MODIS Aqua-Terra LST products. Considering that incident solar radiation is the key
factor for the equilibrium between incoming and outgoing energy and determines the final
LST values, Zhao et al. [26] used a modified random forest (RF) linking model proposed
by Zhao et al. [58] to reconstruct daytime MODIS LST product. The RF linking model
was conducted to link daytime LST with the solar radiation factor and other explanatory
factors. However, the incident solar radiation made a small contribution in establishing
the RF linking model of Zhao et al. [26], thus more appropriate variables need to be
adopted to make the model more convincing. On the other hand, their developed RF
linking models are only suitable for the reconstruction of daytime LST. In this study, in
addition to the solar radiation factor, the instantaneous soil-related properties (SST and
SM) were also considered as the key linking variables. The eXtreme Gradient Boosting
(XGBoost) machine learning (ML) model, with its capacity of large-scale data modeling,
was used to construct the relationship between LST with soil properties and other land
surface properties (vegetation indices, water index, surface albedo, solar radiation and
topographic parameters). Then, the built model was applied to the missing pixels to
acquire the LST estimates and used for spatially continuous LST mapping over China.
Finally, the reconstructed results were evaluated against LST measurements from China
Meteorological Administration (CMA) and ground measurements in the Heihe River Basin,
and additionally compared with China Land Data Assimilation System (CLDAS) LST data.

The major objectives of this study are to: (1) introduce an XGBoost-based algorithm
to repair the missing information of daytime and nighttime MODIS Aqua-Terra LST data
simultaneously; (2) assess whether the reconstructed LST results present the reasonable pat-
terns for different land-cover types; (3) evaluate whether the accuracy of the reconstructed
LST products meets the requirement compared with other studies, and (4) explore variable
importance of each predictor and prove the rationality of the variable selection.

2. Study Area and Data
2.1. Study Area

China is selected as the study area (Figure 1). With an area of approximately 9.6 million
km2, China lies between latitudes 3◦ N and 54◦ N, and between longitudes 73◦ E and 136◦ E.
The map of land-cover types in China is shown in Figure 1. The 300 m land-use cover
product in 2018 generated from European Space Agency (ESA) Climate Change Initiative
(CCI) project was used in this study (http://maps.elie.ucl.ac.be/CCI/viewer/index.php).
The land-cover data from ESA was resampled to a 1 km resolution by mode resampling and
reclassified into six types including water, bare soil, built-up areas, grassland, woodland,
and cropland, for the purpose to simplify the evaluation of the impact of different land
cover on LST reconstruction performance. China features high spatial heterogeneity in
land-cover types, where the plains and basins account for ~33% of the land area, while
mountainous areas, hills and plateaus account for the other 67% of area. Due to the
complicated terrain, the climate in China varies greatly in space and is mainly dominated
by dry seasons and wet monsoon [59].

2.2. Datasets
2.2.1. MODIS Data

In this study, the MODIS Aqua-Terra daily LST products (i.e., MOD11A1/MYD11A1)
were selected to reconstruct cloud-covered LSTs. The auxiliary data from MODIS products
used as the predictive variables were the normalized difference vegetation index (NDVI),
the enhanced vegetation index (EVI), the normalized difference water index (NDWI), and
surface albedo.

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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Figure 1. Land-cover map across China. The dots indicate the location of meteorological stations collected from China 
Meteorological Administration. 
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Figure 1. Land-cover map across China. The dots indicate the location of meteorological stations collected from China
Meteorological Administration.

The 16-day NDVI and EVI products were provided by the MODIS Aqua-Terra Vegeta-
tion Indices datasets (MOD13A2/MYD13A2). The NDWI were calculated from the surface
reflectance product (MOD09A1) at an 8-day/500 m resolution and are given by

NDWI =
ρnir − ρswir
ρnir + ρswir

(1)

where ρnir and ρswir denote band 2 and band 5 of the MOD09A1 product, respectively.
The surface albedo data were derived from the albedo product (MCD43A3) at an

8-day/500 m resolution. The NDWI and surface albedo datasets were upscaled to 1 km
resolution by pixel averaging to match MODIS LST data. All MODIS products were
acquired from June to August in 2017 and 2018, and were obtained from the NASA Land
Processes Distributed Active Archive Center (LPDAAC) (https://ladsweb.modaps.eosdis.
nasa.gov/).

2.2.2. Reanalysis Data

The CMA (China Meteorological Administration) China Land Data Assimilation
System (CLDAS) started to release the official products (Version 2.0, 0.0625◦ × 0.0625◦)
from 2008, and these products cover East Asia (0–65◦ N, 60–160◦ E). Meteorological fields
used in the CLDAS land surface modeling (LSM) include hourly air temperature, air
pressure, humidity, precipitation, solar radiation, surface temperature, shortwave radiation,
soil surface temperature, and soil moisture, etc. The CLDAS reanalysis data are derived
from LSMs using data fusion and assimilation methods [60,61].

