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Abstract: Instance segmentation for high-resolution remote sensing images (HRSIs) is a fundamental
yet challenging task in earth observation, which aims at achieving instance-level location and pixel-
level classification for instances of interest on the earth’s surface. The main difficulties come from the
huge scale variation, arbitrary instance shapes, and numerous densely packed small objects in HRSIs.
In this paper, we design an end-to-end multi-category instance segmentation network for HRSIs,
where three new modules based on adaptive and dynamic feature learning are proposed to address
the above issues. The cross-scale adaptive fusion (CSAF) module introduces a novel multi-scale
feature fusion mechanism to enhance the capability of the model to detect and segment objects with
noticeable size variation. To predict precise masks for the complex boundaries of remote sensing
instances, we embed a context attention upsampling (CAU) kernel instead of deconvolution in the
segmentation branch to aggregate contextual information for refined upsampling. Furthermore,
we extend the general fixed positive and negative sample judgment threshold strategy into a dynamic
sample selection (DSS) module to select more suitable positive and negative samples flexibly for
densely packed instances. These three modules enable a better feature learning of the instance
segmentation network. Extensive experiments are conducted on the iSAID and NWU VHR-10
instance segmentation datasets to validate the proposed method. Attributing to the three proposed
modules, we have achieved 1.9% and 2.9% segmentation performance improvements on these two
datasets compared with the baseline method and achieved the state-of-the-art performance.

Keywords: remote sensing images; instance segmentation; object detection; multi-scale fusion;
context attention; sample selection

1. Introduction

With the development of earth observation technologies, a large number of high-
resolution remote sensing images (HRSIs) are available, raising the high demands of
automatic image analysis by intelligent means [1–10]. The ways to interpret remote sensing
images, e.g., object detection, instance segmentation, etc., have recently attracted much
attention. Instance segmentation for HRSIs aims at accurately detecting the location of
the objects of interest (e.g., vehicles, ships, etc.) in the image, predicting their categories
and classifying each instance at the pixel level. It is conducive to the automatic analy-
sis and utilization of the spatial and spectral information of HRSIs, which has a wide
range of applications in earth observation, e.g., disaster estimation, urban planning, traf-
fic management, etc.

Recently instance segmentation has been extensively studied based on deep learn-
ing both for natural images and aerial images [1,3–5,9,11–24]. The generic instance seg-
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mentation methods for natural images can be roughly divided into detection-based and
segmentation-based approaches from the point of view of top-down and bottom-up
schemes, respectively. The detection-based methods first find out the bounding boxes of the
instances of interest through an advanced object detector such as Fast-RCNN [25], Faster-
RCNN [26], and R-FCN [27]. Then they perform semantic segmentation in the detection
boxes to segment the mask for each instance. Early work [28–32] adopted mask propos-
als to perform category-agnostic object segments. FCIS [33] uses the position-sensitive
inside/outside score maps for instance-aware semantic segmentation with the help of
fully convolutional network (FCN) [34]. Mask-RCNN [11] inherits the classification and
regression structure from Faster-RCNN [26] and adds a fully convolutional mask branch
to predict the category of each pixel. Inspired by Mask-RCNN, [12–15] introduce differ-
ent designs and structures to refine mask prediction for two-stage instance segmentation.
HTC [16] integrates the cascade method into joint multi-stage processing and uses spatial
context to further improve the accuracy of segmented masks. YOLACT [35] adds the mask
branch to an existing one-stage target detection model, which realizes real-time instance
segmentation with competitive results reported by two-stage methods on the MS COCO
dataset [36] for the first time. BlendMask [17] combines the instance-level information
(such as bounding boxes) and the per-pixel semantic information for mask prediction.

The segmentation-based methods first perform the pixel-level prediction on the
image and then use a clustering algorithm to group the pixels into different instances.
Bai et al. [37] and Hsu et al. [38] applied the traditional watershed transform and the pair-
wise relationship between pixels to perform pixel-wise clustering. Liu et al. [39] employed
a sequence of neural networks to handle the problems of occlusion and large differences
in the number of objects in instance segmentation. Neven et al. [40] proposed a new loss
function to achieve real-time instance segmentation with high accuracy. PolarMask [41]
models the instance contours in a polar coordinate and transforms the instance segmen-
tation into center point classification and dense distance regression tasks. While [42,43]
adopt the location and size information to assign category labels for each pixel within an
object, which converts the instance segmentation into a pixel-wise classification problem.

Benefiting from the vigorous success in natural images, the research of instance seg-
mentation for HRSIs has made great progress in recent years. However, Limited by the lack
of aerial instance segmentation datasets, previous instance segmentation methods [1,3–5,9]
mainly focused on some or other specific categories, such as ship, vehicle, and building.
Since Su et al. [19,20] extended the NWPU VHR-10 object detection dataset [44–46] for
instance segmentation and the release of the first large-scale instance segmentation dataset
named iSAID [47] in the field of aerial imagery, researchers began to turn their attention
to multi-category instance segmentation for HRSIs. Su et al. [19] designed the precise RoI
pooling incorporated into Mask-RCNN to improve the performance of object detection and
instance segmentation in aerial images. HQ-ISNet [20] introduces the HRFPN to reserve
high-resolution features of HRSIs and utilizes the ISNetV2 to predict more accurate masks.
Ran et al. [21] proposed an adaptive fusion and mask refinement (AFMR) network to learn
complementary spatial features and conduct the content-aware mask refinement. CPIS-
Net [23] presented a novel adaptive feature extraction network and a proposal consistent
cascaded architecture to boost the integral network performance. Zhang et al. [22] proposed
a Semantic Attention (SEA) module to alleviate the background interference, and they
modified the original mask branch to ameliorate the under-segmentation phenomena.

Remote sensing images are usually taken from a high altitude with the bird’s-eye view
depending on the perspective of the earth observation platforms. The particular imaging
platforms and various kinds of objects lead to some distinctive characteristics of instances
presented in HRSIs, such as large scale variation, complex contours, and dense block
distribution, as shown in Figure 1. These three issues are the main difficulties complicating
the instance segmentation task of HRSIs. This paper specifically focuses on the problems
of instance segmentation in HRSIs, which is challenging mainly due to the following
three aspects:
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(a) (b) (c)

Figure 1. Characteristics of objects in HRSIs. (a) There are huge scale variations among different
planes. (b) Harbors present complex boundaries. (c) Densely packed ships appear in the marina.
Notice the size gap among objects in the three scenes and the shape differences among the harbors
of (b,c).

