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Abstract: Groundwater variation can cause land-surface movement, which in turn can cause signif-
icant and recurrent harm to infrastructure and the water storage capacity of aquifers. The capital
cities in the England (London) and India (Delhi) are witnessing an ever-increasing population that
has resulted in excess pressure on groundwater resources. Thus, monitoring groundwater-induced
land movement in both these cities is very important in terms of understanding the risk posed
to assets. Here, Sentinel-1 C-band radar images and the persistent scatterer interferometric syn-
thetic aperture radar (PSInSAR) methodology are used to study land movement for London and
National Capital Territory (NCT)-Delhi from October 2016 to December 2020. The land movement
velocities were found to vary between −24 and +24 mm/year for London and between −18 and
+30 mm/year for NCT-Delhi. This land movement was compared with observed groundwater levels,
and spatio-temporal variation of groundwater and land movement was studied in conjunction. It
was broadly observed that the extraction of a large quantity of groundwater leads to land subsidence,
whereas groundwater recharge leads to uplift. A mathematical model was used to quantify land
subsidence/uplift which occurred due to groundwater depletion/rebound. This is the first study
that compares C-band PSInSAR-derived land subsidence response to observed groundwater change
for London and NCT-Delhi during this time-period. The results of this study could be helpful to
examine the potential implications of ground-level movement on the resource management, safety,
and economics of both these cities.
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1. Introduction

Water is essential to sustain life on earth; however, its availability is not uniform
within the spatial and temporal domains. Groundwater meets a large part of the water de-
mand, and ever-increasing dependence on this resource has led to groundwater depletion
across various parts of the world [1–3]. Amidst the threat of global warming and climate
change, groundwater acts as a lifeline for many parts of the world. Thus, adequate man-
agement of groundwater is essential to ensure its sustainability. Excessive abstraction and
change in rainfall patterns make it necessary to regularly revise and monitor groundwater
abstraction policies.

For decades, groundwater has been extensively exploited in aquifers for domestic,
agricultural, and industrial purposes; this has necessitated subsequent artificial recharge to
balance the groundwater depletion and control land subsidence [4,5]. Long-term ground-
water exploitation and recharge in confined aquifers alters the piezometric and pore
pressures in aquifers [6,7]. According to the effective-stress principle, aquifer systems
consolidate owing to these changes in their properties, leading to land subsidence [8,9].

Remote Sens. 2021, 13, 4741. https://doi.org/10.3390/rs13234741 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1185-3802
https://orcid.org/0000-0001-9768-2682
https://orcid.org/0000-0003-4284-1740
https://orcid.org/0000-0002-1168-6760
https://doi.org/10.3390/rs13234741
https://doi.org/10.3390/rs13234741
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13234741
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13234741?type=check_update&version=3


Remote Sens. 2021, 13, 4741 2 of 21

Therefore, it is necessary to understand land subsidence and the compaction process caused
by groundwater exploitation and recharge.

Extraction or recharge of groundwater can cause land subsidence or uplift, respectively,
and this can cause significant harm to buildings, infrastructure, and the water storage
capacity of aquifers [10–14]. The conventional methods to study land movement, such as
global positioning systems (GPS), global navigation satellite systems (GNSS), levelling, and
others, can provide precise information but are labour intensive, costly over vast extents,
and have a poor resolution, and thus, an alternative is needed. Satellite interferometric
techniques, such as persistent scatterer interferometric synthetic aperture radar (PSInSAR),
provides the means for less tedious, cost-effective, large spatial coverage (basin level)
mapping of ground movement without compromising on accuracy and precision [15–18].
This technique was first introduced by Alessandro Ferretti in 2000 [19] and has been
developed and applied for mapping surface deformation associated with groundwater
change [14,20–23]. While PSInSAR can provide accurate land deformation information, it
can only be calculated on permanent scatterers that maintain stable scattering with respect
to time. This methodology is thus most effective in urban areas where multiple permanent
scatters can be obtained [19].

The chalk is the most important aquifer unit in the English capital city of London
and has been supplying water for public consumption since the 19th century [24]. Lon-
don witnessed groundwater depletion during the first half of the 20th century, due to
increased urban development and human activities. This depletion resulted in a decrease
in groundwater level to 88 m below mean sea level (MSL) in the 1960s. The depletion was
checked because of de-industrialisation in the 1980s, which led to groundwater rebound
by 3 m/year in the 1990s. This dramatic rebound posed potential harm to buildings and
structures and, to counter this, the General Aquifer Research, Development, and Inves-
tigation Team (GARDIT) strategy was implemented in 1992 [25]. This enforced licensed
groundwater withdrawal and regular monitoring and thus stabilised the groundwater
around the year 2000, and since then, groundwater has been monitored regularly.

India is home to over 1.3 million people, and its ever-increasing population, urbanisa-
tion and non-uniform abstraction have likewise increased the depletion rate of groundwater
resources [26]. The National Capital Territory (NCT) of Delhi lies in the heart of India
and forms the capital city of the country. The subsurface geological features of NCT-Delhi
determine its discrete landform units, which are directly related to groundwater avail-
ability. The primary source of irrigation in NCT-Delhi is groundwater, although surface
water is also available from Trans Yamuna Canal Network. The Central Ground Water
Board (CGWB) monitors and publishes groundwater records for India. It took on the
aquifer mapping program during the 12th five-year plan for the entire country (including
NCT-Delhi) for sustainable development and management of groundwater resources [27].
The groundwater level in NCT-Delhi is continuously declining and is at a critical stage [28],
and this decline in groundwater level poses a significant threat of land subsidence [29].