In this study, the hourly CLDAS shortwave radiation, soil surface temperature (0–10 cm),
and soil moisture (0–10 cm) were selected as the predictors of LST. As the CLDAS LST

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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product proves to be well consistent with in situ LST [44], the CLDAS LST product was
used to evaluate the reconstructed LST. In addition to the shortwave radiation parameter
obtained during the daytime, CLDAS soil parameters at 11:00 a.m., 22:00 p.m., 2:00 p.m.,
and 2:00 a.m. (Beijing time) were selected to match the overpass time of MODIS Aqua-Terra
products. These hourly reanalysis data in NetCDF format are publicly accessible from the
China Meteorological Data Service Center (CMDC) at http://data.cma.cn.

2.2.3. Topographic Parameters

Topographic parameters affect variations in LSTs because of the varying atmospheric
forcing environment and with the effect on the dispersion of incident solar radiation [26,62].
The DEM data was from the Shuttle Radar Topography Mission (SRTM) at a 90 m resolution
and obtained from the Geospatial Data Cloud (http://www.gscloud.cn/). Then the slope
data was calculated from the SRTM data, and the two topographic datasets were upscaled
to 1 km resolution by pixel averaging.

2.2.4. Ground-Measured Data

Two ground-based datasets were used for the evaluation. One in situ measured
LST dataset was obtained from “China’s surface climate data daily value data set (V3.0)”
(http://data.cma.cn) provided by CMA. This dataset, which has been strictly quality-
controlled, contains data from 699 benchmarks and basic automatic weather stations in
China and provides daily maximum, minimum, and average land surface temperature
(0 cm) measured by platinum resistance temperature sensor. The maximum permissible
error is ±0.2 ◦C (≤50 ◦C) or ±0.5 ◦C (>50 ◦C). The advantage of this dataset is that the
stations cover the entire study area and can be used to evaluate the overall spatiotemporal
characteristics of the reconstructed MODIS LST data. In order to make the station distribu-
tion more uniform, 200 automatic weather stations were randomly selected for verification
by using the “Create Fishnet” module of ArcMap with a 2◦ × 2◦ cell (Figure 1).

Another dataset is the ground-based measurements from the Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) [63,64], a comprehensive eco-hydrological
experiment conducted in the Heihe River Basin. This dataset measured by Net Radiometer
CNR4 with a maximum nonlinear error of 1% has been used to assess the accuracy of
the all-weather MODIS LST [49,65]. This dataset also has been quality-controlled. Five
HiWATER sites (i.e., DSL, AR, HZZ, HH, and SDQ) provided by National Tibetan Plateau
Data Center were used for verification (http://data.tpdc.ac.cn) in this study. Some details
of these sites were displayed in Table 1. The ground-measured LSTs at the five sites were
calculated from the upwelling and downwelling broadband hemispherical radiances by
Stefan–Boltzmann’s law:

Ts = [
F↑ − (1− εb)F↓

σεb
]
1/4

(2)

where Ts is the estimated LST, F↓ is the downwelling longwave radiation, F↑ is the surface
upwelling longwave radiation, σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4),
and εb is the surface broadband emissivity. The εb was estimated from MODIS narrowband
emissivity products using an empirical linear relationship [66]. Additionally, the “3σ-
Hampel identifier” was adopted to reduce the influences from outliers [65,67].

Table 1. Detailed information about the five HiWATER sites.

Site Longitude Latitude Elevation Land Cover

DSL 98.9406◦ E 38.8399◦ N 3739 m Alpine meadow
AR 100.4643◦ E 38.0473◦ N 3033 m Alpine meadow

HZZ 100.3201◦ E 38.7659◦ N 1731 m Desert steppe
HH 100.4756◦ E 38.8270◦ N 1560 m Grassland
SDQ 101.1374◦ E 42.0012◦ N 873 m Woodland

http://data.cma.cn
http://www.gscloud.cn/
http://data.cma.cn
http://data.tpdc.ac.cn
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Table 2 gives an overview of the datasets used in this study, including the variable
types, dataset name/source, and the spatiotemporal resolution.

Table 2. Datasets used to develop and validate the reconstruction algorithm in this study.

Variable Dataset Name/Source Spatiotemporal
Resolution Reference

Day/night LSTs MOD11A1, MYD11A1 Daily/1 km

____________NDVI/EVI MOD13A3, MYD13A3 16-day/1 km

NDWI MOD09A1 8-day/500 m

Albedo (ALB) MCD43A3 8-day/500 m

Shortwave radiation (CSR) CLDAS hourly/0.0625◦

[60]Soil surface temperature (SST), soil
moisture (SM) CLDAS hourly/0.0625◦

Model-based surface temperature CLDAS hourly/0.0625◦

DEM/slope (SLP) SRTM ——/90 m [68]

Ground-based surface temperature CMA Daily/point [69]

In situ longwave radiation
measurements HiWATER 10 min/point [70–74]