Huge scale variation. The intra-class and inter-class scale variation among objects in
remote sensing images are much more significant than those in natural images. It will in-
crease the difficulty of feature learning in deep neural networks to a great extent. A general
solution to this problem is adopting multi-scale feature extraction and fusion, which has
been used in [11,14,15,48–52]. However, these multi-scale feature pyramid based meth-
ods such as feature pyramid network (FPN) usually assume that large objects should be
represented by high-level features, while small objects should be associated with shallow
features. The inconsistency across multi-scale feature maps limits their capability both in
object detection and instance segmentation when the scale of objects changes too sharply.
Liu et al. [13] proposed a bottom-up path aggregation strategy by using accurate low-level
locating information to enhance the feature representation entirely. However, this fixed
fusion mechanism does not fully explore the self-learning merit of neural networks. There-
fore, it is important to design adaptive feature fusion methods for the combination of useful
information at different levels.

Objects with arbitrary shapes. There are numerous objects with arbitrary shapes in
HRSIs, such as ships, harbors, helicopters. Since instance segmentation requires to achieve
pixel-level accurate classification, these irregular shapes will bring significant challenges
to the segmentation task. Zhao et al. [4] attempted to use building boundary regular-
ization to deal with the complex boundary segmentation of buildings. Cheng et al. [5]
constructed an energy map in polar coordinates, and then minimized the energy function
to evolve the polygon outlines, thereby achieving accurate automatic building segmen-
tation with arbitrary shapes. Limited by the dataset, [4,5] are only for single category
segmentation. As for multi-class segmentation, Huang et al. [14] improved their results by
using the mask-IoU score to correct the misalignment between the mask quality and mask
score. Kirillov et al. [15] converted the instance segmentation into a rendering problem
and obtained more nuanced mask predictions on the object contours through an iterative
subdivision algorithm. However, current methods ignore the impact of feature upsam-
pling operators when predicting the precise masks. The most widely used bilinear and
nearest neighbor interpolation only take the sub-pixel neighborhood into consideration,
and the deconvolution operation utilizes the same upsampling kernel across the entire
image. These immutable upsampling operators fail to take full advantage of the contextual
semantic information required by complex boundary segmentation.

Densely packed small objects. Cities and ports commonly contain considerable densely
distributed small objects in aerial images. Since the size of these small objects is only a few
to a dozen pixels and they always distribute in blocks, the close arrangements will lead to
mutual interference among themselves whether in detection or segmentation. Mou et al. [1]
proposed a semantic boundary-aware unified multitask learning ResFCN for vehicle in-
stance segmentation. Feng et al. [3] improved the detection and segmentation performance
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of small dense objects via implementing multi-level information fusion on the mask pre-
diction branch. Another solution is to improve the quality of the candidate proposals
which are important for the subsequent detection and segmentation. Most detection-based
instance segmentation methods adopt a hard threshold to divide positive and negative
samples. However, simply using a constant IoU threshold as the criterion to separate
training samples is not sufficient. As illustrated in [53–55], the dynamic sample selection
strategy can solve the incompatibility between the hard threshold settings and the dynamic
training process. For that reason, the network can generate candidate boxes of higher
quality to facilitate subsequent localization and pixel-wise classification.

In this paper, we design an end-to-end multi-category instance segmentation network
for HRSIs, where three key modules based on adaptive and dynamic feature learning
are proposed to address the above three problems. Firstly, a cross-scale adaptive fusion
(CSAF) module is proposed to integrate the multi-scale information, which can enhance
the capability of the model to detect and segment objects with obvious size variation.
Secondly, to deal with the complex boundaries of remote sensing instances, we embed
a context attention upsampling (CAU) module in the segmentation branch to get more
delicate masks. Thirdly, we devise a Dynamic Sample Selection (DSS) module to select
more appropriate candidate boxes, especially for densely packed small objects. We evaluate
the proposed method on two public remote sensing datasets.

The main contributions of this paper can be summarized as:

• We propose the CSAF module with a novel multi-scale information fusion mechanism
that can learn the fusion weights adaptively according to different input feature maps
from the FPN.

• We extend the original deconvolution layer into the CAU module in the segmenta-
tion branch which can obtain more refined predicted masks by generating different
upsampling kernels with contextual information.

• Instead of the traditional fixed threshold for determining positive and negative sam-
ples, the DSS module employs a dynamic threshold calculation algorithm to select
more representative positive/negative samples.

• The proposed method has achieved state-of-the-art performance on two challenging
public datasets for instance segmentation task in HRSIs.

The rest of this paper is organized as follows. Section 2 describes the proposed method
in detail. The experimental results and analysis are reported in Section 3. Section 4 gives
some discussions about the proposed method. Finally, we draw a conclusion in Section 5.

2. Methodology

For instance, segmentation, we take PANet [13] as a strong baseline for the outstand-
ing performance in aerial images by following the benchmark paper [47]. The overall
framework of the proposed method is depicted in Figure 2. The Resnet-FPN backbone
is used to extract multi-scale feature maps from an input image. Then we adopt the
cross-scale adaptive fusion (CSAF) module to automatically fuse semantic information
across multi-level feature maps. The RPN-based dynamic sample selection (DSS) module
is employed for candidate proposals generation. We extend the general fixed positive
and negative sample judgment threshold in the region proposal network (RPN) into a
dynamic threshold selection strategy to choose high-quality training samples. Finally,
the proposals are sent to the bounding box branch for object detection and to the mask
branch for instance segmentation where a context attention upsampling (CAU) module
is embedded for upsampling. In this section, we describe the three proposed modules
in detail.
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Figure 2. The network structure of the proposed method, which is based on the architecture of PANet and adds the
cross-scale adaptive fusion (CSAF) module for multi-scale feature map fusion, context attention upsampling (CAU) module
to refine mask prediction and dynamic sample selection (DSS) module to select suitable positive/negative samples.

2.1. Cross-Scale Adaptive Fusion

Most state-of-the-art methods attempt to cope with objects across a wide range of
scales via constructing a multi-level feature pyramid [11,13,15,49,56]. The commonly used
fusion method is manually setting the fixed fusion weights through a sum or concatenation
operator. Different from this way, we design a cross-scale adaptive fusion (CSAF) module
to enable the network to learn the fusion weights across feature layers of different levels
autonomously. Inspired by [57], we propose a fully connected fusion mechanism between
the top-down and bottom-up paths in the PANet. It can adaptively search the optimal
fusion operation by adjusting the spatial fusion weights according to the specific pyramidal
feature maps. The structure of the cross-scale adaptive fusion module is shown in Figure 3.

2P

3P

4P

5P

2P̂

3P̂

4P̂

5P̂

2O

3O

4O

5O

Figure 3. The structure of proposed cross-scale adaptive fusion module. For each pyramidal feature
map, the others are rescaled to the same shape and then spatially fused together according to the
learned fusion weights.

