
remote sensing  

Article

Automatic Extraction of Indoor Structural Information from
Point Clouds

Dongyang Cheng, Junchao Zhang * , Dangjun Zhao , Jianlai Chen and Di Tian

����������
�������

Citation: Cheng, D.; Zhang, J.; Zhao,

D.; Chen, J.; Tian, D. Automatic

Extraction of Indoor Structural

Information from Point Clouds.

Remote Sens. 2021, 13, 4930. https://

doi.org/10.3390/rs13234930

Academic Editors: Mi Wang,

Hanwen Yu, Jianlai Chen and

Ying Zhu

Received: 9 October 2021

Accepted: 2 December 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
cheng_dy@csu.edu.cn (D.C.); zhao_dj@csu.edu.cn (D.Z.); jianlaichen@csu.edu.cn (J.C.);
tiandi_csu@csu.edu.cn (D.T.)
* Correspondence: junchaozhang@csu.edu.cn

Abstract: We propose an innovative method with which to extract building interior structure infor-
mation automatically, including ceiling, floor, and wall. Our approach outperforms previous methods
in the following respects. First, we propose an approach based on principal component analysis
(PCA) to find the ground plane, which is regarded as the new Cartesian plane. Second, to reduce
the complexity of data processing, the data are projected into two dimensions and transformed
into a binary image via the operation of an improved radius outlier removal (ROR) filter. Third, a
traditional thinning algorithm is adopted to extract the image skeleton. Then, we propose a method
for calculating slope through the nearest neighbor point. Moreover, the line is represented with the
slopes to obtain information pertaining to the interior planes. Finally, the outline of the line is restored
to a three-dimensional structure. The proposed method is evaluated in multiple scenarios, and the
results show that the method is accurate (the maximum error of 0.03 m was in three scenarios) in
indoor environments.

Keywords: interior structure; reconstruction; PCA; projection; ROR; thinning; nearest neighbor; slopes

1. Introduction

In recent years, LiDAR (light detection and ranging) technology has developed rapidly
due to its high accuracy, low cost, portability, and wide application range such as in
autonomous driving [1–5], military fields [6–9], aerospace [10,11], and three-dimensional
(3D) reconstruction [12–14]. In terms of 3D modeling, high-precision and high-density
point cloud data are provided by LiDAR to accurately restore the surface model of an
object that could be a trunk [15], a geological landform [16], or a building [17,18]. With the
maturation of indoor navigation [19] technology, it is important to obtain precise building
interior structures from the point cloud for accurate navigation. However, it is difficult
and time consuming to extract indoor structures from the disorder and high density [20] of
point clouds, and the complexity of data processing is greatly increased due to the noise
caused by the algorithm and the scanning environment. Therefore, completing interior
reconstruction is challenging under the influence of these negative factors.

To reconstruct the interior structure accurately, researchers have proposed advanced
ideas [21,22] and frameworks. First of all, the raw data of the point cloud mainly come
from a laser scanner. Valero et al. [23] used a laser scanner to attain neat point clouds and
different algorithms to identify different objects. The point cloud from the laser scanner
is precise and the point cloud that makes up the plane is projected vertically as a straight
line, which results in great convenience in the subsequent processing. However, it is
expensive and takes more time to measure. Therefore, we use LiDAR because the data
from cheap and lightweight LiDAR are easily available and convenient. In some large-scale
scenes, the data measured by LiDAR are integrated by a scan registration algorithm such as
LeGO-LOAM (lightweight and ground-optimized LiDAR odometry and mapping) [24] or
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LIO-SAM (lidar inertial odometry via smoothing and mapping) [25], both of which cause
point cloud noise.

After obtaining the initial data, indoor structure extraction from a point cloud can
be divided into the following two aspects: one is to extract plane information directly
from the point cloud, and the other is to extract the indoor plane contour by projecting or
transforming it into an image. Ochmann et al. [26] transformed the problem into a linear
programming problem of room contour under the prior knowledge that the room was
segmented. On this basis, Ochmann et al. [27] also proposed the use of random sample
consensus (RANSAC) [28] to automatically segment the room and then transform it into
a linear programming problem. The RANSAC is robust and can be modified according
to point cloud models of different shapes. Saval-Calvo et al. [29] optimized the RANSAC
so that planar point clouds could be effectively extracted in the environment, and the
performance was better than the original algorithm. Ambrus et al. [30] used the RANSAC
to extract the floor and walls of each room, and then projected the walls onto the floor to
extract the outlines of the room. Sanchez et al. [31] proposed a model based on model-
fitting and RANSAC, which could effectively extract large-scale buildings and small-scale
structures. In addition to this, Wang et al. [32] used the region-growing method to extract
all plane frames and extracted the line structure of each plane to automatically generate
complete building information models (BIMs). Mura et al. [33] proposed an efficient
occlusion-aware process to extract the walls, which were projected onto a two-dimensional
plane to extract profiles. Random algorithms often need to traverse every point, which
leads to this method being time consuming but robust. Therefore, these algorithms with
randomness and growth are effective but inefficient. Some researchers are also looking
for other ways to reduce the cost of the algorithms. Oesau et al. [34] divided the initial
data into chunks, extracted the outline with a Hough transform [35] in each block, and
then integrated them. The time to process the data was greatly reduced by the chunking.
Wu et al. [36] sliced the point cloud in different ways and then fitted the line using a
RANSAC-based method. The amount of data can be greatly reduced but the loss of indoor
data may be caused by the slicing operation. Wang et al. [37] reconstructed the buildings
after classifying different objects, which reduced the processing of non-target point clouds.
Xiong et al. [38] semantically segmented the interior environment and identified the plane
with openings and the shape of openings. Due to the good visual effect and fast processing
speed of images, three-dimensional information can also be restored through images [39,40].
Stojanovic et al. [41] used images to aid point cloud data for classifying indoor objects.
Jung et al. [42] projected the data onto the ground and turned them into an image, and then
detected the corners of the walls to determine their contours. After the data were projected
and converted into an image, Jung et al. [43] extracted the two-dimensional skeleton
of the wall with the image-thinning algorithm and restored it to a three-dimensional
structure. Large point clouds are converted into image skeletons, which greatly reduces
computational costs. Moreover, the point cloud changes from irregular points to regular
pixels, which is very beneficial for the extraction of structural information. However, the
reduction in the amount of data means that some details are lost if nothing is established to
optimize the data.