3. Methodology
3.1. Theoretical Context

LST is comprehensively affected by multiple factors, such as land-cover types, to-
pographic parameters, soil parameters, atmospheric forcing conditions, etc. [26,55–57].
Thus, many studies have considered multiple related factors to express the relationship
between LST and these auxiliary factors, and these built relationships have been further
used for LST reconstruction [26,50,58], LST downscaling [75], etc. The key of building these
models is to find the variables that change synchronously and are closely related to the LST
parameter, such as the linking variable (i.e., incident solar radiation) in Zhao et al. [58] and
Zhao et al. [26], and the Annual Cycle Parameters (ACPs) in Sismanidis et al. [76]. In this
study, we evaluated the utility of several linking variables as proxies for instantaneous LST
over China, and reconstructed daytime and nighttime LSTs from MODIS observations.

3.2. Extreme Gradient Boosting (XGBoost) Model

Several studies have successfully used an ensemble learning method (i.e., RF method)
to reconstruct cloud-covered LSTs [26,51,52]. The XGBoost algorithm belongs to the Gradi-
ent Boosting Decision Tree (GBDT) algorithm, which is an iterative decision tree algorithm
consisting of multiple decision trees [77], and the final decision is made by iterating mul-
tiple trees together. XGBoost represents an efficient GBDT algorithm enabling gradient
boosting “on steroids” [78]. It combines advanced optimization techniques to produce
excellent results while using less computing resources than other methods [79]. This study
involved LST modeling over a large area (i.e., China), and it was feasible to use XGBoost
algorithm modeling with vast amounts of LST pixels.

3.3. LST Reconstruction Based on XGBoost Linking Model

The RF linking model proposed by Zhao et al. [58] and Zhao et al. [26] is based on
the assumption that incident solar radiation dominates the morning warming process
and this factor can accurately represent the close relationship between the daily LST and
surface solar radiation [26,58,80,81]. In this study, for daytime MODIS Aqua-Terra LST’s
reconstruction, the incident solar radiation was also taken into account and was estimated
by cumulating the CLDAS shortwave radiation data on surface warming process from
sunrise time to satellite sunrise time. However, the cumulative incident solar radiation
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(CSR) is around zero during nighttime, thus the CSR cannot be used as an input to build a
nighttime LST linking model, but the instantaneous CLDAS SST and SM data at an hourly
resolution can be used as good proxies for daytime and nighttime LSTs due to their close
relationships. Combined with other predictors based on Zhao et al. [26], including NDVI,
EVI, NDWI, surface albedo (ALB), solar radiation, DEM, and slope (SLP), the proposed
LST linking model based on XGBoost is expressed as follows:{

Tact_day = Test_day + eday
Test_day = F(NDVI, EVI, NDWI, ALB, CSR, SST, SM, DEM, SLP)

(3)

{
Tact_night = Test_night + enight

Test_night = F(NDVI, EVI, NDWI, ALB, SST, SM, DEM, SLP)
(4)

where Equation (3) is the daytime LST linking model, and Equation (4) is the nighttime
LST linking model with the CSR factor removed. Tact_day and Tact_night denote the actual
daytime and nighttime LST respectively, Test_day and Test_night denote the estimated daytime
and nighttime LST respectively, e denotes the estimation error of the linking model, and F
is the function of an established XGBoost model. The process of the LST reconstruction is
described as follows:

(1) Data Preprocessing: Before building the linking model, the quality control (QC) data
of the MODIS Aqua-Terra LST products was used to remove pixel errors larger than 2 K to
reduce the uncertainty derived from original LST data [26]. The NDVI or EVI data were
compiled to generate two new time-series datasets with an 8-day resolution by combing
the 16-day MOD13A3/MYD13A3 products. Then, all the MODIS-based datasets with an
8-day resolution (i.e., NDVI, EVI, NDWI, and ALB) were linearly interpolated to generate
daily data. As for the hourly CLDAS-based predictors (i.e., SST and SM) with a 0.0625◦

resolution, they were downscaled to 1 km resolution using a bilinear interpolation method.
(2) LST Linking Model Building: The XGBoost model was adopted to fit the LST linking

model and to construct the relationship between clear-sky LSTs and the predictors. It
should be noted that the CSR variable was eliminated for the nighttime LST linking
model. We used the XGBoost package in scikit-learn, and most parameters were set to the
default except that the parameter “max_depth” was tuned from 10 to 20 and the parameter
“n_estimators” was tuned from 100 to 250 following the changes of “max_depth” to avoid
overfitting according to the root-mean-square error (RMSE) of the training dataset. The
mean squared error (MSE) was selected as the loss function because it is commonly used
in regression issue. The selected optimal parameters were determined by the trade-off of
model accuracy and time consumption for the XGBoost training model.