Given an input image, the ResNet-FPN backbone extracts the multi-level features and
that are sent to the cross-scale adaptive fusion module. We denote the feature map at level
l(l ∈ {2, 3, 4, 5} in FPN) as Pl . Since the size of these feature maps from FPN is inconsistent,
for each level l, we need firstly resize the features maps Pn at all other levels n to the same
size as Pl . During the process of resizing, we use the nearest neighbor interpolation
to enlarge the feature maps. However, the downsampling method can be a bit more
complicated. When the resizing scale is 1/2, we employ a 2-stride max pooling operation
directly; for 1/4, we adopt the combination of a max pooling layer and a convolution layer
whose kernel size is 3× 3 with the stride of 2; and when the scale is 1/8, two consecutive
max pooling layers and a two-stride 3× 3 convolution are used. After the rescaling step,
we further depict the feature fusion mechanism in Figure 4.
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Figure 4. Illustration for the cross-scale adaptive fusion mechanism. Here we take the fusion to the
target layer P̂4 for example.

To formulate our method, we denote Pl as the target feature for rescaling and fusion
and the other features Pn at level n as the source feature maps. For the feature maps rescal-
ing from source level n to target level l, the feature vector at location (i, j) is Pn→l

ij . The core
of this mechanism is that the network can learn the appropriate fusion weights according
to the input multi-scale feature maps adaptively. We firstly use an 1× 1 convolution layer
to compute the weight scalar maps λn,l from P2→l , P3→l , P4→l and P5→l , which indicates
that λ can be learned through standard back-propagation. Then a softmax function is
resorted to normalize these weight maps to obtain the fusion scores. We define the final
fusion scores α as follows:

αn→l
ij =

eλn→l
ij

∑5
k=2 eλk→l

ij
, (1)

where αn→l
ij are the outputs of the softmax function with λn→l

ij as control parameters,

respectively. Notice that αn→l
ij are shared by all channels at location (i, j) and they are

simple scalar variables and ∑5
n=2 αn→l

ij = 1. Finally, the fused feature map at target level l
can be computed as:

P̂l
ij =

5

∑
n=2

αn,l
ij · P

n→l
ij , (2)

where P̂l
ij implies the (i, j)-th vector in the output feature maps P̂l across channels. αn,l

ij
refers to the fusion weights for the feature maps between the source level n and the target
level l.

Through the proposed learning mechanism, we can get the output fused feature maps{
P̂2, P̂3, P̂4, P̂5

}
. We denote the final output feature maps as {O2, O3, O4, O5}, which will

be sent to the following RPN for proposal generation. Each feature map Oi(i ∈ {3, 4, 5})
is obtained from the fused feature P̂i and a higher resolution feature map Oi−1 through
lateral connection and a 0.5× downsampling. The fusion of these two feature maps is a
simple addition operation, which is consistent with the bottom-up path in the original
PANet. Additionally, O2 is simply P̂2 without any operation. Through the bottom-up
pathway, we integrate the cross-scale fused features into the information flow of PANet.
Thus, the semantic information from high-level feature maps is cross linked to the small
objects, while the location information from shallow feature pyramids can also be used for
the detection and segmentation of large instances.

2.2. Context Attention Upsampling

HRSIs contain many instances with complex boundaries which makes it difficult to
achieve pixel-level classification and limits the final segmentation performance. It is mainly
because that the network has lost the detailed information of the object boundaries after
multiple downsampling operations. However, existing conventional upsampling methods
cannot completely recover these lost details. In PANet, the output of mask predictions is
obtained from 14× 14 RoI features and a deconvolution layer is employed to upsample
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them by 2×. Yet this deconvolution layer uses the fixed upsampling kernel across the
whole image, paying no attention to the semantic characteristic of specific proposals.
In this paper, we replace the deconvolution operation with a context attention upsampling
(CAU), where the upsampling kernel can be adaptively generated according to different
contextual information.

The pipeline of proposed CAU module is dipicted in Figure 5. We denote the RoI
feature map Ψ from RoIAlign operation as the source feature and the upsampled feature
map Ψ′ as its corresponding target feature in CAU. The width and height of Ψ are W and
H, and we denote the number of its channel as C. With an upsampling scale η, the size
of the RoI feature map is upsampled from W × H × C to ηW × ηH × C. Firstly, we use
an 1× 1 convolution layer to compress the channel of Ψ, whose output feature shape is
referred to W × H × C f . The fewer number of channels implies fewer parameters and
less computational cost during upsampling. Compressing the channel from C to C f will
not lead to performance decline while being more efficient. It can be inferred that each
position p = (i, j) on Ψ corresponds to a size of η× η target region p′ = (η × i, η × j) on Ψ′.
Instead of using the fixed sampling kernel, a context aware kernel is designed for feature
reassembly, whose size is denoted as kup × kup. Since the upsampling kernel is dynami-
cally generated by the contextual semantic feature map of each location, the shape of the
final predicted kernel map for the whole feature map can be written as ηW × ηH × kup

2.
We adopt a 3× 3× Cup (Cup = η × η × kup

2) convolution layer to encode the compressed
feature map and a shuffle operation to generate such upsampling kernel on-the-fly. Af-
terward, we utilize a softmax function for spatial normalization on the rearranged kernel
feature map. The reason for normalization is to ensure the sum of kernel values equal to 1,
which will not change the mean values of the feature map. Finally, we integrate the input
RoI feature and the upsampling kernel, thus the target feature Ψ′p′ on position p′ can be
denoted as

Ψ′p′ =
r

∑
n=−r

r

∑
m=−r

ωp′(n,m) ·Ψ(i+n,j+m), (3)

where r = kup/2 and ωp′(n,m) is the upsampling kernel generated by the above steps. (i, j)
denote the original position on RoI feature Ψ.
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Figure 5. Illustration of the context attention upsampling. A feature map Ψ with size W × H × C is
upsampled by a factor of η to the output feature map Ψ′. Here we take η = 2 for example.

With the adaptive sampling kernel, the RoI feature map is upsampled in a con-
text attention manner and retains much more instance-specific semantic information [58].
As shown in Section 3.5, our mask prediction is much more accurate, especially for instances
with complex boundaries.
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2.3. Dynamic Sample Selection

How to separate positive and negative samples accurately is a noteworthy problem in
both of object detection and instance segmentation tasks. The most widely used strategy
is to set a hard threshold for the IoU between the anchor bounding box and that of the
corresponding one of ground truth. When the IoU is higher than the threshold, the anchor
box will be assigned a positive label; otherwise, it will be assigned a negative label. Taking a
binary classification loss for simplicity, the paradigm can be formulated as follows:

label =


1, i f maxIoU(a, G) ≥ t+,
0, i f maxIoU(a, G) < t−,
−1, otherwise.

(4)

Here a stands for a anchor bounding box, G represents the set of ground-truths, t+ and
t− are the positive and negative threshold for IoU. Labels of 1, 0,−1 stand for positives,
negatives and ignored samples, respectively. As for RPN in Faster R-CNN, t+ and t− are
set to 0.5 by default. So the definition of positives and negatives is essentially pre-set.