In general, the direct processing of point clouds is time consuming but robust, while
dimensionality reduction or image conversion is fast but will reduce accuracy. To inherit
the advantages of the above methods and make up for their shortcomings, we present our
ideas in this paragraph. In this work, we propose a hypothesis: the walls are perpendicular
to the ground and the angles between the walls are only within 0◦, 45◦, 90◦, and 135◦. To
reduce time consumption, our data are collected by LiDAR because our target scene is
relatively large. In previous studies, it is usually taken as a prior condition that the ground
is the x-y plane. Based on a large number of experiments, we find that the prior condition
is sometimes untenable. Therefore, we propose a PCA-based framework to find the floor
and ceiling plane equations. Then, we project the complete wall onto the ground in the
previous step and convert it into images rather than slicing. To remove the sparse noise and
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improve the filtering speed, we optimize the radius filtering without changing the effect.
Next, coordinates are enlarged and meshed to convert them into pixels. After conversion
to an image, the width of the line is several pixels, which is not conducive for us to extract
the structure, so we consider extracting the image skeleton using the thinning algorithm.
Saeed et al. [44] proposed an image-thinning algorithm that can extract image skeletons
effectively; however, this algorithm is not sensitive to corner points. Zhang and Suen [45]
proposed a method that could quickly and accurately extract an image skeleton and reflect
image corner information by setting several constraint conditions through the relationship
between the target pixel and eight-neighborhood pixels. Therefore, the method [43] is more
suitable for our data. Due to the error in scan registration, the intersection of two lines
produces a radian instead of a right angle. Corner detection in our data is difficult with
traditional corner detection operators such as the Harris operator [46] and the SUSAN
operator [47]. Chen et al. [48] proposed to use the curvature of each point as a constraint to
screen corner points, which could not find corner points very accurately. By observation,
we find that the intersection of adjacent lines can be used as the exact value of corner points.
As such, we propose a judgment method of a straight line based on slope and select corners
from the intersection points of straight lines. Finally, we restore the three-dimensional
model according to corner points and corresponding lines. The entire flowchart is shown
in Figure 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 32 
 

 

and reflect image corner information by setting several constraint conditions through the 
relationship between the target pixel and eight-neighborhood pixels. Therefore, the 
method [43] is more suitable for our data. Due to the error in scan registration, the 
intersection of two lines produces a radian instead of a right angle. Corner detection in 
our data is difficult with traditional corner detection operators such as the Harris operator 
[46] and the SUSAN operator [47]. Chen et al. [48] proposed to use the curvature of each 
point as a constraint to screen corner points, which could not find corner points very 
accurately. By observation, we find that the intersection of adjacent lines can be used as 
the exact value of corner points. As such, we propose a judgment method of a straight line 
based on slope and select corners from the intersection points of straight lines. Finally, we 
restore the three-dimensional model according to corner points and corresponding lines. 
The entire flowchart is shown in Figure 1. 

The rest of this paper is organized as follows. Section 2.1 presents the principle of 
PCA and the framework that separates the walls based on PCA. In Section 2.2, we 
introduce how we can transform data into images, including point cloud projection, 
improved radius filtering, and data regularization. Section 2.3 presents the principle of 
the slope-based algorithm and some detailed processing and optimization. In Section 2.4, 
we organize the expression of straight lines and restore the three-dimensional structure 
of the interior environment. In Section 3.1, we introduce our equipment and the data 
extraction process. In Section 3.2, we use three different scenarios to verify our method 
and give the relevant evaluation parameters of three experimental results. Section 4 shows 
our discussion of the experimental results, including the advantages, disadvantages, and 
possible subsequent optimization of the experimental method. Finally, we summarize the 
whole paper and look ahead to future work in Section 5. 

 
Figure 1. The whole process of the method. The raw data are input to the PCA-based Algorithm 1, 
and the data are divided into three parts: ceiling, wall, and ground. Then, the three-dimensional 
wall is transformed into an image by Algorithm 2. Next, we use slope-based Algorithm 3 to find 
lines in the image. Finally, the three-dimensional interior structure is restored from lines by 
Algorithm 4. 

  

Figure 1. The whole process of the method. The raw data are input to the PCA-based Algorithm 1,
and the data are divided into three parts: ceiling, wall, and ground. Then, the three-dimensional wall
is transformed into an image by Algorithm 2. Next, we use slope-based Algorithm 3 to find lines in
the image. Finally, the three-dimensional interior structure is restored from lines by Algorithm 4.

Algorithm 1 Principal Component Analysis (PCA)

Input: SI(n× 3 points)
Output: SO(n× 2 points)

1: µ =

(
1
n

n
∑

i=1
xi, 1

n

n
∑

i=1
yi, 1

n

n
∑

i=1
zi

)
2: for pi = (xi, yi, zi) ∈ SI , i = 1, 2, . . . , n do
3: pj = pi − µ

4: end for
5: pj =

(
xj, yj, zj

)
∈ SP, j = 1, 2, . . . , n

6: Γ = 1
n SP

TSP
7: UΣVT = SVD(Γ)
8: V = [v1, v2, v3]
9: SO = SI [v1, v2]

The rest of this paper is organized as follows. Section 2.1 presents the principle of PCA
and the framework that separates the walls based on PCA. In Section 2.2, we introduce
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how we can transform data into images, including point cloud projection, improved radius
filtering, and data regularization. Section 2.3 presents the principle of the slope-based
algorithm and some detailed processing and optimization. In Section 2.4, we organize
the expression of straight lines and restore the three-dimensional structure of the interior
environment. In Section 3.1, we introduce our equipment and the data extraction process.
In Section 3.2, we use three different scenarios to verify our method and give the relevant
evaluation parameters of three experimental results. Section 4 shows our discussion of the
experimental results, including the advantages, disadvantages, and possible subsequent
optimization of the experimental method. Finally, we summarize the whole paper and look
ahead to future work in Section 5.