(3) LST Reconstruction: Among the input datasets for fitting the linking model, the
predictors of Equations (3) and (4), except for CSR, SST, and SM, are mostly invariant within
a day. The three instantaneous predictors (i.e., CSR, SST, and SM) are used as critical proxy
variables to link the clear-sky LST pixels and cloud-covered LST pixels via the established
linking model. To produce the reconstructed LST, the built model was applied to the region
with missing pixels.

(4) Seamless LST Postprocessing: MODIS data are influenced by undetected clouds
and poor atmospheric conditions, which caused discontinuous data existing in MODIS
data [82,83]. The change curve of original LST often demonstrates sudden plunges due
to cloud and snow cover, which caused sudden drop points that were not in a good
agreement with the overall trend [33]. The SG filtering method has been used to smooth
and reconstruct the LST time-series data to reduce the noise data. Two key parameters
must be determined. The first parameter is m that denotes the half-width window, and the
other parameter is d that denotes the degree of the smoothing polynomial. In this study,
the two parameters were set to 2 and 3 respectively, and the SG filtering was only applied
to the outlier data with values lower than the overall trend [33].
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The flowchart of the whole process for daytime LST reconstruction is shown in
Figure 2, and the process for nighttime LST reconstruction is similar with the daytime
LST reconstruction.
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3.4. Validation

In this study, in situ measured LST data were used to evaluate the reconstructed LST
results. Besides, the CLADS LST data were also adopted to evaluate the spatial patterns
and LST magnitudes of the reconstructed results. Three commonly used criteria were
selected for the validation, that is, the coefficient of determination (R2), the root mean
square error (RMSE), and the Bias. The three statistical metrics are calculated as follows:

R2 =

[
n
∑

i=1
(Yi −Y)(Oi −O)]

2

n
∑

i=1
(Yi −Y)2 n

∑
i=1

(Oi −O)
2

(5)

RMSE =

√
[

n

∑
i=1

(Yi −Oi)
2]/n (6)

Bias =

n
∑

i=1
(Yi −Oi)

n
(7)

where Yi denotes the reconstructed LST value and Oi denotes the corresponding in situ
measured LST value or CLDAS LST value; Y and O are mean values of Yi and Oi, respectively.
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4. Results
4.1. Building of the LST Linking Model

We reconstructed the daytime and nighttime MOD11A1/MYD11A1 data across China
during summer time (June to August) in 2017 and 2018. Separate datasets including the LST
data for each satellite overpass time and corresponding auxiliary data were independently
imported into an XGBoost-based LST linking model. To verify the accuracy and stability of
the model, a hand-out cross validation method was employed by randomly splitting the
training datasets into 90% of the total datasets, and the remaining 10% of the datasets as
the training dataset and test dataset, respectively. The parameter of “max_depth” was set
to 18 and “n_estimators” was set to 200 as the best parameters according to the minimum
MSE value for the test dataset and the computation time. Table 3 shows the performances
of the training accuracy and test accuracy of the four established XGBoost models on day
of year (DOY) 167 of 2018. The XGBoost-based models yield R2 from 0.97 to 0.98, and
RMSEs ranging from 1.54 K to 1.79 K for the training dataset. The cross validation results
demonstrated that the XGBoost models have comparable accuracy for both the training
datasets and test datasets. The high R2 values with low RMSE and Bias for both model
fitting and cross validation suggested a good performance of the XGBoost algorithm.

Table 3. Performance of the XGBoost-based linking models on DOY 167 of 2018.

Data
Fitting Performance Cross Validation

R2 RMSE (K) R2 RMSE (K)

MOD11A1 daytime LST 0.98 1.62 0.96 2.59

MOD11A1 nighttime LST 0.97 1.62 0.97 1.61

MYD11A1 daytime LST 0.98 1.79 0.95 2.89

MYD11A1 nighttime LST 0.98 1.54 0.98 1.54

4.2. Demonstration of Reconstructed Daytime and Nighttime LSTs

To facilitate the ease of reading, the original daytime LST and nighttime LST of
MOD11A1 data, their corresponding reconstructed daytime LST and nighttime LST as
well as reconstructed daytime LST and nighttime LST after SG filtering are labeled as
MODLSTD_Raw, MODLSTN_Raw, MODLSTD_Rec, MODLSTN_Rec, MODLSTD_Rec_SG,
and MODLSTN_Rec_SG, respectively hereafter, and so were the MYD11A1 data.

The original cloud-covered LST data of MODLSTD_Raw and MODLSTN_Raw on
DOY 167 (June 16) of 2018 were displayed in Figure 3a,b, and their corresponding gap-filled
LST data and reconstructed LST data with SG filtering were displayed in Figure 3c,d and
Figure 3e,f, respectively. Likewise, the original cloud-covered MYD11A1 LST data and their
corresponding reconstructed results were shown in Figure 4. Figures 3 and 4 demonstrated
that the XGBoost linking model can effectively fill a lot of missing LST pixels in the original
LST images. The overall spatial patterns of the reconstructed LST images were consistent
with the original LST data. More examples of reconstructed MODIS LST data on other
days were provided in Figures A1–A3 in the Appendix A.