In HRSIs, many instances like vehicles and ships present a densely packed distribu-
tion. As shown in Figure 6, a region proposal may contain several instances with similar
appearances. These adjacent instances can be background interfering noises when ex-
tracting accurate features for a certain instance, which increases the difficulty of selecting
positive and negative samples. Using manually set and fixed sample judging thresholds
adopted by most classic methods is not suitable for remote sensing images because there
are a large number of densely packed instances with complex and irregular boundaries.
Thereby, we propose a dynamic sample selection (DSS) module with a novel positive and
negative samples selection strategy and a constrained IoU calculation method. It works to
assign positive and negative samples dynamically, improve the quality of positive samples,
reduce the interference between adjacent instances, and alleviate the pressure of coordi-
nate regression. The DSS finally enhances the performance of both object detection and
instance segmentation.

Figure 6. The mutual interference among densely packed instances. There can be multiple objects in
a candidate bounding box (as shown in the red box in the figure). These neighboring objects that
have similar appearances and structures can be considered as interference noise during locating and
classification, which affects the prediction results of the network.

2.3.1. The DSS Strategy

The proposed dynamic scheme is applied in the process of generating positive can-
didate samples, replacing the original simple IoU threshold filter strategy. Specifically,
given an input image, we denote the set of ground-truth boxes as G and the number of
feature maps as l. The sets of all anchor boxes and anchor boxes on the ith (i ∈ {1, 2, · · · , l})
feature level are written as A and Ai, respectively. For each ground-truth box g ∈ G, we
first compute the distances between the center of each anchor box in Ai and the center of
g from feature pyramid level 1 to level l. The top-k closest anchor boxes are labeled as
the set of candidate positive samples Ci belonging to g on level i. Then each ground-truth
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box will have k × l candidate positive samples in total. Secondly, we compute the IoU
between the candidates set and their corresponding ground-truth box g. The IoU set is
denoted as Dg whose mean and standard deviation are mg and vg. After that, a dynamic
IoU threshold for g is computed as tg = mg + vg. Finally, according to the label assignment
rule of object detection in Equation (4), the proposed adaptive training sample selection
can be formulated as follows:

label =

{
1, i f IoU(c, g) ≥ tg,
0, i f IoU(c, g) < tg.

(5)

where g represents the ground-truth box, c stands for a candidate positive sample of Ci
whose center is in g, and tg is the dynamic threshold for IoU. 1 and 0 stand for the positive
and negative samples. Additionally, if an anchor box is assigned to multiple ground-truth
boxes, the one with the greatest IoU will be selected.

2.3.2. Constrained IoU Calculation

The common IoU for comparing similarity between two boxes is computed by:

IoU(c, g) =
|c ∩ g|
|c ∪ g| . (6)

In order to obtain high-quality positive samples, we add a penalty item on the basis of
IoU. It is defined as:

IoUp(c, g) = IoU(c, g)− ∆, (7)

∆ =
|R\(c ∪ g)|
|R| . (8)

Here, c denotes a candidate positive sample, g is the corresponding ground-truth box, R rep-
resents the smallest rectangle enclosing them, and ∆ stands for the proposed penalty item.

The calculation process of ∆ is illustrated in Figure 7. We first find the minimum en-
closing rectangle R of the candidate positive sample c and its ground-truth box g. Then we
calculate the area occupied by R excluding c and g, which next divide by the total area of
R. This represents a normalized measure that focuses on the empty area in the minimum
enclosing rectangle of c and g. Finally, the constrained IoU is attained by subtracting this
ratio from the IoU value. The value range of IoUp is within (−1, 1]. When the candidate
sample coincides with its ground-truth box, IoUp equals to IoU. When the two are far
apart, IoUp approaches−1. IoUp holding the property of IoU such as insensitivity for scale
variety, and can reflect the relative position between the candidate positive sample and
ground-truth box. As shown in Figure 8, the relative positions of the candidate positive
sample and the ground-truth box in Figure 8a,b are different while their IoU are the same.
We are not able to judge which candidate sample is better according to IoU. However,
if we use the IoUp as the criterion, the candidate box in (a) is superior than that of (b).
The coordinate regression difficulty of the candidate positive sample in Figure 8a is lower
than that in Figure 8b, and we only need to regress the horizontal axis in (a). From this
perspective, the proposed constrained IoUp is able to distinguish the two candidates and
more suitable than the original IoU.
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Figure 7. The calculation process of penalty item. The yellow box and the light blue box denote the
candidate positive sample and its corresponding ground-truth box. The blue dashed box R represents
their minimum enclosing rectangle.
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Figure 8. The differences between IoU and IoUp. The candidate box c of (a) is placed parallel to the
ground-truth g, while that of (b) is placed in a misplaced position. Although the IoU of (a,b) is the
same, their difficulty of coordinate regression is different.

3. Experiments
3.1. Datasets Description

We evaluate the proposed method on two public remote sensing datasets: the iSAID [47]
and the NWPU VHR-10 instance segmentation dataset [19,20].

iSAID: The iSAID [47] dataset released in 2019 is the first benchmark dataset for
the multi-category instance segmentation in aerial imagery that contains object-level and
pixel-level annotations. It consists of 2806 remote sensing images with size ranging from
800 to 13,000 in width. There are totally 655,451 instances annotated in 15 categories
including plane (PL), ship, storage tank (ST), baseball diamond (BD), tennis court (TC),
basketball court (BC), ground track field (GTF), harbor (HB), bridge (BR), large vehicle
(LV), small vehicle (SV), helicopter (HC), roundabout (RA), swimming pool (SP) and
soccer ball field (SBF). For dataset splitting, half of the images are used for training,
1/6 images for validating, and 1/3 for testing. When the input image size is too large,
the computational complexity of the network will rise sharply, which will bring a great
burden to the computing device. Therefore, following the iSAID benchmark paper [47],
we crop the original images into 800× 800 patches with the stride of 200 pixels. After the
data preprocessing, the number of images for the training set, validation set and test set are
28,029, 9512, and 19,377, respectively. We evaluate our model both on the iSAID validation
set and its test set. Since the ground-truth annotations of the test set are not available,
the results are tested on the official evaluation server [59]

NWPU VHR-10 Dataset: The NWPU VHR-10 dataset [44–46] is a geospatial object de-
tection dataset and was extended by Su et al. [19,20] for instance segmentation. It contains
650 positive images (the image contains at least one object) and 150 negative images (the im-
age does not contain any object) with the sizes ranging from 533× 597 to 1728× 1028 pixels.
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In the positive image set, 757 airplanes (PL), 302 ships (SH), 655 storage tanks (ST), 390 base-
ball diamonds (BD), 524 tennis courts (TC), 159 basketball courts (BC), 163 ground track
fields (GTF), 224 harbors (HB), 124 bridges (BR), and 477 vehicles (VC) were manually
annotated with bounding boxes and instance masks for ground truths. In consistence
with previous studies [19,20,22,23], we randomly divide the original positive images into
two parts: 70% for the training set and 30% for the test set which include 454 images and
196 images, respectively.