Algorithm 2 Wall extraction method

Input: Sr(n× 3 points)
Output: Sc(n1 × 3 points), Sg(n2 × 3 points), Sw(n3 × 3 points)
1: plane0← Sr do PCA( f it)
2: S1 ← Sr on plane0
3: S2 ← Sr under plane0
4: P1, P2 ← S1, S2 do PCA(dimension reduction)
5: P1, P2 do mesh(m× n grid)
6: for each grid do
7: reserve← number o f grid = 1
8: remove← others
9: end for
10: P1, P2 do SOR
11: plane1, plane2← P1, P2 do PCA
12: Sc ← (distance f rom plane1) < threshold1 in Sr
13: Sg ← (distance f rom plane2) < threshold2 in Sr
14: Sw ← others

Algorithm 3 Data format conversion method

Input: Sw(n3 × 3 points)
Output: Sp(n4 × 3 points), Simage(m0 × n0 image)
1: Sp1 ← Sw(projected)
2: Sp1 do mesh
3: for each grid do
4: neighbors search by radius
5: end for
6: Sp2 ← remove noise by threshold3
7: for (xi, yi) ∈ Sp2 do
8: (xi, yi) = ((xi, yi)− (xmin, ymin))× na
9: end for
10: Sp2 do mesh
11: for (xi, yi) ∈ Sp2 do
12:

(
xj, yj

)
= round(xi, yi)

13: end for
14: Sp ←

(
xj, yj

)
, j = 1, 2, . . . , ngrid

15: m0 = max
(

xj ∈ Sp

)
, n0 = max

(
yj ∈ Sp

)
16: Simage ← m0 × n0 image

17: for
(

xj, yj

)
∈ Sp do

18: Simage

(
xj, yj

)
= 0 or 1(against the background)

19: end for
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Algorithm 4 Line segment extraction method

Input: Simage(m0 × n0)(background is 0 and others are 1)
Output: lines
1: Scon ← convolve the Simage with kernel1
2: for each pixel

(
xp, yp

)
∈ Scon do

3: Simage
(

xp, yp
)
= 0 if Scon

(
xp, yp

)
< 4

4: Simage
(

xp, yp
)
= 1 if Scon

(
xp, yp

)
> 4

5: end for
6: Ss ← Simage do skeleton extracting
7. for random(xi, yi) ∈ Ss do
8: Calculate the nearest neighbor(xi1, yi1)

9: k(xi, yi) =
yi1−yi
xi1−xi

, k(xi1, yi1) = k(xi, yi)

10: k(xi1, yi1) is the next seed
11: end for
12: if two neighbors o f k(xi, yi) is satis f ied with k1 = k2
13: k(xi, yi) = k1
14: end if
15: for

(
xj, yj

)
∈ Ss do

16: if
(

xj, yj

)
is (two neighbors & k1 6= k2)or(one neighbor)or(no neighbor)

17:
(

xj, yj

)
is the seed0

18: end if
19: for seed1

(
xj, yj

)
∈ linej do

20:
(

xj0 , yj0

)
is the neighbor o f

(
xj, yj

)
& k
(

xj0 , yj0

)
= k

(
xj, yj

)
21: linej ←

(
xj0 , yj0

)
22:

(
xj0 , yj0

)
is the new seed1

23: end for
24: end for
25: for each linej1, linej2 ∈ lines do
26: endpoint pj1, pj2 ∈ linej1, linej2

27: if only one endpoint is satis f ied with distance
(

pj1, pj2

)
& klinej1

= klinej2

28: same line← linej1, linej2
29: end if
30: end for
31: for each linej do

32: endpoint(x1, y1), (x2, y2), midpoint x0 =
n
∑

i=1
xi, y0 =

n
∑

i=1
yi, slope kj

33: new endpoint
(
x′1, y′1

)
=
(

y1+k j x0−y0+x1k j
2k j

, x1k j−k j x0+2y0
2

)
34: new endpoint

(
x′2, y′2

)
=
(

y2+k j x0−y0+x2k j
2k j

, x2k j−k j x0+2y0
2

)
35: end for
36: lines← each endpoint

(
x′i1

, y′i1

)
,
(

x′i2
, y′i2

)

2. Methods

In this section, we detail the principle of our approach in four steps: (1) A wall
extraction method based on PCA; the data are divided into three sections: floor, ceiling,
and other data. (2) Conversion from 3D to 2D data, including projection, filtering, and
voxelization. (3) Extraction of line segments based on the image; the image is skeletonized
and we propose a line segment-extraction algorithm based on the slope of adjacent points.
(4) Reconstruction of the indoor structure; we reconstruct the interior structure using
linear information.
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2.1. Extraction of Wall Based on PCA

PCA can be used to extract the principal components of data, reduce the dimensional-
ity of data, or fit planes or lines. In this section, we use the theory of PCA to find the floor
and ceiling of the data and solve the problem that the floor may not be the x-y plane in the
x-y-z frame.

The principle of PCA is shown in Algorithm 1. The input SI ∈ Rn×3 is the three-
dimensional point cloud. Then, the average µ of the point clouds is calculated. For
the point pi ∈ SI , the deviation pj of pi and µ is calculated, and the deviation matrix
SP ∈ Rn×3 consists of pj. Next, the covariance matrix Γ is calculated by SP and we obtain
the transformation matrix V = [v1, v2, v3] ∈ R3×3 by singular value decomposition (SVD).
v1 and v2 are taken as vectors of the fitting plane, and v3 is taken as a normal vector to
that plane. Finally, we project the raw 3D data to obtain the 2D data by matrix operation
SO = SI [v1, v2].