4.3. Reconstruction Effects for Different Land-Cover Types

In order to show the reconstructed results in more detail, we selected two representa-
tive sub-regions, shown in Figure 5, as examples based on the reclassified land-cover types.
Figure 6 shows the original MOD11A1 LST data and the corresponding reconstructed data
on DOY 167 of 2018 for sub-region 1 scattered with water bodies. The daytime MODIS LST
for pixels covered by water is usually lower than the surrounding pixels, and by contrast,
the LSTs of nighttime water pixels are higher than the LSTs of their neighboring pixels. The
reconstructed results (Figure 6c,d) can clearly reflect the terrain and land-cover information
of the area with no obvious overestimation or underestimation. When the SG filtering
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was performed (Figure 6e,f), some underestimation and blurred information was rectified,
though the improvement is not very evident for this sub-region.
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Figure 7 displays the reconstructed results for sub-region 2 covered mostly by bare
land, cropland, grassland, and woodland. Figure 7a,b show that the values of LST pixels
covered with bare or sparsely vegetated land are higher than that of other land-cover
types for both daytime and nighttime. Because of the large blank area in Figure 7a,b
covered by bare soil or sparse vegetation, the surrounding relatively low LST pixels
were used as input to the XGBoost model and then to estimate those missing pixels.
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Therefore, the corresponding reconstructed LSTs of Figure 7c,d were not so accurate with
the underestimation effects. With the process of SG filtering via using the temporally
adjacent LST information, the underestimated pixels were well rectified (refer to Figure 7e,f)
by combining with the information of adjacent time-series LST data. Additionally, the step
of SG filtering can restore the LST information in areas covered with other land-cover types
(e.g., woodland) (Figure 7e vs. Figure 7c).
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4.4. Validation with CMA Ground-Measured LST Data

The CMA ground-measured LST (0 cm) daily maximum, minimum, and average LST
data was used to assess the reconstructed MODIS LST products. In this study, the daytime
MYD11A1 LST and nighttime MYD11A1 LST were taken as proxies for the daily maximum
and minimum LST, respectively. Additionally, we average the reconstructed daytime and
nighttime MOD11A1 and MYD11A1 LST for each day to match the ground-measured
average LST, and the average LST for both before and after SG filter processing were
labeled as MODLSTAvg_Rec and MODLSTAvg_Rec_SG, respectively.

The validation results of the reconstructed MODIS LSTs (from June to August in 2017
and 2018) for both before and after SG filter processing were shown in Figures 8 and 9. The
distribution of density scatter points in Figures 8a and 9a indicates that most of the LST val-
ues of the MYDLSTD_Rec data were far lower than the values of in situ measured maximum
LST data (Bias =−17.00 K to−16.30 K). This suggests that the daytime MYD11A1 LST at lo-
cal 2:30 p.m. does not give a good approximation of the daily maximum LST with relatively
low R2 and high RMSE (R2 = 0.40 to 0.42, RMSE = 18.62 K to 19.48 K). Figures 8b and 9b
indicate that the nighttime MYD11A1 LST at local 2:30 a.m. correlated relatively well
with the in situ measured daily minimum LST (R2 = 0.62 to 0.65, RMSE = 5.74 K to 6.09 K,
Bias = −3.32 K to −3.18 K). The result of Figures 8c and 9c indicate that the reconstructed
daily average MODIS LST also has a relatively good correlation with the ground-measured
mean LST (R2 = 0.62 to 0.63, RMSE = 7.07 K to 7.45 K, Bias = −5.37 K to −3.32 K). By
comparison with the results of reconstructed LSTs with SG filter processing, we found
little differences between Figures 8d–f and 8a–c or Figures 9d–f and 9a–c for the three
statistical metrics, as the step of SG filter processing did not significantly change the
original LST values. The values of RMSE and Bias were slightly altered (Figure 8d–f
vs. Figure 8a–c or Figure 9d–f vs. Figure 9a–c), and the R2 value was improved from 0.62
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to 0.65 (Figure 8e vs. Figure 8b) or from 0.65 to 0.68 (Figure 9e vs. Figure 9b) because the
SG filter processing mainly improved the abnormally low LST values in the reconstructed
LST products. From the results of the daily average LST, the R2 value was slightly re-
duced from 0.63 to 0.61 (Figure 9f vs. Figure 9c) or remained unchanged by comparing
Figures 8f and 8c. Thus, the step of SG filtering has little influence on the accuracy of the
preliminary reconstructed LST product on the whole.
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To further evaluate the accuracy for different land-cover types, Table 4 lists the vali-
dation of the reconstructed products for 6 land-cover types. The correlations for the three
land-cover types of built-up areas, grassland, and cropland were higher than the other three
land-cover types (i.e., water, bare soil, and woodland). In particular, for the reconstructed
products of MYDLSTN_Rec_SG and MODLSTAvg_Rec_SG with the three land- cover
types of built-up areas, grassland, and cropland, the R2 ranges from 0.59 to 0.80 during
summer time in 2017 and 2018, the RMSE ranges from 2.41 K to 8.18 K, and the Bias ranges
from −6.24 K to −0.91 K. The R2 for the other three land-cover types were relatively lower,
while the RMSE ranges from 2.30 K to 9.21 K and the Bias ranges from −8.58 K to 0.56 K.
As for the MYDLSTD_Rec_SG product, the poor validation results for all land- cover types
were attributed to the large bias between the reconstructed MYDLSTD_Rec_SG and the in
situ measured maximum LST data.
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4.5. Validation Using HiWATER Data