3.2. Evaluation Metrics

We use the standard COCO metrics [36] for evaluation: AP (averaged over IoU thresh-
old from 0.5 to 0.95 with stride of 0.05), AP50 (IoU threshold is 0.5), AP75(IoU threshold
is 0.75), APS, APM and APL, where S, M and L represent small (0 < area < 322 pixels),
medium (322 < area < 962 pixels) and large objects (area > 962 pixels), respectively.
Considering the significant scale difference between HRSIs and natural images [22,23,47],
we set the area range of different instances for the iSAID dataset by following its bench-
mark paper [47]. Specifically, the area of small instances ranges from 102 to 1442, medium
instances range from 1442 to 5122 pixels and large instances range from 5122 and over.
In addition, we use APseg and APbb to represent the experimental results of mean average
precision of instance segmentation and object detection in Section 3.4.

3.3. Implementation Details

For fair comparisons, all experiments are implemented on PyTorch framework and
the hyper-parameters are basically the same as the settings in PANet [13,47]. We use
ResNet-FPN as the backbone network and RPN to generate candidate object proposals.
Our models are trained on 2 NVIDIA Tesla V100 GPUs with the batch size of 4 for 180 k
iterations. The initial learning rate is set as 0.025 and decreased by a factor of 10 at 120 k
and 160 k iteration. Besides, we adopt the SGD for training optimization using the weight
decay of 0.0001 and the momentum of 0.9. As large scale variation exists among aerial
images, we use scale augmentation for the training set at five scales (1200, 1000, 800,
600, 400). For the testing phase, the test images are resized to 1000 pixels on the long
side. Considering the number of objects in HRSIs is much larger than in natural images,
during evaluation, we set the number of detection boxes as 1000 instead of 100 by default.
The source code is available on the website [60].

3.4. Quantitative Results
3.4.1. Results on iSAID

As shown in Tables 1–5, we report the quantitative results achieved by PANet baseline
and the proposed method for instance segmentation and object detection tasks on iSAID
validation and test sets. We also compared our results with that of those state-of-the-art
methods including BlendMask [17], PointRend [15], D2Det [51], etc., for validation.

Table 1. Overall results of instance segmentation and object detection on iSAID validation set.

Method APseg APseg
50 APseg

75 APseg
S APseg

M APseg
L APbb APbb

50 APbb
75 APbb

S APbb
M APbb

L

Mask R-CNN [11] 35.4 57.7 37.8 37.4 50.0 53.0 40.4 62.3 44.3 42.6 48.4 62.4
PANet [13] 38.2 62.4 41.0 40.4 51.9 55.5 43.2 66.0 47.6 45.5 49.4 58.4

BlendMask [17] 36.8 60.5 38.2 20.8 45.5 53.1 43.6 64.1 47.6 28.4 50.1 55.2
PointRend [15] 38.5 62.2 40.8 39.9 56.0 53.5 43.6 65.2 47.9 44.9 58.0 48.8

ours 40.1 64.6 43.0 42.0 56.6 77.3 46.2 68.8 51.3 48.3 58.3 80.1

The overall comparison results on the iSAID validation set are presented in Table 1.
The bold numbers represent the highest indicators. It can be seen that our method achieves
the highest 40.1% APseg and 46.2% APbb which indicates our superiority both in instance
segmentation and object detection tasks. Compared with the baseline method PANet,
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we yield better performance in all six metrics. The APseg and APbb have improved by 1.9%
and 3.0%, respectively, which shows the proposed modules effectively improve the overall
performance of the model. Furthermore, our method achieves 1.6%, 4.7%, and 11.8% higher
values in segmenting small, medium, and large instances in HRSIs while the results of
object detection have been also improved to some extents, which indicates that the pro-
posed method has advantages in handling significant scale variation in HRSIs. Compared
with other state-of-the-art methods in recent two years, we outperform BlendMask and
PointRend by margins of 3.3% and 1.6% respectively in overall APseg and other indices
have been also improved correspondingly.

To further verify the capability of our method, we report the class-wise results in
Tables 2 and 3. From Table 2, our method has higher AP than PANet in most categories
except tennis court (TC) and roundabout (RA). The performance of our model and PANet
in these two categories is almost the same, with the difference of only 0.1% and 0.3% re-
spectively. For categories with irregular boundaries and rich detailed information, such as
harbor (HB), we have achieved significant performance improvements by 1.1% and 2.5% in
APseg and APbb. It confirms that our method can handle the instances with arbitrary shapes
in aerial images. Furthermore, for the categories containing a great amount of small and
densely distributed objects such as small vehicle (SV) and ship, segmentation accuracy has
improved by about 2% while 4% for object detection. These quantitative results show that
our model can effectively address the problems of insufficient and inaccurate segmentation
for hard samples in multi-class instance segmentation of HRSIs. Considering the results
of comparison with other advanced methods, we achieve better performance in many
categories while lower AP within 1% decrease for plane (PL), tennis court (TC), and round-
about (RA). It is mainly because the number of objects for these categories is too small
(300 vs. 232,457). Therefore, AP can be easily affected by a tiny deviation in prediction.

Table 2. Class-wise results of instance segmentation on iSAID validation set.

Method AP SV LV PL ST ship SP HB TC GTF SBF BD BR BC RA HC

Mask R-CNN 35.4 15.5 37.3 51.5 38.5 44.3 33.5 28.3 76.8 26.0 38.7 49.8 20.3 34.2 31.7 4.8
PANet 38.2 18.0 41.0 54.0 39.6 54.4 35.4 30.3 78.1 29.9 39.3 51.7 20.7 38.5 35.5 7.0

BlendMask 36.8 14.7 37.8 54.7 40.3 41.0 34.2 30.4 78.4 23.6 41.4 51.9 20.9 38.5 35.6 8.1
PointRend 38.5 16.4 40.7 54.4 37.4 49.2 32.6 31.3 79.2 35.3 43.0 52.7 22.1 39.4 35.6 8.3

ours 40.1 20.0 41.9 54.1 41.7 56.6 36.0 31.4 78.0 31.5 45.4 55.2 22.4 43.9 35.2 8.1

Table 3. Class-wise results of object detection on iSAID validation set.