The population explosions in London and NCT-Delhi exert increased pressure on
groundwater resources, thus posing a threat of land subsidence. However, the subsurface
geology and infrastructure of the two cities are different, and yet the responses of ground-
water to anthropogenic activities and its subsequent effect on land movement is not well
understood. To the best of our knowledge, no previous attempts have been made to simul-
taneously examine the specific causes of groundwater-induced land subsidence for London
alongside that of NCT-Delhi using PSInSAR. In this study, the groundwater-induced land
subsidence for the two major cities is studied between October 2016 and October 2020 using
a variety of geospatial techniques such as PSInSAR, GIS, spatio-temporal analysis, mathe-
matical modelling, and statistical analysis. The objectives of this paper are (i) to describe
spatio-temporal variation in land subsidence/uplift and investigate the natural and an-
thropogenic factors affecting land deformation; (ii) to analyse localised uplift, subsidence,
and differential movement; (iii) to study temporal and spatial variation in groundwater
and related subsidence at different locations for both the cities; and (iv) to construct a
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mathematical model where a groundwater change input could be used to calculate the
expected localised change in land deformation.

2. Study Area

The geographical areas selected in this study are the administrative area of Greater
London (Figure 1a) and the administrative area of NCT-Delhi (Figure 1b). London extends
over 0◦30′ W to 0◦20′ E longitudes and 51◦42′ N to 51◦17′ N latitudes, comprising nearly
1600 km2 in the southern part of England. Meanwhile, the NCT-Delhi area is bounded by
76◦50′24” E to 77◦20′30′ ′ E longitudes and 28◦24′15′ ′ N to 28◦53′00′ ′ N latitudes, comprising
a 1500 km2 area in the central part of India.
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Figure 1. Study area showing administrative boundary of (a) London and (b) NCT-Delhi. The red boundary shows the
extent of Sentinel data processed, and black dots show the location of observed groundwater wells.

The London basin is infilled by younger Paleogene deposits, and the chalk group
forms a rim around it and has a depth exceeding 200 m in central London [30,31]. The
NCT-Delhi is bounded by the Indo-Gangetic plains on the north-eastern side, Aravalli
ranges on the southern side, and Indian Thar desert on the western side. It is drained by the
Yamuna sub-basin, which flows in a north–south direction. The NCT-Delhi is dominated
by three main geomorphic units: rocky surface, older alluvium plain, and flood plains of
Yamuna. The area has mainly calcareous soil and comprises clay, silt, and fine to medium
sand [28].

In the United Kingdom (UK), chalk aquifers account for about 60% of the groundwater
used [32], and provide approximately 80% of the water supply in the River Thames
catchment and 20% in London alone [33]. In NCT-Delhi, the groundwater level variation
is quite extensive because of the wide range of topographic relief. The southern part of
NCT-Delhi has deeper wells (~40 m below ground level) compared to those in the northern
part (~10 m below ground level) [34]. In both cities, the local hydrogeological conditions
mainly govern the groundwater conditions, and it is controlled by a mix of rainfall, river,
canal water, and irrigation return flows.

The population of London had an increased rate of 1.4% per annum during the decade
2001–2011, while the rate for NCT-Delhi was 2.25%. The official projected population for
London in 2025 is 9.31 million [35], while that for NCT-Delhi is 22.1 million [36]. These
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estimates represent the urban agglomeration of the city, which typically includes the city’s
population in addition to adjacent suburban areas.

London’s climate is warm and temperate, and the average annual temperature and the
average annual rainfall is 11.1 ◦C and 621 mm, respectively. At the same time, NCT-Delhi is
characterised by extreme dry hot summer and extreme cold winter climatic conditions. The
temperature varies from a minimum of 7.3◦ in winter to a maximum of 47◦ in summer and
receives a mean annual rainfall of 611.8 mm. The land use within both cities is dominated
by dense to medium density urban fabric with multiple industrial units.

The demography, geology, rainfall, and hydrology of London and NCT-Delhi are
highly contrasting. The two cities represent densely populated urban cities of developed
and developing nations, respectively, and land deformation problems have been reported
in both these cities. This study will help to improve the knowledge of land deformation
response to groundwater use, through seeking to establish whether the land deformation
response to groundwater change is universal irrespective of the differences in the charac-
teristics of the cities, or whether it is very much location specific. This outcome of the study
could therefore contribute towards infrastructure planning of urban areas in developed
and developing nations.

3. Materials and Methods
3.1. PSInSAR Processing

The data specifications and overall methodology used in this study are summarised in
Table 1 and Figure 2, respectively. Land movement for each study area was calculated using
the PSInSAR principle [19] implemented in the ENVI SARscape software [37]. The software
package is highly efficient at interferometric synthetic aperture radar (InSAR) processing
using DInSAR, PSInSAR, and SBAS InSAR techniques, and supports all the latest synthetic
aperture radar (SAR) sensors [38–40]. The PSInSAR technique, in general, requires at least
twenty or more SAR image pairs to generate reliable results [17]. Specifically, stacks of
99 and 95 Sentinel-1 C-band images acquired between October 2016 and October 2020 over
London and NCT-Delhi, respectively, were obtained and used to compute land movement.

Table 1. Data and software used.