The accuracy of the all-weather LSTs were also evaluated against the HiWATER LST
measurements at five sites and the results are shown in Figures 10 and 11. The RMSE of
the original cloud-free LST varies from 3.95 K to 5.53 K in 2017 and from 3.91 K to 4.75 K in
2018 at all sites. Duan et al. [49] pointed out that the spatial scale inconsistency between
the pixel-wise all-weather LSTs and the point-wise in situ LSTs caused the relatively large
RMSE. Another reason for this relatively low accuracy stemmed from the influence of cloud
contamination. The accuracy evaluation used nearly all QC data rather than the best QC
data (QC = 0) [49]. Thus, the accuracy of the all-weather LST is obviously lower than the
nominal accuracy (1 K) of the MODIS LST product. From Figures 10 and 11, the accuracy
of the final reconstructed cloud-covered LST shows no distinct difference comparing to
that of the cloud-free LST. The RMSE values range from 4.66 K to 4.97 K in 2017 and from
4.42 K to 4.96 K in 2018, and the Bias values range from −2.53 K to 0.06 K in 2017 and
from −2.05 K to 0.56 K in 2018. Overall, the validation results demonstrated the consistent
performance of the approaches used in this study.
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Figure 8. Validation results for reconstructed (a) MYDLSTD_Rec; (b) MYDLSTN_Rec_SG; (c) MODLSTAvg_Rec;
(d) MYDLSTD_Rec_SG; (e) MYDLSTN_Rec_SG, and (f) MODLSTAvg_Rec_SG using CMA LST data from June to Au-
gust 2017. Color bar represents the counts of the points falling in each square.
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Figure 9. Validation results for reconstructed (a) MYDLSTD_Rec; (b) MYDLSTN_Rec_SG; (c) MODLSTAvg_Rec;
(d) MYDLSTD_Rec_SG; (e) MYDLSTN_Rec_SG, and (f) MODLSTAvg_Rec_SG using CMA LST data from June to Au-
gust 2018. Color bar represents the counts of the points falling in each square.
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Table 4. Validation results of the reconstructed daytime and nighttime MYD11A1 LSTs, and average daily LST data from
June to August in 2017 and 2018 for different land-cover types.

Data Land-Cover Type
2017 2018

R2 RMSE (K) Bias (K) R2 RMSE (K) Bias (K)

MYDLSTD_Rec_SG

Water 0.48 25.77 −24.19 0.41 13.25 −11.84
Bare soil 0.43 13.42 −10.70 0.40 12.36 −9.28

Built-up areas 0.54 15.70 −14.47 0.55 15.43 −13.68
Grassland 0.36 20.62 −17.89 0.42 17.89 −15.34
Woodland 0.31 21.19 −19.23 0.23 19.45 −17.31
Cropland 0.45 18.77 −16.77 0.44 18.04 −16.09

MYDLSTN_Rec_SG

Water 0.21 4.03 −1.16 0.49 2.30 −1.16
Bare soil 0.52 4.74 −0.55 0.34 4.37 −0.55

Built-up areas 0.80 2.41 −0.91 0.76 2.51 −0.91
Grassland 0.59 7.25 −3.33 0.68 6.15 −3.33
Woodland 0.50 6.40 −3.94 0.52 6.16 −3.94
Cropland 0.71 3.34 −1.74 0.74 2.78 −1.74

MODLSTAvg_Rec_SG

Water 0.57 9.21 −8.58 0.50 4.29 −3.57
Bare soil 0.62 4.53 −1.13 0.46 4.52 0.56

Built-up areas 0.69 4.89 −4.21 0.73 4.14 −3.11
Grassland 0.65 8.19 −6.24 0.68 6.18 −4.22
Woodland 0.54 8.49 −7.38 0.46 7.55 −6.10
Cropland 0.65 6.43 −5.56 0.60 5.74 −4.70
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4.6. Comparison with CLDAS LST Data