Our first step is the process of finding the plane based on PCA. The main flow of
this method is shown in Figure 2 and Algorithm 2. Sr ∈ Rn×3 is used as the raw data for
Algorithm 2.
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Figure 2. Wall extraction method based on PCA: PCA is used to fit the plane for the raw data, and the data are divided into
two parts by the plane: ceiling data and ground data. The two parts of data are projected into two-dimensional data by
PCA, and then the grid threshold method is used to find the feature points of the ground and ceiling. PCA is used to fit
the feature points to obtain the level of the ground and ceiling. Finally, thresholds are set for the two planes and the point
clouds of the floor and ceiling are removed.

Sr ∈ Rn×3 is used as the raw data in Algorithm 2. To better represent the effect of the
algorithm, we use test data to verify our algorithm, as shown in Figure 3a. The sum s of
the distances of all points (xi, yi, zi) from the plane Ax + By + Cz + D = 0 is minimum by
fitting regular data as follows:

s = min

{
n

∑
i=1

|Axi + Byi + Czi + D|√
A2 + B2 + C2

}
(1)

Therefore, the plane fitted by the symmetric point cloud is in the middle of the data,
as shown in Figure 3b. Due to indoor noise and other objects, the position of the plane
is changed, but the data are also divided into upper and lower parts. The upper part S1
contains the ceiling and the lower part S2 contains the floor, as shown in Figure 3c,d.

Then, S1 and S2 are projected on planes and converted into two-dimensional P1 ∈ Rn1×2

and P2 ∈ Rn2×2. P1 and P2 are processed by the grid threshold method and we introduce
the method using P1 as an example. The method is shown in Figure 4.
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PCA; (c,d) the plane fitted in the raw data by PCA.
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Figure 4. The grid threshold method. The original data are projected two-dimensionally and meshed.
Part of the ground data consists of these points whose quantity is one in the grid.

We set the number ngrid of grids, and then calculate the horizontal resolution ∆x and
vertical resolution ∆y of the grid according to the maximum values xmax and ymax of P1 in
two directions as follows:

∆x =
xmax

ngrid
, ∆y =

ymax

ngrid
(2)

Points (xi, yi) in the same grid
(

igrid, jgrid

)
are assigned the same number:

igrid = round
(

xi − xmin
∆x

)
, jgrid = round

(
yi − ymin

∆y

)
(3)
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Some edge problems are caused by rounding the number of points. Therefore, we
take some measures as follows:

igrid, jgrid =

{
1, igrid, jgrid = 0
ngrid, igrid, jgrid > ngrid

(4)

For the number
(

igrid, jgrid

)
of each point, we replace 0 with 1 and replace the points

that are larger than ngrid with ngrid. The data whose number corresponds to one point are
taken as the plane points. However, due to the interference of noise, we use the SOR filter
to obtain the exact plane points. These points are fitted into a plane by PCA, and P1 and P2
correspond to the plane:

plane1 : A1x + B1y + C1z + D1 = 0
plane2 : A2x + B2y + C2z + D2 = 0

(5)

Since the ceiling and floor are parallel, we take the average of the normal vectors of
the two planes as our new normal vector:

plane1 : A1+A2
2 x + B1+B2

2 y + C1+C2
2 z + D1 = 0

plane2 : A1+A2
2 x + B1+B2

2 y + C1+C2
2 z + D2 = 0

(6)

Finally, we set threshold1 and threshold2 of the distance from the point to the planes
to determine the ceiling Sc and the floor Sg, and the wall Sw is the data Sr except for Sc and
Sg. The entire process is shown in Table 1.

Table 1. The process of extracting the wall: Project the initial data onto a plane, and then the ground
data are screened by the grid threshold method. The ground is restored to a three-dimensional form
and treated with the SOR filter. The ground and ceiling are fitted into a plane; then, the wall data are
extracted by setting thresholds.

Ceiling Ground

raw data
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Table 1. Cont.

Ceiling Ground

3D recovery
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2.2. Data Format Conversion

The point cloud data are so dense and disordered that it is difficult to extract infor-
mation from them. However, point cloud slicing leads to the loss of the contour, which
increases the difficulty of subsequent processing. Therefore, to improve the efficiency of
the algorithm, we projected the wall onto the ground and meshed it. The entire process is
shown in Figure 5 and Algorithm 3.
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Figure 5. The process of data conversion. The wall data are projected on the ground plane, which was fitted in the previous
section. The two-dimensional data are processed by a grid radius outlier removal (GROR) filter, and the coordinate values
are enlarged by appropriate multiples. Finally, the data are normalized and transformed into a binary image.

Sw ∈ Rn3×3 is used as the raw data in Algorithm 3, and Sw is projected into Sp1 on the
ground plane. Due to the influence of noise, the points of a line have a certain width, and
we extract the line features from these points. First, we need to remove the noise of the
two-dimensional points, as shown in Figure 6.
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Figure 6. The noise in the points. We need to extract the line l and remove the noise.

The radius outlier removal (ROR) [49] filter is an effective tool for noise removal. If
the ROR filter is not optimized in any way, this method is very inefficient. Therefore, we
use the GROR (grid radius outlier removal) filter to optimize the ROR filter. We mesh the
data and then search for the nearest neighbor points in a specific way. The results show
that the efficiency of this method is greatly improved without affecting the accuracy of the
ROR filter. At the same time, due to the high density of the vertical wall point and the low
density of other sundries points after projection, some sundries points are removed by the
GROR filter. The principle of this method is shown in Figure 7.
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Figure 7. Grid radius outlier removal (GROR) filter. The resolutions of the divided grid are xgrid and ygrid. The grid to be
processed is gridi. nc is the number of adjacent grids, and the search area Ωi is determined by nc. r0 is the radius of the
neighbor search.