Method AP SV LV PL ST ship SP HB TC GTF SBF BD BR BC RA HC

Mask R-CNN 40.4 19.7 42.8 69.3 38.7 46.3 37.7 47.3 76.0 40.4 37.4 49.1 24.5 32.6 30.5 14.3
PANet 43.2 22.4 45.8 70.6 39.5 57.0 40.2 50.1 77.6 41.8 37.1 51.4 24.6 36.6 35.3 18.5

BlendMask 43.6 19.9 44.7 74.3 42.5 47.7 39.5 49.4 80.0 34.9 43.6 52.6 26.0 39.1 37.6 21.3
PointRend 43.6 20.3 45.0 70.7 37.0 52.8 36.1 50.9 79.9 45.8 42.7 53.3 25.9 39.1 36.3 17.8

ours 46.2 25.8 47.5 71.0 42.3 60.6 41.6 53.6 78.3 44.2 45.0 55.8 27.8 42.9 34.8 21.5

Tables 4 and 5 show the comparison results on iSAID test set. The models we use
here are trained with the ResNet-101-FPN and all results are tested on the official iSAID
evaluation server. Although using deeper networks such as ResNet-152 can improve the
performance for remote sensing images to some extent, which is mentioned in [47], it also
indicates greatly increasing parameter quantities and heavier computation, and the training
and inference time also increase multiply. Considering the computing resources and the
model size, we take PANet as our baseline instead of PANet++ in [47] for comparison under
the backbone of ResNet-101-FPN. As reported in Table 4, with the designed three modules,
we achieve the best performance in every evaluation metric. The average APseg and APbb

rises by 1.3% and 2.3% compared with PANet. Besides, our method is superior to the other
multi-category instance segmentation methods. From the class-wise results in Table 5, we
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also display higher AP in all categories of iSAID than the original PANet. Notice that the
AP increment of large vehicle (LV), plane (PL), harbor (HB) is 2.3%, 2.2%, 2.4% and that
of ship is up to 4%. Instances in these categories have obvious characteristics like scale
variation, complex contours, and dense block distribution, which are the problems we
focus on most and want to solve. The improvement shows that our model can effectively
address these issues.

Table 4. Overall results of instance segmentation and object detection on iSAID test set.

Method APseg APseg
50 APseg

75 APseg
S APseg

M APseg
L APbb APbb

50 APbb
75 APbb

S APbb
M APbb

L

Mask R-CNN 33.4 56.8 34.7 35.8 46.5 23.9 37.2 60.8 40.7 39.8 43.7 16.0
PANet 38.4 61.8 41.4 41.2 47.2 11.8 43.8 65.3 49.3 46.2 52.6 17.5

blendmask 36.7 59.5 39.0 39.5 44.7 10.6 43.1 62.3 48.4 45.8 49.0 19.1
PointRend 38.1 61.3 41.0 40.7 48.6 16.9 43.5 64.6 48.5 45.8 53.0 22.8

D2det 37.5 61.0 39.8 - - - - - - - - -
ours 39.7 62.7 42.8 41.9 54.6 25.5 46.1 66.4 52.2 48.5 53.8 26.2

Table 5. Class-wise results of instance segmentation on iSAID test set.

Method AP SV LV PL ST ship SP HB TC GTF SBF BD BR BC RA HC

Mask R-CNN 33.4 16.9 30.4 41.7 32.0 48.8 36.7 29.6 72.9 25.9 26.7 39.6 15.2 43.1 36.0 5.6
PANet 38.4 17.6 32.1 45.0 37.3 50.7 38.3 33.3 76.2 28.8 38.9 53.4 18.9 48.5 41.3 15.2

BlendMask 36.7 15.8 31.1 45.4 35.8 47.0 38.5 34.5 74.8 22.7 33.9 52.9 16.4 49.1 40.4 11.8
PointRend 38.1 16.3 32.3 46.2 36.3 47.7 37.8 36.5 75.0 28.6 36.9 51.8 17.5 48.2 41.5 13.2

D2det 37.5 - - - - - - - - - - - - - - -
ours 39.7 18.9 34.4 47.2 37.5 54.7 40.8 35.7 77.6 31.2 40.0 54.5 19.3 49.4 41.9 15.5

Considering the comparison results with other methods in these two tables, similar to
the class-wise performance on the validation set, our method has better capability in the
main categories such as vehicle (SV and LV) and ship which make up the vast majority of
the dataset. The instances in these categories are mostly small-scale and densely distributed.
The improvement of the results indicates that our method is superior in detecting and
segmenting densely packed small objects. As for the subtle decrease in the result of harbor
(HB) compared with PointRend [15], we attribute this to the iterative subdivision algorithm
adopted by PointRend, which helps to better segment the edges of these instances with
extremely complex contours. However, PointRend is much more complicated than our
method for the mask branch of the upsampling convolution, which achieves the comparable
segmentation performance but the implementation approach is much simpler.

3.4.2. Results on NWPU VHR-10 Instance Segmentation Dataset

We report the overall performance of the proposed method on the NWPU VHR-10 test
set in Table 6. It can be seen that our method presents the best capability in both instance
segmentation and object detection among the state-of-the-art with the highest APseg and
APbb of 67.7% and 69.4%. Comparing with the results of PANet, we achieve higher perfor-
mance on NWPU VHR-10 dataset where the improvements are up to 2.9% in APseg and
3.1% in APbb. Our improvements in APS and APL indicate that our method can detect and
segment objects of different sizes better. Notice that the results of instance segmentation are
better than that of object detection for Mask R-CNN [11] and PointRend [15], which can be
attributed to the characteristics of the dataset. Most instances in the NWPU VHR-10 dataset
are with regular boundaries and easy to segment. However, similar object appearances can
lead to mutual interference that means they are difficult to detect accurately.
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Table 6. Overall results of instance segmentation and object detection on NWPU VHR-10 test set.

Method APseg APseg
50 APseg

75 APseg
S APseg

M APseg
L APbb APbb

50 APbb
75 APbb

S APbb
M APbb

L

Mask R-CNN 62.8 90.2 69.0 42.3 61.3 69.5 60.6 90.8 69.2 52.2 60.9 54.8
PANet 64.8 92.3 72.7 45.1 63.7 72.3 66.3 91.3 77.3 57.9 57.5 60.2

PointRend 65.4 88.1 73.0 42.8 63.4 77.5 64.9 88.3 76.3 54.0 65.1 60.7
BlendMask 65.7 91.3 73.7 41.2 64.5 69.8 68.0 91.1 79.0 56.7 68.1 57.7

ours 67.7 93.3 76.7 48.2 65.0 78.3 69.4 93.1 81.5 58.4 69.5 65.6

Tables 7 and 8 depict the class-wise segmentation and detection results. Compared with
the baseline method, our model achieves higher performance in 9 categories except a com-
parable APbb for tennis court (TC). The segmentation AP of vehicle (VC), basketball court
(BC) and ground track field (GTF) have gained more than 5% improvement, which proves
the effectiveness of the cross-scale adaptively fusion in dealing with the scale variation
problem. It can make full use of multi-scale information and is conducive to better detection
and segmentation of objects with different sizes appearing in HRSIs. Besides, with the help
of the proposed context attention upsamping, the ability of our model to cope with complex
contours has been greatly enhanced, which can be varified from the improvement of our
method in the two categories of harbor (HB) and airplane (PL). Furthermore, for the vehicle
(VC) class, we obtain 5.9% and 4.3% performance gains in segmentation and detection
results. That is because the proposed dynamic sample selection can greatly improve the
quality of positive samples, reduce the interference between adjacent targets and enhance
the segmentation ability of densely distributed objects.