Taking the reconstructed results on DOY 167 of 2018 as an example, we compared
them with the corresponding CLDAS LST products with an hourly/0.0625◦ resolution. The
left column of Figure 12 shows the four CLDAS LST products and the right column shows
the reconstructed results on DOY 167 of 2018. It is shown that the CLDAS LST products
contain some missing pixels and noise data to the west of China. The reconstructed LST
products depicted more detailed spatial information than the CLDAS LST, especially in
areas with complex terrain (e.g., Tibetan Plateau). Overall, the reconstructed LST data had
similar spatial variation with the CLDAS LST data. Differences in the LST magnitude are
seen in some areas. For example, the reconstructed daytime MODIS LST data (Figure 12b,f)
in northwest China were higher than those of the daytime CLDAS LST data (Figure 12a,e).
In contrast, the LST estimates of Figure 12b,f in southeast China were lower than those of
Figure 12a,e. For the nighttime LST data, the differences between the reconstructed MODIS
LST data (Figure 12d,h) and CLDAS LST data (Figure 12c,g) were much smaller compared
to the daytime LST data.

The reconstructed LST products were aggregated to 0.625◦ and matched-up to the
CLDAS LST pixels by average aggregating to further understand the correlation between
the reconstructed LST products with the CLADS LST products. Figures 13 and 14 show the
density scatter plots for the reconstructed LST data and the CLADS LST data from June
to August in 2017 and 2018. From Figures 13 and 14, some high outliers are seen in both
daytime and nighttime LST estimates from CLDAS. The correlation between these two LST
datasets varies (R2 = 0.33 to 0.80), while the correlation of nighttime LST data (R2 = 0.77 to
0.80) is significantly higher than that of the daytime data (R2 = 0.33 to 0.51). The RMSEs are
relatively large for daytime estimates (RMSE = 8.05 K to 10.10 K), while the absolute Bias is
smaller than 5 K for both daytime and nighttime estimates.
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of the four CLDAS LST products, respectively.
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4.7. Variable Importance Analysis

The XGBoost algorithm enables assessment of variable importance to rank their con-
tributions to the established model. The average importance of each predictor for the built
XGBoost models during summer time in 2017 and 2018 in this study is shown in Figure 15.
Figure 15 demonstrates that the variable importance differs with satellite overpass time. For
daytime LST estimation, predictors such as SST, SM, DEM, and NDVI provided significant
contributions to the XGBoost models (Figure 15a,c). For nighttime LST estimation, the
three variables of DEM, SST, and SM exhibit more importance than the other variables
(Figure 15b,d). The variables of SST, SM, and DEM are key inputs in the XGBoost models
for both daytime and nighttime LST estimates due to their large contributions. Some
studies have explored the relationship between SST and LST to retrieve SST [84,85], and
Zhang et al. [51] even used SST data to validate the fused all-weather LST. Sun et al. [56]
estimated the effects for SM on the retrieval accuracy of LST, and Jiang et al. [86] esti-
mated hourly SM by using downscaled LST over different urban surfaces. For DEM data,
Zhao et al. [26] pointed out there is a notable decreasing trend for surface elevation with
LST due to the altitudinal temperature gradients. In the study area, surface elevation is
also significantly correlated negatively with LST for both daytime and nighttime.
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5. Discussion
5.1. Comparison with Other Studies

The reconstructed MYD11A1 LST data did not agree well with the CMA LST mea-
surements for daytime data. One reason is that there was a difference between the satellite
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overpass time of MODIS LST data across China and the measurement time for CMA LST
data. The gap time inevitably led to the large difference. On the other hand, Jiang et al. [87]
compared the 0 cm LST measured by mercury thermometer with the LST retrieved by
upward and downward longwave radiation in Tibetan Plateau. Based on the results, the
highest difference in daytime is over 16 K so the results in this study were consistent
with those of Jiang et al. [87]. The reason is that the measurement error of mercury ther-
mometer is discrete and non-proportional, thus the representation of the LST measured
by mercury thermometer is poor, even making the average or integral process [87]. It is
essential to popularize the surface temperature measurement method based on the surface
radiation to meet the demand of higher accuracy and reliability [87]. However, although
this CMA dataset also has inherent systematic bias, the reconstructed nighttime MYD11A1
LST data correlated well with the CMA LST measurements, which demonstrated the good
spatiotemporal continuity and relative accuracy of the reconstructed nighttime MODIS
LST products.

Validation against radiation-based LST revealed stable performance at all five HiWA-
TER sites, and the accuracy assessment was in line with previous studies. For example, the
NP-based approach used by [42] was evaluated with two sites in Africa with the RMSE
ranging from 5.11 K to 5.55 K. Duan et al. [49] merged TIR and PMW measurements in
China with the RMSE varying from 3.5 K to 4.4 K. The study of Zeng et al. [12] showed the
Mean Absolute Error (MAE) ranged from 3–6 K at six sites in America. Pham et al. [88]
obtained the gap-filling MYD11C1 LST over Australia with the RMSE ranging from 2 K
to 6.4 K at four stations in America. Here, the reconstructed MODIS data using the XG-
Boost method reached an RMSE between 3.91 K to 4.97 K, demonstrating an overall good
performance with respect to the absolute accuracy.