First, the raw data Sp1 are divided into grids, and the resolutions in the two directions
are, respectively, xgrid and ygrid. The points in each grid are searched for their nearest
neighbors. If only the points in the grid are used as the search scope, some of the nearest
neighbors will be lost at the edge of the grid. Therefore, we have expanded the area to en-
sure the accuracy of the search. For the grid

(
igrid, jgrid

)
, we use the number nc of adjacent

grids to expand the region. nc is determined by the search radius r0 and resolutions:

nc = ceil

 r0

min
(

xgrid, ygrid

)
 (7)

The radius r0 divided by the minimum resolution and ceiled is called nc. Therefore,
the search area Ωi for the grid

(
igrid, jgrid

)
is as follows:

Ω =


(

igrid − nc, jgrid − nc

)
. . .

(
igrid − nc, jgrid + nc

)
. . .

(
igrid, jgrid

)
. . .(

igrid + nc, jgrid − nc

)
. . .

(
igrid + nc, jgrid + nc

)
 (8)
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Since the mesh size ngrid × ngrid is fixed, edge suppression is added as follows:

igrid − nc = 1 i f
(

igrid − nc

)
< 1

igrid + nc = ngrid i f
(

igrid + nc

)
> ngrid

jgrid − nc = 1 i f
(

jgrid − nc

)
< 1

jgrid + nc = ngrid i f
(

jgrid + nc

)
> ngrid

(9)

Finally, the points whose number of neighbors is less than threshold3 are removed.
After removing the noise, we need to expand the coordinates of the points Sp2 . We chose a
large multiple na to make the details of the data more obvious as follows:

(xi, yi) = ((xi, yi)− (xmin, ymin))× na (10)

For each point (xi, yi) ∈ Sp2 , we subtract the minimum value (xmin, ymin) of the point
to make sure the points are positive and use the multiple na to expand the coordinate of
these points. Since the coordinates need to be rounded after expanding, and then restored
after processing, the details can be better reflected and the error can be reduced by a larger
multiple. Assume a point is xs = a0.a1a2a3, and when it expands 100 times it becomes
xs = a0a1a2.a3. We round it to xs = a0a1a2 and then restore it to xs = a0.a1a2. The error
before and after treatment was less than 0.01.

Then, we use the grid subsampling method to round the coordinates and eliminate
the repeated coordinates of the same position. The benefit of this method is that the data
become regular and the amount of data is greatly reduced. The principle of the method is
shown in Figure 8.
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raw data is updated to the nearest integer point. The shape of the data is retained and the amount of
data is reduced in the subsampling result Sp.

For the raw data (xi, yi) ∈ Sp2 and integer points
(

xint
i , yint

j

)
∈ Sint eger, (xi, yi) is

replaced by the point
(

xint
i , yint

j

)
nearest to (xi, yi). Then, the overlapping points are

removed. Finally, we obtain the data Sp ∈ Rn4×3 after the subsampling. For each point
(xi, yi) ∈ Sp, we need to replace 0 with 1 as follows:
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{
xi = 1 i f xi = 0
yi = 1 i f yi = 0

, i = 1, 2, . . . , n4 (11)

Since the coordinates of the data Sp are all positive integers, the data can be converted into
images to prepare for the next step. This process is shown in Figure 9. The size m0 × n0
of the image Simage is determined by the maximum value of the coordinates in the two
directions of the point (xi, yi) ∈ Sp as follows:

m0 = max
(

xj ∈ Sp
)

n0 = max
(
yj ∈ Sp

) (12)
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Figure 9. The process of converting grid points to the image: the pixel corresponding to the positions
of the grid points in the image is given the value α. The image is made up of pixels in the red box in
the final step.

Additionally, the pixel of the position corresponding to Sp in the image Simage is
replaced by α:

Simage
(

xj, yj
)
= α (13)

where the parameter α is against the background; for example, the parameter α is 0 and the
background is 1 in the image.

Therefore, we obtain two sets of data: the two-dimensional points with a grid structure
and the corresponding images of the two-dimensional points. The shape of the raw data
is retained and the scattered points are regularized by the two data. The experimental
procedure in this section is shown in Table 2.

Table 2. Projection and transformation of data. First, the raw data are projected onto the ground plane. Then, the noise is
removed by the GROR filter. We enlarge the coordinates 70 times and the grid subsampling method is used to make the
data regular. The regular data can be converted to an image, which is prepared for the next section.

Result Details

the raw data are projected to
the ground

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 32 
 

 

removed. Finally, we obtain the data 4 3n
pS   after the subsampling. For each point 

( )i i px y S,  , we need to replace 0 with 1 as follows: 

4

1 0
1 2

1 0

i i

i i

x if x
i n

y if y
, , ,...,

= =
=

= =
 (11) 

Since the coordinates of the data pS  are all positive integers, the data can be 

converted into images to prepare for the next step. This process is shown in Figure 9. The 

size 0 0m n  of the image imageS  is determined by the maximum value of the coordinates 

in the two directions of the point ( )i i px y S,   as follows: 

( )

( )

0

0

j p

j p

m x S

n y S

max

max

= 

= 
 (12) 

Additionally, the pixel of the position corresponding to pS  in the image imageS  is 

replaced by  : 

( )image j jS x y, =  (13) 

where the parameter   is against the background; for example, the parameter   is 0 

and the background is 1 in the image. 

Therefore, we obtain two sets of data: the two-dimensional points with a grid 

structure and the corresponding images of the two-dimensional points. The shape of the 

raw data is retained and the scattered points are regularized by the two data. The 

experimental procedure in this section is shown in Table 2. 