Data London NCT-Delhi

InSAR Data

99 Sentinel-1 SLC images 95 Sentinel-1 SLC images
VV polarisation, Frame 422, Descending,

IW Beam mode
VV polarisation, Frame 496, Descending,

IW Beam mode
Resolution: Azimuth: 20 m by Range: 5 m Resolution: Azimuth: 20 m by Range: 5 m

Repeat Cycle: 12 days Repeat Cycle: 12 days
Wavelength: 5.6 cm, C-band Wavelength: 5.6 cm, C-band

Master Image: 1 November 2018 Master Image: 24 September 2018
Time period: October 2016 to October 2020 Time period: October 2016 to October 2020

Digital Elevation Model: SRTM V4 Digital Elevation Model: SRTM V4
Software Used: ENVI SARscape, ArcGIS

(ArcMap 10.2.2)
Software Used: ENVI SARscape, ArcGIS

(ArcMap 10.2.2)

Ancillary data Borehole groundwater data from the UK Environment
Agency for 81 boreholes.

Groundwater level data (Source: Central Ground
Water Board, CGWB) for 98 boreholes.

Geological data of Delhi (Source: CGWB)

The SARscape module facilitates PSInSAR processing of SAR data in a multi-step,
semi-automated process [41]. To begin, a master image is chosen to which all slave images
are co-registered. To select the master image, the least average baseline of the stack is
considered so that an optimum spatio-temporal position of the master image is ensured
with respect to the slave images. This ensures increased coherence and better data co-
registration, as small baselines are less sensitive to volume de-correlation [37,41]
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After co-registration, interferograms were generated using master–slave pairs and
flattening was achieved by applying a reference digital elevation model (SRTM DEM
V4). To select a reference point for PSInSAR analysis, SARscape breaks the whole area
into subsets (accounting for an overlap) if the area under consideration is bigger than a
chosen threshold area. Then, each subset was analysed independently, with each having
its own reference point. This was performed in order to improve the accuracy of the
atmosphere estimation, and finally all the independent areas were mosaicked. This chosen
threshold area is known as “Area for Single Reference Point (sq km)” [37]. In this study, this
threshold was set at 25 km2 and in total there were 238 subsets for London and 143 subsets
for NCT-Delhi.

The density of permanent scatterers (PS), used to derive land motion measurements,
relies on the selected coherence threshold for the PSInSAR analysis. The greater the
coherence threshold, the better the quality and smaller the number of PS obtained, and
vice versa. Therefore, the coherence threshold should be selected such that an optimum
trade-off is reached between the quality of PS points and the number of PS points selected.
The first step inversion was carried out to obtain the coherence, displacement velocity,
and residual topography. These results were further employed for flattening the complex
interferograms. Then, the second inversion step was performed to address the atmospheric
phase components of the linear model products arising from the first inversion. Finally,
geocoding was performed to display maps of the average (linear) velocity and displacement
time-series for the observed time-period.

3.2. Groundwater Variation

To compare and validate the PSInSAR-derived land movements with groundwater
variations, observed groundwater monitoring data were obtained from the UK Environ-
ment Agency for London (from 81 boreholes) and CGWB for NCT-Delhi (98 boreholes).
The UK Environment Agency publishes an annual report on ‘Management of the London
Basin Chalk Aquifer’ and the groundwater data was extracted from maps of the water
table given in reports for January 2017 and January 2020 [25,42]. Additionally, the monthly
groundwater level for the Battersea chalk borewell was obtained from the UK Environment
Agency. For NCT-Delhi, the groundwater data provided by CGWB was obtained for
November 2016 and November 2020. The groundwater levels from 2016 were subtracted
from that of 2020 to find the find the change and then interpolated using the inverse
distance weighting (IDW) interpolation method [43] to produce a groundwater change
map covering the whole area. The groundwater maps were then subsequently analysed in
comparison to the subsidence maps.
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3.3. Groundwater-Subsidence Mathematical Model

A simple mathematical model was used to calculate the amount of strata compaction
resulting from a reduction in the piezometric head. The adopted model was a modified
version of that applied in the Europe-led Terrafirma project [10] and coalfields in Der-
byshire and Nottinghamshire [44]. It is used in order to analyse the relationship between
groundwater level and observed subsidence for London and NCT-Delhi.

This model was based on the effective stress principle proposed by Terzaghi [45],
which calculates the land deformation (subsidence or uplift) with respect to groundwater
change (decrease or increase). The model was treated as a homogeneous matrix, where
the initial bed thickness (b0) (m) was calculated as the depth from the surface to the
groundwater level at the start of the modelling epoch. As a formation was laid down and
subsequently overlain by more material, the geostatic pressure (p0) increases. The geostatic
pressure is resisted by a combination of the fluid pressure of the pore water (pw0) and the
intergranular (effective) stress (ps0) within the rock matrix [46].

p0 = ps0 + pw0 (1)

For an unconfined aquifer, the geostatic pressure is divided as ps0 (60%) and pw0 (40%),
and for a confined aquifer the geostatic pressure is divided as ps0 (75%) and pw0 (25%).
The stress transfer from the fluid to rock matrix per unit change in the piezometric head
is calculated at 10 kPa/m [47]. The geostatic pressure is calculated from the initial bed
thickness (b0) as:

p0 = 10 ∗ b0 (2)

The total difference in bed thickness (∆b), after an instantaneous change in effective
stress (∆ps), is calculated as a function of the coefficient of volume compressibility (mv)
and initial thickness (b0) as:

∆b = mv∗ ∆ps∗ b0 (3)

where (mv) can be defined as a function of the coefficient of compressibility (av) and the
initial void ratio (e0).

mv =
av

1 + e0
(4)

where (av) is the ratio of change in void ratio to effective stress

av =
∆e

∆ps
(5)

The initial void ratio and final void ratio (e1) can be related as follows:

∆e = e1 − e0 = −cc log
(

ps1

ps0

)
(6)

e0 =
no

1 + no
(7)

where (cc) is compressibility index, and (no) in initial porosity.
The model was constructed in R programming, where the compaction of each layer

(formation) was calculated using the above parameters and equations. The total amount of
compaction is the combined total of each formation compaction. Each of the formations
was assumed to contain a homogeneous matrix, and each assigned an average density and
initial porosity based upon sediment type and depth of burial [48]. For London, the initial
thickness of each formation was estimated using the London Basin 3D model constructed
using GSI3D [48]. For NCT-Delhi, it was obtained from the hydrogeological framework and
groundwater management plan of NCT-Delhi [49]. It is a layer-cake model which assumes
that each layer is uninform; thus, thickness and physical properties for each subsurface
layer are considered the same for all the locations of London, and for NCT-Delhi (Table 2).
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Table 2. Physical properties of sub-surface layers.

Location Formation Thickness (m) Void Ratio Porosity Compression Index

Delhi
Clay and Kankar 160 0.65 - 0.045
Silt and Kankar 45 0.55 - 0.0924

Sand 20 0.45 - 0.00525

London
Lambeth Group 11.98 - 0.35 0.0025

Thanet Sands 10.20 - 0.3 0.0015
Chalk Group 201.09 - 0.55 0.001

4. Results

Figure 3a,b displays the land displacement velocity map for London and NCT-Delhi
obtained using 95 and 99 Sentinel-1 SAR images, respectively. The movement of land in
the direction of sensor (uplift) and away from the sensor (subsidence) is represented by
positive (green colour) and negative values (red colour), respectively. Table 3 summarises
the statistics of the deformation results obtained.
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Both London and NCT-Delhi are heavily built-up urban areas and therefore prove
to be ideal sites for PSInSAR analysis. A coherence threshold of 0.50 was used for this
experiment, resulting in a PS density of 2607 PS/km2 for London and 1611 PS/km2 for
NCT-Delhi. For London, the land movement ranges between −24 and +24 mm/year, while
for NCT-Delhi, it ranges from −18 to +30 mm/year. An area can typically be considered
unstable if land movement is greater than ±10 mm/year [50]. For both these cities, even
though the land movement is stable on the whole (in terms of the mean deformation
rate shown in Table 3), it is predominantly spatially variable with distinct chunks of
displacement in the form of either uplift or subsidence. Even though the land movement
is small (mm-level), it is identifiable from the Sentinel data. These motions can likely be
attributed to groundwater variations, underground construction activities, or subsurface
geology, as discussed in Section 5.
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Table 3. Statistics of PSInSAR-derived subsidence.

Area Time-Period Area
(km2)

PS Coherence
Threshold

Used

Number of Permanent
Scatterers Obtained

(PS)

PS
Density

(PS/km2)

Mean Rate of
Deformation

(mm/Year)

Standard
Deviation
(mm/Year)

London
October 2016

to
October 2020

2607 0.5 14,327,370 5496 −0.08 1.34

NCT-Delhi
October 2016

to
October 2020

1611 0.5 7,764,180 4819 −0.04 1.70

For London, the groundwater data obtained from the Environment Agency report
represents groundwater level in meters above ordnance datum (mAOD). For NCT-Delhi,
groundwater measurements provided by the CGWB represent the depth to water level
from the surface. In groundwater maps for both the cities, depletion is represented by red
(negative values) and recharge by blue (positive values) (shown in Figures 4–9, explained
in Section 5). The change in groundwater levels varies between −35 and +20 m for London
and between −16 and +12 m for NCT-Delhi for the observed time-period (Tables 5–7,
explained in Section 5).

Several interesting features are identified from the Sentinel PSInSAR measurements
for both cities. These land movement features are discussed as case studies, the locations
of which are marked with black rectangular boxes in Figure 3. These include:

• Differential land motion areas: Northern Line Extension, London (L1-a,b in Figure 4)
and Magenta-Blue Metro Line, NCT-Delhi (D1-a,b in Figure 5).

• Subsidence areas: Wimbledon to Tooting, London (L2 in Figure 6) and Haryana-Delhi
Border, NCT-Delhi (D2-a,b,c in Figure 7).

• Uplift areas: Bruce Castle to Abney Park, London (L3 in Figure 8) and Rohini, NCT-
Delhi (D3 in Figure 9).

The results from the mathematical model used to compute the expected land move-
ment from an observed change in groundwater level for all the case studies (L1, D1, L2, D2,
and L3 and D3) are presented in Table 4. The 4-year average monthly change in the piezo-
metric head is given for each case study. The average land movement at each location was
calculated with this constant groundwater change rate. The land movement calculated at
each location using the model and that calculated using PSInSAR is shown in Table 4. The
difference in land deformation rate between the InSAR and modelled output is also shown.
The mean of this difference in deformation for London is −0.63 mm/year with a standard
deviation of 1.58, while that for NCT-Delhi is −0.55 mm/year with a standard deviation of
3.10 mm/year. The maximum and minimum difference in rate is 4.83 mm/year at D3 and
0.26 mm/year at L1-a, respectively.

Table 4. Comparison of land deformation from land subsidence and PSInSAR.