Table 7. Class-wise results of instance segmentation on NWPU VHR-10 test set.

Method AP PL SH ST BD TC BC GTF HB BR VC

Mask R-CNN 62.8 43.6 50.4 79.0 82.9 73.0 76.4 83.1 53.9 35.1 50.8
PANet 64.8 50.6 53.5 78.4 83.5 73.0 78.1 87.2 58.6 33.8 51.6

PointRend 65.4 54.5 53.2 75.7 84.3 72.4 74.4 90.1 58.8 35.9 54.7
BlendMask 65.7 48.1 51.1 79.8 84.0 72.4 76.7 91.5 58.9 39.6 54.6

ours 67.7 51.7 55.6 79.8 84.4 73.9 83.0 93.3 60.7 42.3 57.5

Table 8. Class-wise results of object detection on NWPU VHR-10 test set.

Method AP PL SH ST BD TC BC GTF HB BR VC

Mask R-CNN 60.6 64.8 49.4 76.6 82.8 66.3 69.1 67.9 43.4 29.3 55.9
PANet 66.2 79.0 61.5 75.4 80.7 76.9 74.9 74.1 51.5 32.3 56.3

PointRend 63.8 75.6 60.1 76.3 81.5 71.4 68.4 72.8 43.4 31.9 56.2
BlendMask 68.0 78.5 60.3 76.6 83.7 75.3 79.1 77.2 54.3 35.4 59.7

ours 69.4 82.9 63.2 77.0 83.9 76.2 81.4 77.4 54.8 36.2 60.6

Compared with other state-of-the-art methods, the proposed method shows better
performance in both instance segmentation and object detection tasks, which achieves the
highest accuracy in most categories, except airplane (PL). Although the boundaries of many
instances in the NWPU VHR-10 dataset are relatively regular, accurate segmentation of air-
planes is still challenging due to the existence of wings and propellers with overly complex
boundaries. The proposed method alleviates this problem to a certain extent through a
simple upsampling operation, but there is still a slight gap compared with PointRend [15].
We attribute it to the iterative subdivision algorithm proposed by PointRend, which is more
conducive to segmenting the elaborate part of instances such as the wings of an airplane.
However, the implementation of PointRend is much more complicated than ours because
it requires pointwise optimization for the hard-to-segment points in object boundaries.
Moreover, our method has more advantages in handling the huge scale variations among
different instances and dense packed small objects, which PointRend cannot realize.
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3.5. Qualitative Results

The class-wise visualization instance segmentation results are shown in Figures 9 and 10.
It can be seen that the proposed method has achieved great visual performance in each
category and shows satisfactory capabilities in detecting and segmenting instances with
different sizes (e.g., ship and ground track field). For densely packed small instances (e.g.,
small vehicle and large vehicle), there are few cases of false and missing segmentation.
In addition, the outlines of the predicted masks are clear and accurate, which is shown in
the visualization results on categories such as helicopter, airplane, and harbor.

SV and TC LV PL ST

ship and HB RA BR BD and TC

HC GTF and SBF TC and BC SP

Figure 9. Class-wise instance segmentation of proposed approach on iSAID validation set.

To further validate the instance segmentation performance, the qualitative results
of the proposed approach in comparison with the baseline method PANet on iSAID and
the NWPU VHR-10 dataset are depicted in Figures 11 and 12. The first column (a) are
the original images in the dataset and the second column (b) are their corresponding
ground-truth masks. Columns (c) and (d) denote predicted instance results of PANet and
the proposed method. These three images correspond to three types of situations that
are difficult to deal with in HRSIs, respectively. The first row is images with huge scale
variation among different objects. There are small vehicles in the right part of the image
whose sizes are extremely small while the size of the ships and harbor is hundreds of
times their size. As we can see, our model eliminates the missing detection and under-
segmentation of PANet. The reason is that the cross-scale adaptive fusion strategy can
take full advantage of cross-scale feature information and optimize the feature extraction
procedure through the network. Therefore, our method can effectively deal with the huge
scale differences among objects and remove the false and missing detection phenomenon.
The second problem is the existence of a large number of objects with irregular contours and
complex boundaries in remote sensing images. As shown in the second row of Figure 11,
the shape of objects such as harbors is too complex to segment. Our method can segment
the harbors more accurately than the baseline, which suggests that the proposed strategy
can indeed mitigate the under-segmentation problem of objects with arbitrary shape. The
third row of images shows that the remote sensing images contain large quantity dense
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and small objects which are formidable to detect and segment. The visualization results
demonstrate that our method addresses this issue as mentioned above.

PL SH ST

TC and BC GTFBD

BR VCHB

Figure 10. Class-wise instance segmentation of proposed approach on NWPU VHR-10 test set.

(a) (b) (c) (d)

Figure 11. Visual instance segmentation results of the proposed method on iSAID validation set.
(a) input images; (b) ground-truth mask; (c,d) predicted results of PANet and our method. The red
rectangles indicate the missing prediction and under-segmentation problems of PANet.
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The visualization results of the proposed method on NWPU VHR-10 instance seg-
mentation dataset are shown in Figure 12. Our overall performance is better than that
of the baseline method PANet. It can be observed from the first and second rows that
PANet has false and missing detection of objects (e.g., the bridge and the vehicle) with
different sizes, while our method can handle this situation. It is because adaptive multi-
scale feature fusion can make fuller use of high-level and low-level object-wise semantic
information and enhance the ability to detect and segment both of large and small objects.
As shown in the third row, our model compensates for under segmentation problem of
PANet, which comes from interference caused by similar backgrounds. We attribute this
refinement to high-quality proposals selected by DSS. It strengthens the ability of feature
representation and improves the quality of the candidate boxes sent into the regression and
mask branches. Similarly, when objects distribute in dense blocks, our segmentation masks
of objects are much smoother than the baseline. It is mainly because the proposed context
attention upsampling has advantages over other general strategies when segmenting elab-
orate boundaries. The module generates convolution kernels associated with the semantic
content of the feature map, which can guide the subsequent segmentation operation.

(a) (b) (c) (d)

Figure 12. Visual instance segmentation results of the proposed method on NWPU VHR-10 test set. (a) input images;
(b) ground-truth mask; (c,d) predicted results of PANet and our method.