Zhao et al. [58] proposed an RF linking model to reconstruct MODIS LSTs over
a 120 km × 200 km study area (24,000 km2), and Zhao et al. [26] developed this ini-
tial RF linking model to recover daytime MODIS LSTs over a region of Southwest Eu-
rope (approximately 600,000 km2). Like RF, XGBoost can also handle complex nonlin-
earity relationships and address the multi-collinearity effect with high accuracy [89].
However, presently, it is hard for RF to process with tens of millions of training data
by using existing RF packages, while XGBoost combines software and hardware opti-
mization techniques to make it feasible and easier to study such large-scale study areas
(i.e., China). Besides, the solar radiation factor variable, as the unique linking variable in
Zhao et al. [58] and Zhao et al. [26], only makes a small contribution to the built models
and is limited to the daytime as well. In this study, the variable importance analysis
demonstrated the rationality of variable selection for the two soil-related linking variables
due to their great contributions to the proposed XGBoost models.

5.2. Advantages and Limitations of the Proposed Method

TIR-based LST products are often contaminated by frequent cloud cover with missing
pixels in large areas. Thus, we develop an XGBoost-based model to generate spatially
continuous MODIS Aqua-Terra LST datasets over a large study area. First, the reconstructed
results demonstrated the applicability and effectiveness of the XGBoost linking model
to recover both daytime and nighttime LSTs. This reconstructed model is convenient
to implement because it does not need much complex and prior parameter knowledge.
Second, the XGBoost method had a strong fitting and predictive ability as no obvious
fluctuation phenomenon existed in the reconstructed LST values. The proposed model
can accurately restore LST with some fine object features such as water bodies (lakes and
rivers). Third, the variable importance analysis also revealed the validity for the use of
the two instantaneous soil-related variables (i.e., SST and SM) as the linking predictors
between cloud-free LSTs and cloud-covered LSTs. The usage of them can facilitate the
consideration of soil-related variables when restoring the TIR-based LST parameters.

However, there are still some limitations in this study. First, the preprocessing step for
auxiliary variables had some inherent uncertainty. The disaggregation of 8-day MODIS-
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related auxiliary variables was performed using linear decomposition. Differences exist
between the disaggregated results and their true values, though the differences may be
ignored. In addition, the soil-related predictors were downscaled by a bilinear interpolation
method, which led to relatively smooth results of reconstructed LSTs in areas where a large
number of pixels were missing. Second, the SG filter processing cannot fully address the
underestimation in the original MODIS LST data. The final reconstructed LST data still
have some underestimated values. Third, the spatial scale inconsistency between in situ
measured LST data and MODIS LST pixels with a 1 km resolution was not considered in the
verification. The in situ measured LST data were required within a very small area while
satellite measurements are the integrated responses over a heterogeneous surface. It may
cause large uncertainty when the scale inconsistency is ignored in heterogeneous areas.

6. Conclusions

The quality of TIR-based LST data were greatly affected by frequent cloud cover,
which severely restricted their applications in many related scientific fields. Therefore,
to explore a practical method for the reconstruction of missing data in TIR-based LSTs
is of great significance. In this study, an advanced method was adopted to reconstruct
the missing information resulting from cloud cover in MODIS Aqua-Terra daytime and
nighttime LST products. The instantaneous solar radiation and soil-related predictors
obtained from CLDAS data were used as the linking variables to establish the relationship
with instantaneous cloud-free LST data. By coupling with other predictors, we developed
an XGBoost-based linking model to fit the complex relationship between cloud-free LST
and the predictors, and then the constructed linking model was applied to the areas
with cloud-covered pixels to generate spatially continuous MODIS LST estimates during
summer time (June to August) in 2017 and 2018 across China. The SG filter method was
adopted to further improve the quality of the reconstructed LST products.

The reconstructed LST products were validated and compared with daily in situ
measured LST observations and CLDAS LST data. The validation results based on CMA
stations showed that the nighttime and daily average LSTs agreed well with in situ data,
while the daytime LST estimates showed poorer correlation due to the measurement error
for platinum resistance temperature sensor. Evaluation for 6 different land-cover types led
to similar conclusions. Besides, the validation results based on in situ LST measurements
at five sites in the Heihe River Basin showed that the RMSE values ranged from 3.91 K to
5.53 K for the cloud-free LST and from 4.42 K to 4.97 K for the LST under cloud conditions.
The accuracy of the reconstructed LST products meets the requirement comparing with
other studies. The comparison with CLDAS LST data also showed similar LST spatial
patterns, despite some difference in LST magnitudes.

The variable importance analysis revealed that the soil-related predictors (i.e., soil
surface temperature and soil moisture) and the DEM variable made great contributions to
the XGBoost model for both daytime and nighttime observation data, which could be used
as a reference for the selection of predictors in the reconstruction of TIR-based LST data.
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