Area
Groundwater

Monthly Change
(m/Month)

Model Change
(mm/Year)

PSInSAR
Change

(mm/Year)

Difference in Rate
(Model-PSInSAR)

L1
L1-a −0.339 −3.18 −3.44 0.26
L1-b 0.313 2.94 4.55 −1.61

D1
D1-a −0.029 −7.79 −5.09 -2.7
D1-b 0.038 10.14 11.06 −0.92

L2 −0.401 −3.75 −4.87 1.12

D2
D2-a −8.770 −8.77 −5.28 −3.49
D2-b −0.012 −3.19 −4.37 1.18
D2-c −0.022 −5.97 −3.74 −2.23

L3 0.145 1.36 3.64 −2.28

D3 0.041 11.13 6.30 4.83
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5. Discussion
5.1. Differential Land Motion Areas

There are areas in London and NCT-Delhi where notable differential motion in the
form of subsidence observed in close proximity to uplift occurs. In the London area, this is
associated with the Northern Line extension (NLE) (Figure 4), while in the NCT-Delhi area,
this is near the Janakpuri-Dwarka Magenta-Blue Line metro stations (Figure 5). Table 5
summarises the statistics of land movement and groundwater change for both areas.

Table 5. Statistics of land uplift and groundwater augmentation for Northern Line Extension (London) and Magenta-Blue
Metro Line (NCT-Delhi).

Location
ID

Location
Name

Area
(km2)

No. of
PS

PS Density
(PS/km2)

Land Deformation
(mm/Year)

Groundwater
Change (m)

Max Min Mean St. Dev. Max Min Mean

L1-a NLE:
Battersea 0.68 7831 11,516 17.04 −22.71 −6.05 2.42 −9.40 −5.70 −8.15

L1-b NLE:
Kennington 0.54 6360 11,778 9.93 −10.26 4.55 1.37 10.61 6.20 7.52

D1-a Magenta-Blue
metro line: a 2.86 36,930 12,912 30.15 −18.49 −5.09 3.31 −2.32 −0.52 −1.38

D1-b Magenta-Blue
metro line: b 8.96 107,198 11,964 30.21 −18.69 11.06 4.61 +4.80 −1.16 +1.84

The NLE between Kennington and Battersea was proposed to help regenerate the
Vauxhall, Nine Elms, and Battersea areas and is scheduled to be completed by the end of
year 2021 [51]. Figure 4a shows the displacement velocity map obtained from Sentinel-1
images between October 2016 and October 2020. It highlights distinct subsidence and uplift
pattern near Battersea Power Station and Kennington, respectively. To help analyse these
patterns, the time series of surface deformation for both the uplifting and subsiding areas
were also extracted (Figure 4c,d).

The main tunnelling work of the NLE consisted of creating two tunnels between
Battersea and Kennington Park. The construction for the NLE began in July 2016 [51] and
required dewatering of the ‘deep’ aquifer, which includes the lower part of the Lambeth
group. The dewatering shafts for the NLE are located on the northern edge of Kennington
Park, and the location of the two main shafts required for placing the tunnel boring ma-
chines are shown in Figure 4a (black triangles). The geology of the area is relatively complex,
with several faults, buried hollows and laterally discontinuous superficial strata [51].

The underground construction work, tunnelling shafts, and groundwater extraction
contributed to the land motion pattern observed in this area. In Kennington, the average
land motion trend during the observed time-period is that of uplift (Figure 4a), which is
concurrent with the change in groundwater level (Figure 4b). However, the deformation
time series exhibits phases of both subsidence and uplift during this period (Figure 4c).
Specifically, the ground subsided during 2016–2017, before continuously uplifting since
November 2017. This motion corresponds to subsidence due to dewatering during the
construction of the tunnels, following by groundwater rebound (heave) once the dewatering
ceased in November 2017. Around Battersea Power Station, the time series (Figure 4d)
shows a linear trend of land subsidence between 2016 and 2020. The surface displacement
here is consistent with the decrease in the groundwater level during this period (Figure 4b)
and is most likely due to the groundwater abstraction that was undertaken to dewater
the locality for the NLE tunnelling [51]. The construction activities around Battersea
Power Station are still ongoing; hence, the groundwater extraction and associated ground
deformation can be seen to continue beyond the observed time-period.
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passing the Magenta-Blue Line metros (Figure 5a). The Blue Line metro is the longest 
metro line running on the Delhi metro network and was built in 2006 [52]. In Figure 5a, 
the area marked shows clear strong uplift sandwiched between Blue Line’s (phase 1) Ja-
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Figure 4. For Northern Line Extension: (a) PSInSAR land movement map, (b) groundwater change map, (c) time-series of
land uplift (L1-b), (d) time-series of land subsidence (L1-a), and (e) profile across A-A’ marked on (a). The black triangles in
(a), represents the location of the two main dewatering shafts required for placing the tunnel boring machine.
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A strong displacement gradient between Battersea Power Station and Kennington
Park can also be seen in the displacement profile A-A’ (Figure 4e). It reveals that the
area near the Battersea Power Station is experiencing subsidence of up to 6 mm (near A),
which gradually decreases in magnitude along the profile. The motion is reversed, close
to Kennington Park, with an uplift of >2 mm at point A’. There are numerous faults in
this area within the chalks [25], which could potentially compartmentalise the aquifer and
subsequently constrain the differential land movement within these segments.

Similar differential land movement can also be seen in NCT-Delhi in the area encom-
passing the Magenta-Blue Line metros (Figure 5a). The Blue Line metro is the longest metro
line running on the Delhi metro network and was built in 2006 [52]. In Figure 5a, the area
marked shows clear strong uplift sandwiched between Blue Line’s (phase 1) Janakpuri
East to Dwarka Mor stations on the north-eastern side, and Dwarka sector 14 to Dwarka
sector 10 stations on the south-western side. Moreover, the Magenta Line (line 8, phase 3),
a rapid transit system, passes through the intense part of the uplift area, where the under-
ground metro stations of Dabri Mor (South Janakpuri), Dashrathpuri, and Palam stations
are located. Most of the underground construction for these stations was completed by
September 2016, and these then became operational in May 2018 [53]. Dewatering in
the area ceased at the end of 2016, and so the consistent uplift observed here most likely
represents groundwater rebound.