3.6. Ablation Study

To verify the effectiveness of each proposed strategy, this section tests their perfor-
mance on iSAID and NWPU VHR-10 datasets. The results are shown in Tables 9 and 10.
AUG denotes the random multi-scale scaling strategy used in the training phase; CSAF is
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the proposed cross-scale adaptive fusion module; CAU represents the Context Attention
Upsampling module; and DSS denotes the dynamic sample selection module. Our method
is to deploy the above three modules based on PANet and the results without any proposed
strategy in Tables 9 and 10 are tested with the baseline PANet.

Table 9. Validations of different strategies on iSAID validation set.

AUG CSAF CAU DSS
Instance Segmentation Object Detection

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

34.2 56.6 35.8 19.6 42.3 46.6 41.7 60.9 46.6 26.9 47.8 51.0
X 38.2 62.4 41.0 40.4 51.9 55.5 43.2 66.0 47.6 45.5 49.4 58.4
X X 39.4 63.1 42.6 41.2 56.2 71.5 45.7 67.0 50.8 47.5 57.2 77.4
X X X 39.7 63.4 42.9 41.4 56.4 71.9 45.8 67.2 51.1 47.5 57.3 77.4
X X X X 40.1 64.6 43.0 42.0 56.6 77.3 46.2 68.8 51.3 48.3 58.3 80.1

Table 10. Validations of different strategies on NWPU VHR-10 instance segmentation test set.

AUG CSAF CAU DSS
Instance Segmentation Object Detection

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

63.1 90.5 68.6 42.0 61.9 69.6 62.3 90.3 73.6 54.2 63.5 52.2
X 64.8 91.3 72.7 45.1 63.7 72.3 66.3 91.3 77.3 57.9 57.5 60.2
X X 65.4 92.4 72.6 45.8 64.1 73.4 68.0 92.5 79.0 58.3 68.6 61.8
X X X 66.6 91.3 75.7 46.9 64.8 74.8 68.2 92.8 79.6 58.4 68.6 62.2
X X X X 67.7 93.3 76.7 48.2 65.0 78.3 69.4 93.1 81.5 58.5 69.5 65.6

It can be observed from Table 9 that after adding multi-scale training to the benchmark
method PANet, the performance of instance segmentation task and the object detection
task has been improved by 4% and 1.5%, respectively. Since the random multi-scale scaling
strategy introduces the prior knowledge of artificial visual invariance into the network,
the generalization performance of the model is greatly enhanced. Besides, with the CASF
module, our results have been further improved by 1.2% for segmentation and 2.5% for
detection. Thanks to the efficient use of information brought by the adaptive fusion
strategy, the detection and segmentation accuracy of both small and large objects have
been promoted in varying degrees. Furthermore, with the help of CAU, our APseg result
has improved by 0.3% while 0.1% for APbb. Because this strategy is only embedded in the
branch of instance segmentation, and it is relatively independent of the object detection
branch, so that the improvement in the target detection task is not as obvious as the former.
As shown in the last line, through the DSS module, we achieved the best results with
the highest segmentation AP 40.1% and detection AP 46.2%. These improvements can be
attributed to the fact that our sample selection strategy can dynamically adjust the threshold
for selecting positive and negative samples changing with the training process. DSS makes
full use of the statistical characteristics of different input images and generates samples
of higher quality. We also add a penalty item when calculating IoU in DSS, which reflects
the relative position of the candidate bounding boxes and the ground truth to some extent
compared with the original IoU. Therefore, our model is more discernible to the quality of
candidate boxes.

Table 10 displays the results of our ablation experiments on the NWPU VHR-10
instance segmentation dataset. Similar to the results on the iSAID validation set, each of
the proposed strategies has achieved further performance improvement. By using scale
augmentation (AUG) during the training procedure, the overall performance of PANet
improves a lot. The cross-scale adaptive fusion (CSAF) makes the network more invariant
to the size change of various objects. After using CSAF, the segmentation results of the
model for large and small instances has been obviously improved where APS and APL has
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been boost by 0.7% and 1.1%. As for the performance of CAU, similar to the results on
iSAID, our segmentation result has dramatically improved by 1.2%, while only 0.2% for
object detection, which is because the proposed module mainly works on the mask branch
and has little influence on the detection branch. Finally, based on the above strategies,
our model utilizes the DSS module and gets the highest APseg and APbbof 67.7% and 69.4%,
which achieves the state-of-the-art performance on the dataset.

4. Discussion

In this paper, we study the instance segmentation task for remote sensing images,
and the proposed instance segmentation method has achieved impressive results. How-
ever, there are some limitations in this work, which need to be further improved and
optimized. The first limitation is that it is difficult to well segment instances with large
aspect ratios such as bridges. Our detection and segmentation AP results for bridges on
both iSAID and NWPU VHR-10 instance segmentation datasets are not very satisfactory.
The default anchor ratio settings commonly adopted by most state-of-the-art methods
(including our baseline PANet [13]) are 1:1, 1:2, and 2:1. These default anchors can indeed
well represent most of the instances in the two datasets whose aspect ratios do not vary
significantly. However, they are not appropriate for the instances with large aspect ratios
in remote sensing images, which brings difficulties for subsequent location regression
and instance-wise segmentation. Secondly, since the HRSIs are usually taken from the
bird’s-eye view, instances in HRSIs always present arbitrary orientations [47,61]. However,
current detection-based instance segmentation methods still use horizontal candidate boxes
to represent the rotated instances, paying no attention to their orientation information.
The horizontal candidate boxes typically lead to misalignment between the bounding boxes
and the oriented instances, which brings challenges for extracting object features and iden-
tifying the instance’s accurate localization [7,8], thus also affects the segmentation results.
Therefore, introducing the orientation information into the instance segmentation network
for aerial images is conducive to predicting accurate oriented candidate boxes with rotation
angles, which can further improve the performance of the detect-then-segment models.

5. Conclusions

In this paper, we design an end-to-end multi-category instance segmentation network
for high-resolution remote sensing images aiming at address the problems of the huge
scale variation, arbitrary instance shapes, and numerous densely packed small objects
in HRSIs. Firstly, we propose a cross-scale adaptive fusion module with a novel multi-
scale information fusion mechanism to enhance the capability of the model to detect and
segment objects with obvious size differences. Then, we use a context attention upsampling
module to substitute the original deconvolution layer in the segmentation branch which
can obtain more refined predicted masks. Finally, We extend the traditional fixed positive
and negative sample judgment threshold into a dynamic sample selection module to select
more suitable positive and negative samples flexibly. It has obvious advantages in the
segmentation of densely packed objects. The proposed method has achieved the state-of-
the-art performance on two challenging public datasets for instance segmentation task
in HRSIs.
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