(a) Grid points (b) The positions of points in the image (c) Image
 

Figure 9. The process of converting grid points to the image: the pixel corresponding to the positions 

of the grid points in the image is given the value  . The image is made up of pixels in the red box 

in the final step. 

Table 2. Projection and transformation of data. First, the raw data are projected onto the ground plane. Then, the noise is 

removed by the GROR filter. We enlarge the coordinates 70 times and the grid subsampling method is used to make the 

data regular. The regular data can be converted to an image, which is prepared for the next section. 

 Result Details 

the raw data are projected 

to the ground 

 

 

 

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 32 
 

 

removed. Finally, we obtain the data 4 3n
pS   after the subsampling. For each point 

( )i i px y S,  , we need to replace 0 with 1 as follows: 

4

1 0
1 2

1 0

i i

i i

x if x
i n

y if y
, , ,...,

= =
=

= =
 (11) 

Since the coordinates of the data pS  are all positive integers, the data can be 

converted into images to prepare for the next step. This process is shown in Figure 9. The 

size 0 0m n  of the image imageS  is determined by the maximum value of the coordinates 

in the two directions of the point ( )i i px y S,   as follows: 

( )

( )

0

0

j p

j p

m x S

n y S

max

max

= 

= 
 (12) 

Additionally, the pixel of the position corresponding to pS  in the image imageS  is 

replaced by  : 

( )image j jS x y, =  (13) 

where the parameter   is against the background; for example, the parameter   is 0 

and the background is 1 in the image. 

Therefore, we obtain two sets of data: the two-dimensional points with a grid 

structure and the corresponding images of the two-dimensional points. The shape of the 

raw data is retained and the scattered points are regularized by the two data. The 

experimental procedure in this section is shown in Table 2. 

(a) Grid points (b) The positions of points in the image (c) Image
 

Figure 9. The process of converting grid points to the image: the pixel corresponding to the positions 

of the grid points in the image is given the value  . The image is made up of pixels in the red box 

in the final step. 

Table 2. Projection and transformation of data. First, the raw data are projected onto the ground plane. Then, the noise is 

removed by the GROR filter. We enlarge the coordinates 70 times and the grid subsampling method is used to make the 

data regular. The regular data can be converted to an image, which is prepared for the next section. 

 Result Details 

the raw data are projected 

to the ground 

 

 

 

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 32 
 

 

removed. Finally, we obtain the data 4 3n
pS   after the subsampling. For each point 

( )i i px y S,  , we need to replace 0 with 1 as follows: 

4

1 0
1 2

1 0

i i

i i

x if x
i n

y if y
, , ,...,

= =
=

= =
 (11) 

Since the coordinates of the data pS  are all positive integers, the data can be 

converted into images to prepare for the next step. This process is shown in Figure 9. The 

size 0 0m n  of the image imageS  is determined by the maximum value of the coordinates 

in the two directions of the point ( )i i px y S,   as follows: 

( )

( )

0

0

j p

j p

m x S

n y S

max

max

= 

= 
 (12) 

Additionally, the pixel of the position corresponding to pS  in the image imageS  is 

replaced by  : 

( )image j jS x y, =  (13) 

where the parameter   is against the background; for example, the parameter   is 0 

and the background is 1 in the image. 

Therefore, we obtain two sets of data: the two-dimensional points with a grid 

structure and the corresponding images of the two-dimensional points. The shape of the 

raw data is retained and the scattered points are regularized by the two data. The 

experimental procedure in this section is shown in Table 2. 

(a) Grid points (b) The positions of points in the image (c) Image
 

Figure 9. The process of converting grid points to the image: the pixel corresponding to the positions 

of the grid points in the image is given the value  . The image is made up of pixels in the red box 

in the final step. 

Table 2. Projection and transformation of data. First, the raw data are projected onto the ground plane. Then, the noise is 

removed by the GROR filter. We enlarge the coordinates 70 times and the grid subsampling method is used to make the 

data regular. The regular data can be converted to an image, which is prepared for the next section. 

 Result Details 

the raw data are projected 

to the ground 

 

 

 



Remote Sens. 2021, 13, 4930 13 of 30

Table 2. Cont.

Result Details

GROR filter
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2.3. Extraction of Line Segments

For the image in the previous section, we need to extract line segment information
from it. Since straight lines are composed of points with a certain thickness in the data,
it is difficult to extract multiple lines directly from the data. Therefore, we first use the
thinning algorithm to extract the skeleton of the image. Then, the corresponding slope
of each point is calculated based on the nearest neighbor point. Finally, we propose a
slope-based search method to extract the line segments. We give the flow of the algorithm
as shown in Figure 10 and Algorithm 4.
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The image Simage is the input in Algorithm 4. We assume that the background is 0 and
the points are 1 in the image, and we convolve the image Simage with a kernel to remove
the burr, which is influential in extracting the skeleton. Then, the image Simage is updated
by the convolution value Scon:{

Simage
(
xp, yp

)
= 0 i f Scon

(
xp, yp

)
< 4

Simage
(
xp, yp

)
= 1 i f Scon

(
xp, yp

)
> 4

,
(

xp, yp
)
∈ Simage (14)

The pixel value is updated by comparing the convolution value Scon with the number 4,
as shown in Figure 11.
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Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of 
the image based on the convolution values. 

To better reflect the contour features of the wall, we consider refining the image. If 
the pixel representing the line is refined into a single pixel, the feature of the line is more 
obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the two-
dimensional skeleton information of the wall through experiments. The results are shown 
in Table 3. 

Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines 
are refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton. 

 Data Details 

raw image 

  

image 
skeleton 

  

Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of the
image based on the convolution values.

To better reflect the contour features of the wall, we consider refining the image. If
the pixel representing the line is refined into a single pixel, the feature of the line is more
obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the
two-dimensional skeleton information of the wall through experiments. The results are
shown in Table 3.