In Figure 5a, the area marked on the northwest (D1-a) is a heavily built-up area and
contains buildings, roads, metro, temples, and other man-made structures. The area has
an extent of 2.86 km2 and contains 36,930 PS points. The average subsidence rate for the
region is −5.09 mm/year. It includes the built-up urban areas of Laxmi Vihar, Ranjan Vihar,
Shakti Vihar, Mahavir enclave, and important political buildings. The area also contains a
densely packed residential complex, and consequently groundwater is extracted to meet
the demands of the population, which could lead to subsidence [26]. The groundwater
variation agrees with the observed subsidence pattern on visual inspection (Figure 5a,b).
From Table 5, it can be seen that at L1-a, the average decrease in groundwater is 8.15 m,
causing a resulting average subsidence of 6.05 mm/year. On the contrary at L1-b, the
average increase in groundwater is 7.52 m, causing a resulting average subsidence of
4.55 mm/year.

Clearly, both cities have a complex pattern of land movement, which depends on
several factors, including natural processes such as compaction of deposits on the river
floodplain and anthropogenic instability due to water abstraction and recent engineering
works. The main cause of local land uplift was found to be groundwater rebound after
completion of underground activities, whilst that for land subsidence was groundwater
extraction. The relationship between ground motion rates and groundwater pumping
showed good agreement for both cities, in a qualitative sense based on visual comparison
of the maps (Figures 4 and 5), and in a quantitative sense based on the results in the Table 5.

5.2. Subsidence Areas

Areas where subsidence is dominant can also be seen in both London and NCT-Delhi.
The London area extends from Wimbledon to Tooting (Figure 6), while NCT-Delhi area lies
in the vicinity of Delhi-Haryana border (Figure 7). Table 6 summarises the statistics of land
subsidence and groundwater depletion for both of these areas.

In Figure 6a, the area marked (L2) is located in south London and mainly contains
urban built-up areas, which comprise construction, roads, metros, residential complexes,
and other man-made structures. The PSInSAR analysis of this area achieved a PS density of
11,261 PS/km2, with an average subsidence rate of−4.87 mm/year. The linear regression of
the time series for average land movement of the area (Figure 6c) has a negative slope (i.e.,
subsidence), with an R2 value of 0.8. The area contains the urban centres of Tooting, Colliers,
Dundonald Road, Wimbledon, and others. The London Clay Formation is predominant in
the area, and clays, silt, and sand of the Lambeth group are also present in small deposits.
More than 250 working borewells are present in the area [54], and the observed deformation
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pattern is mainly related to increased groundwater abstraction at these locations. Figure 6b
shows groundwater change between 2017 and 2020, which shows groundwater level
changes in the range of −5.97 to −13.7 m. In this area, water is abstracted from chalk up to
depth greater than 70 m, and the groundwater level was lowered by an average of 9.6 m
during the observed time-period.
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Table 6. Statistics of land subsidence and groundwater depletion for Wimbledon to Tooting (London) and Delhi-Haryana border
(NCT-Delhi).

Location
ID

Location
Name

Area
(km2)

Number
of PS

PS Density
(PS/km2)

Land Deformation
(mm/Year)

Groundwater
Change (m)

Max Min Mean St. Dev. Max Min Mean

L2 Wimbledon to
Tooting 7.71 86,822 11,261 22.89 −14.61 −4.87 1.19 −5.95 −13.79 −9.6

D2-a Delhi-Haryana
Border: a 1.65 13,444 8148 28.43 −18.71 −5.28 5.26 −9.46 −5.97 −7.77

D2-b Delhi-Haryana
Border: b 4.70 26,368 5610 30.19 −18.71 −4.37 7.71 −7.72 −4.87 −5.64

D2-c Delhi-Haryana
Border: c 0.40 4653 11,632 28.01 −18.71 −3.74 6.63 −1.46 −0.73 −1.06

The northwest edge of the area is bounded by the Wimbledon Fault. In this area, it
appears that faults parallel to the Wimbledon Fault are controlling the local subsidence
patterns, and groundwater movement [10]. It is also noteworthy that the width of the
Thames floodplain increases markedly downstream of the Wimbledon Fault, due to the
outcrop of the Holocene deposits. The author in [55] found that ground motions in this area
were attributed to groundwater abstraction from the Merton Abbey public water supply
well (green triangle in Figure 6a,b) during 1995–2005. This was further analysed in the
framework of the BGS Terrafirma project, via the production of the Terrafirma, London
H3 Modelled Product [10]. The study found striking correlation between variation in land
movement and groundwater change at the Merton Abbey public water supply well, where
the groundwater level dropped by 30 m enforcing subsidence of 0.5 mm/year.

The Wimbledon-Tooting area contains numerous underground metro stations where
groundwater extraction and construction activities are carried out for repair and mainte-
nance work. In addition, the area extends over only 7.7 km2 and has more than 250 active
boreholes clearly indicating that groundwater depletion is evident in this area. These are
the driving force for the subsidence pattern obtained, and groundwater depletion map is
consistent with the subsidence map.

A similar subsidence pattern can be seen in the vicinity of Delhi-Haryana border
marked in Figure 7a. The area, as a whole, lies to the south of Airport Express metro line
joining New Delhi to Dwarka sector 21. All three metro stations shown on Figure 7a (Delhi
Aerocity, IGI Airport, and Dwarka sector 21) are underground stations and opened in
2011 [52].

Additionally, the area under the three black boxes (D2-a, D2-b, and D2-c) in Figure 7a,
are heavily populated areas with a high population density of 20,000 person/km2 [56]. The
area D2-b, has a large population living on the borders of Delhi-Haryana, as these people
can use the benefits of a capital city without paying the heavy living expenses [57]. This
increased population exerts heavy pressure on the groundwater resources and leads to
groundwater depletion. The linear regression of the time series (Figure 7c) for average land
movement of the study area (D2-b, in Figure 7a) has a negative slope (thus subsidence), with
an R2 value of 0.87. Moreover, continuous underground construction work is being carried
out for extension of the metro lines [53]. The map of groundwater depletion (Figure 7b) is
consistent with that of subsidence maps, and so it can be reasonably concluded that the two
are directly interdependent. Overall, the subsidence pattern for both cities (London and
NCT-Delhi) is similar and interestingly controlled by the same factors, despite differences
in their bedrock geology.



Remote Sens. 2021, 13, 4741 14 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 23 
 

 

these locations. Figure 6b shows groundwater change between 2017 and 2020, which 
shows groundwater level changes in the range of −5.97 to −13.7 m. In this area, water is 
abstracted from chalk up to depth greater than 70 m, and the groundwater level was low-
ered by an average of 9.6 m during the observed time-period. 

The northwest edge of the area is bounded by the Wimbledon Fault. In this area, it 
appears that faults parallel to the Wimbledon Fault are controlling the local subsidence 
patterns, and groundwater movement [10]. It is also noteworthy that the width of the 
Thames floodplain increases markedly downstream of the Wimbledon Fault, due to the 
outcrop of the Holocene deposits. The author in [55] found that ground motions in this 
area were attributed to groundwater abstraction from the Merton Abbey public water 
supply well (green triangle in Figure 6a,b) during 1995–2005. This was further analysed 
in the framework of the BGS Terrafirma project, via the production of the Terrafirma, 
London H3 Modelled Product [10]. The study found striking correlation between varia-
tion in land movement and groundwater change at the Merton Abbey public water supply 
well, where the groundwater level dropped by 30 m enforcing subsidence of 0.5 mm/year. 

 

 

Figure 6. For Wimbledon to Tooting: (a) PSInSAR land subsidence map, (b) groundwater depletion map, and (c) time-
series of land subsidence (L2). The green triangle in (a,b) shows the location of Merton Abbey public water supply well. 

Figure 6. For Wimbledon to Tooting: (a) PSInSAR land subsidence map, (b) groundwater depletion map, and (c) time-series
of land subsidence (L2). The green triangle in (a,b) shows the location of Merton Abbey public water supply well.

5.3. Uplift Areas

The areas that experience notable uplift in London and NCT-Delhi are also evident.
The London area stretches from Bruce Castle to Abney Park (Figure 8), while the NCT-Delhi
area is across the Rohini metro line (Figure 9). Table 7 summarises the statistics of land
uplift and groundwater change for both these areas.

The area marked in Figure 8 is contains Holocene alluvium, and the uplift is ob-
served due to groundwater rebound arising from aquifer recharge for an area of 13.8 km2.
The InSAR results show an uplift of 3.64 mm/year based on a PS density of 10,895 PS/km2.
The linear regression line for the time series (Figure 8c) shows a positive slope (i.e., uplift),
with an R2 value of 0.6. Visually, the groundwater change map is consistent with the land
subsidence map. This area is a low-lying river flood plain with elevations between 2 and
14 mAOD. The bedrock geology is dominated by the London Clay formation, silt, and
sand of the Lambeth Group, whereas superficial deposits in the area consist mostly of
alluvium of the River Thames and River Lee. The area has several water reservoirs and
recreation parks, which assists with the recharge of groundwater. The recreation parks
include Clissold park, Abney park, Downhills park, Lordship recreation ground, and Bruce
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Castle park; and the reservoirs include East and West Reservoirs with Warwick and Lock-
wood reservoir in the area’s vicinity [57]. Seepage from the various water reservoirs and
artificial watering of the various recreation parks are the important contributing factors for
the increase in groundwater level, which is likely attributable for the land uplift observed.
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Table 7. Statistics of land uplift and groundwater augmentation for Bruce Castle to Clissold Park (London) and Rohini
(NCT-Delhi).

Location
ID

Location
Name

Area
(km2)

Number
of PS

PS Density
(PS/km2)

Land Deformation (mm/Year) Groundwater Change (m)

Max Min Mean St. Dev. Max Min Avg

L3 Bruce Castle to
Clissold Park 13.8 150,354 10,895 23.09 −20.54 3.64 1.21 8.28 −0.04 3.48

D3 Rohini 10.1 99,665 9867 29.49 −18.14 6.30 2.17 1.50 2.58 1.97
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Figure 8. For Bruce Castle to Abney Park: (a) PSInSAR land uplift map, (b) groundwater augmentation map, and
(c) time-series of land uplift for the whole area marked in box.

The area marked in Figure 9 shows the Rohini area, with the Red Line metro sta-
tions, which consists of the first stretch of the Delhi Metro. These stations were built in
phase 1 Red Line and opened in 2004 [52]. Figure 9a shows the displacement velocity map
obtained from Sentinel-1 PSInSAR analysis between October 2016 and October 2020 and
reveals distinct uplift with an average rate of 6.30 mm/year. The groundwater variation
map is visibly consistent with the pattern shown in the land deformation map, and the
time series also confirms continuous uplift. This is one of the wealthiest areas of Delhi city
and is subject to managed groundwater abstraction and recharge [58]. This has led to a rise
in groundwater level and the subsequent continuous uplift.