The image skeleton Ss is a single-pixel structure; we find that the characteristics of the
lines are obvious, and the corners of the data affected by the error have a certain radian.
Therefore, it is very difficult to extract the exact corners from the data; thus, we consider
extracting the lines and determining the corners from the lines. We propose a line extraction
method based on the nearest neighbor slope, and then introduce this method in detail.

First, the random point (xi, yi) ∈ Ss is the starting point; its nearest neighbor (xi1, yi1)
is found and the slope of the two points is calculated. In this section, the neighbor points
are all found in the 8 neighborhoods. If there are multiple nearest neighbor points, select
one as the nearest neighbor point at random. Then, their slope k is calculated as follows:

k =
yi1 − yi
xi1 − xi

(15)

The slope of these two points is represented by the slope k. Since the pixel positions in
the image are all integers, there are only four cases for the slope of two adjacent points: 0,
1, −1, and the slope that does not exist is replaced by 2, as shown in Figure 12.
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Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines are
refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton.

Data Details

raw image
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Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of 

the image based on the convolution values. 

To better reflect the contour features of the wall, we consider refining the image. If 

the pixel representing the line is refined into a single pixel, the feature of the line is more 

obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the two-

dimensional skeleton information of the wall through experiments. The results are shown 

in Table 3. 

Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines 

are refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton. 
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Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of 

the image based on the convolution values. 

To better reflect the contour features of the wall, we consider refining the image. If 

the pixel representing the line is refined into a single pixel, the feature of the line is more 

obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the two-

dimensional skeleton information of the wall through experiments. The results are shown 

in Table 3. 

Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines 

are refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton. 

 Data Details 

raw image 

  

image 

skeleton 

  

image skeleton
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Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of 

the image based on the convolution values. 

To better reflect the contour features of the wall, we consider refining the image. If 

the pixel representing the line is refined into a single pixel, the feature of the line is more 

obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the two-

dimensional skeleton information of the wall through experiments. The results are shown 

in Table 3. 

Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines 

are refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton. 

 Data Details 
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image 
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Figure 11. A simple method to remove the burr. We convolve the image and update the pixels of 

the image based on the convolution values. 

To better reflect the contour features of the wall, we consider refining the image. If 

the pixel representing the line is refined into a single pixel, the feature of the line is more 

obvious in the skeleton. Therefore, we use a suitable thinning algorithm to extract the two-

dimensional skeleton information of the wall through experiments. The results are shown 

in Table 3. 

Table 3. Image skeleton extraction. The contour of the image is extracted by the skeleton extraction algorithm and lines 

are refined into single pixels. Similarly, the skeleton made up of two-dimensional points is reduced by the image skeleton. 

 Data Details 

raw image 

  

image 

skeleton 
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Figure 12. The slope of the nearest neighbor. The slope is given four values: 0, 1, −1, 2. 

Then, the point ( )1 1i ix y,  is the next seed and its nearest neighbor ( )2 2i ix y,  is found 

to calculate the next slope, and the points whose slopes have already been calculated are 

not considered next neighbor search objects. The starting point ( )i i sx y S,   is randomly 

selected until the seed point ( )in inx y,  has no neighbors. If the slopes of all points are 

calculated, the algorithm stops. The process of calculating the slopes is shown in Figure 

13. 
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Then, the point ( )1 1i ix y,  is the next seed and its nearest neighbor ( )2 2i ix y,  is found 

to calculate the next slope, and the points whose slopes have already been calculated are 

not considered next neighbor search objects. The starting point ( )i i sx y S,   is randomly 

selected until the seed point ( )in inx y,  has no neighbors. If the slopes of all points are 

calculated, the algorithm stops. The process of calculating the slopes is shown in Figure 

13. 
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Then, the point (xi1, yi1) is the next seed and its nearest neighbor (xi2, yi2) is found
to calculate the next slope, and the points whose slopes have already been calculated are
not considered next neighbor search objects. The starting point (xi, yi) ∈ Ss is randomly
selected until the seed point (xin, yin) has no neighbors. If the slopes of all points are
calculated, the algorithm stops. The process of calculating the slopes is shown in Figure 13.
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Figure 14. Eliminate faults in lines. The fault is caused by noise and algorithm error, and we update 

the slope of the current point using the slope of the point’s nearest neighbor. 

When the slope of all the points is calculated, we look for lines based on the slope. 

The idea is to start at one endpoint of each line as a seed point and grow until the line is 

completely extracted. Therefore, we first need to look for endpoints as seed points. We 

use the following three conditions to determine the seed point ( )j jx y, : (1) the number of 

neighbors is two and the slopes of the neighbors are satisfied with 1 2k k ; (2) the number 

of neighbors is one; (3) no neighbors. The point ( )j jx y,  that satisfies any of these 

conditions is considered a seed. Next, we extract points on the same line from the seed, as 

shown in Figure 15. For a straight line, look for a point ( )
0 0j jx y,  within the 8 

neighborhoods of the seed ( )j jx y,  that has the same slope as the seed. In these data, the 

number of the point ( )
0 0j jx y,  is only 1 or 0. If the number is 1, the point ( )

0 0j jx y,  is the 

next new seed, and the raw point ( )j jx y,  is removed. If the number is 0, the points we 

calculated before form a line. Keep picking seed points until all the points are divided into 

lines. 

Figure 13. The process of calculating the slope. First, seed 1 is randomly selected in the image. Seed
1 has multiple nearest neighbor points and picks one at random to calculate the slope value 0. The
values of seed 1 and neighbor 2 are 0. Then, neighbor 2 is the next seed 1. The points for which the
slope has been calculated are not searched later. Seed 1 stops growing if the current point has no
neighbors. Then, seed n is randomly selected and the same growth process is carried out until all the
pixels of the image are calculated.

After calculating the slope at all points, we need to eliminate the fault in the line, as
shown in Figure 14. For each point, if it only has two neighbors and the two neighbors
have the same slope k, update the slope of that point to k.
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Figure 14. Eliminate faults in lines. The fault is caused by noise and algorithm error, and we update the slope of the current
point using the slope of the point’s nearest neighbor.