5.4. Modelling of Land Deformation due to Groundwater Change

The results discussed in Sections 5.1–5.3 establish that a reduction in groundwater
level can result in the compaction of strata and subsequent subsidence of the overlaying
terrain. Due to a change in hydrostatic pressure, the amount of compaction depends on the
rock matrix’s physical properties and the strata’s geological setting. A mathematical model
was constructed to calculate the expected land deformation owing to a given change in the
groundwater level.

The model requires input parameters of the change in groundwater level, the thickness
of underlying geological units, and geological characteristics (Table 2). The model is set to
run for any number of time steps, the size of which are defined by the rate of piezometric
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head reduction. As the model time-step is advanced, it recalculates the new formation
thickness, void ratio, and compaction. A monthly rate was found to be the best compromise
between time and resolution. For our study, two test cases were conducted using differing
temporal resolutions for the groundwater level fluctuation:

Case 1 required the model to be run using a 4-year average change in groundwa-
ter for all the locations studied above in London and NCT-Delhi. The 4-year average
was divided into monthly rates for each location, and the model was run for the 4-year
(48 months) duration.

Case 2 focused on a single location at Battersea Power Station, London. Here, monthly
rates of head fluctuation were used, based upon levels measured at a groundwater pumping
station. The model was tested only for one location in London since continuous monthly
groundwater variations for other locations could not be obtained.
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The results obtained from case 1 are summarised in Table 4. The difference in land-
surface deformation rate calculated using the model and measured using PSInSAR varied
between 0.26 and 4.83 mm/year. The correlation between both methods is shown in
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Figure 10. The deformation rates from both the methods have R2 value of 0.881, indicating
a very high rate of correlation, thus validating the model and PSInSAR results. It also
confirms confirm quantitatively that the observed deformation is directly associated with
changes in the groundwater level.
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Figure 10. Correlation between the modelled and PSInSAR measured land-surface deformation.

For the Battersea case, the monthly groundwater fluctuation was obtained for 4-year
period between October 2016 and November 2020. The piezometric head exhibited a
constant decrease in groundwater levels. The compaction predicted by the model over
the 4-year pumping period for Battersea is given in Figure 11. As no time-lag constant
was used, the modelled variation in compaction rate varies considerably on a monthly
scale, in-line with the groundwater levels that were input. August 2016 was used as the
datum for the groundwater change and compaction rates. The land movement from two
different datasets is interestingly very similar. Direct comparison of the motion rates is
not possible since the dates when groundwater levels were measured and the radar scenes
were acquired are not coincident. Statistically, the two datasets are very similar; the average
rate of motion for the PSInSAR is −6.05 mm/year and for the modelled motions it is
−5.51 mm/year, which is a difference of just 0.54 mm/year. The small difference between
the modelled deformation for a given groundwater level (using either case 1 or 2) and the
actual measured deformation (from PSInSAR) adds confidence to the argument that the
observed motion is indeed primarily associated with the groundwater change.
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6. Conclusions

In this study, we examined the land movement pattern for London and NCT-Delhi
during 2016–2020 using the PSInSAR methodology, and sought to establish the factors
governing this land movement. Both cities were found to have experienced long-term,
complex, non-uniform patterns of land motion in the spatial and temporal domains. We
analysed different types of site-specific movement of uplift, subsidence, and differential
motion, along with the corresponding groundwater variations. Across both the cities and
all types of movement, the most common factor controlling the spatial patterns of land
motion was the change in groundwater level. It can be concluded that when groundwa-
ter is extracted from an aquifer, it leads to land subsidence. Conversely, a rebound or
recharge of groundwater leads to land uplift. NCT-Delhi has been declared as a ground-
water critical zone by the government of India. It is one of the most exploited cities with
regards to groundwater owing to its urban fabric and ever-increasing population, and
these results offer confirmation of that. London is not recognised by a critical status, but its
ever-increasing population and government’s aquifer recharge policy exerts local pressure
and this is borne out by results shown for areas L1-a and L2. Along with the groundwa-
ter extraction and recharge, sub-surface geology, underground construction, and metro
extensions all contribute to form a complex land movement pattern.

The results obtained from the mathematical model agree well with our PSInSAR
results. The formations are considered homogeneous, and the water removal is considered
as a rate of piezometric head reduction (m/time) and not a quantity removed (m3), and
the time-lag constant was not considered in the model. It is however possible to apply
the time-lag constant to the output after the model if an approximation of the time-lag
is required. The accuracy of the model relies on the accuracy of the groundwater level
input, and with actual observed groundwater data, the model could be verified for other
locations as well. Since, the model is able to estimate the land-surface deformation rate
and pattern for a known groundwater level change, it could be useful for assessing and
mitigating risks associated with ground deformation.

Whilst the two cities are superficially different in terms of civil engineering, the
response of their groundwater to engineering decisions (such as underground metro
construction) and how that is reflected in change in surface-level tells a similar story. This
suggests that it may be a universal effect, which we might anticipate observing in other
major cities worldwide, which are subjected to similar engineering decisions. Some InSAR
deformation relating to groundwater results have been presented before for London, but
not in NCT-Delhi. The purpose of the paper was to demonstrate that a groundwater and
subsidence inter-relationship generally holds true. This study can serve as a guideline to
government agencies in identifying the areas and extent of groundwater-induced land
subsidence, and to take proper steps to mitigate them.
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