When the slope of all the points is calculated, we look for lines based on the slope.
The idea is to start at one endpoint of each line as a seed point and grow until the line is
completely extracted. Therefore, we first need to look for endpoints as seed points. We
use the following three conditions to determine the seed point

(
xj, yj

)
: (1) the number of

neighbors is two and the slopes of the neighbors are satisfied with k1 6= k2; (2) the number
of neighbors is one; (3) no neighbors. The point

(
xj, yj

)
that satisfies any of these conditions

is considered a seed. Next, we extract points on the same line from the seed, as shown in
Figure 15. For a straight line, look for a point

(
xj0 , yj0

)
within the 8 neighborhoods of the

seed
(

xj, yj
)

that has the same slope as the seed. In these data, the number of the point(
xj0 , yj0

)
is only 1 or 0. If the number is 1, the point

(
xj0 , yj0

)
is the next new seed, and the

raw point
(

xj, yj
)

is removed. If the number is 0, the points we calculated before form a
line. Keep picking seed points until all the points are divided into lines.
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Figure 15. Line searching method based on slopes. Determine the seed point according to the
judgment condition, and then find the line according to the slope of the nearest neighbor point until
traversing all the points.

When all the lines are categorized, we need to set thresholds to eliminate non-line
points. Due to our conditions applied to individual points and short line segments, lines
containing fewer points are removed. Since the same line is divided into sections by noise,
we propose a method to solve this problem. As shown in Figure 16, for two endpoints(

pj1, pj2
)

of each line, two lines are the same line only if the distance of two endpoints is
less than the threshold and the two lines have the same slope. For the line li, we compare
the line l1 to the lines l2, l3, . . . , ln, then compare the line l2 to the lines l3, l4, . . . , ln, until,
finally, we compare the line ln−1 to the line ln. When all lines have been identified, repeat
the steps until the number of lines is changeless.
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Figure 16. An example for updating lines. We set the distance threshold to 5. For the line l1 and
the line l2, the distance between the endpoint p12 and the endpoint p21 is less than the threshold.
Therefore, the two lines are classified as the same line. In the same way, the line l2 and the line l3 are
classified as the same line.

For these lines, due to the points that make them up not being in a line, we need to
figure out their slopes and endpoints to update the lines. The principle of updating the
endpoints is shown in Figure 17. We know the parameter of the line li: two endpoints

(xi1, yi1), (xi2, yi2), midpoint

(
xi0 =

n
∑

j=1
xij, yi0 =

n
∑

j=1
yij

)
, and slope ki. If the slope is 1 or

−1, we can obtain new endpoints based on these parameters as follows:
(
x′i1, y′i1

)
=
(

yi1+kixi0−yi0+xi1ki
2ki

, xi1ki−kixi0+2yi0
2

)
(
x′i2, y′i2

)
=
(

yi2+kixi0−yi0+xi2ki
2ki

, xi2ki−kixi0+2yi0
2

) (16)
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Figure 17. The process of determining new endpoints. The dotted line is defined by the midpoint 
( )0 0i ix y,  and the slope k . If the slope is 1 or −1, the vertical point of the raw endpoints on the line 
is the new endpoint. We calculate the points in which the original endpoint intersects the line in 
both the horizontal and vertical directions; the midpoint of the points is a new endpoint. If the slope 
is 0, the abscissa of the new endpoints is the same as the raw endpoints, and the ordinate is the same 
as the midpoint. If the slope is 2, the abscissa of the new endpoints is the same as the midpoint, and 
the ordinate is the same as the raw endpoints. 

Table 4. The process of finding lines. In these images, each line segment is represented by a separate color except black. 
First, we find points that belong to the same line by using neighboring points. In detail, we can see that points that 
originally belong to the same line are divided into multiple lines due to noise and algorithm. Then, by optimizing the line 
based on endpoint and slope, we solve the problem. Finally, we draw the lines by slope, midpoint, and new endpoints. 
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Figure 17. The process of determining new endpoints. The dotted line is defined by the midpoint
(xi0, yi0) and the slope k. If the slope is 1 or −1, the vertical point of the raw endpoints on the line is
the new endpoint. We calculate the points in which the original endpoint intersects the line in both
the horizontal and vertical directions; the midpoint of the points is a new endpoint. If the slope is 0,
the abscissa of the new endpoints is the same as the raw endpoints, and the ordinate is the same as
the midpoint. If the slope is 2, the abscissa of the new endpoints is the same as the midpoint, and the
ordinate is the same as the raw endpoints.

If the slope is 0, we obtain new endpoints as follows:{ (
x′i1, y′i1

)
= (xi1, yi0)(

x′i2, y′i2
)
= (xi2, yi0)

(17)

If the slope is 2, we obtain new endpoints as follows:{ (
x′i1, y′i1

)
= (xi0, yi1)(

x′i2, y′i2
)
= (xi0, yi2)

(18)

Therefore, the line is determined by the midpoint and the slope, and the range of
the line is determined by the new endpoints. Finally, we show the process of finding the
straight lines and drawing them all, as shown in Table 4.

Table 4. The process of finding lines. In these images, each line segment is represented by a separate color except black.
First, we find points that belong to the same line by using neighboring points. In detail, we can see that points that originally
belong to the same line are divided into multiple lines due to noise and algorithm. Then, by optimizing the line based on
endpoint and slope, we solve the problem. Finally, we draw the lines by slope, midpoint, and new endpoints.

Result Details

find the line according to
the nearest neighbor
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First, we find points that belong to the same line by using neighboring points. In detail, we can see that points that 
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based on endpoint and slope, we solve the problem. Finally, we draw the lines by slope, midpoint, and new endpoints. 

 Result Details 

find the line according 

to the nearest neighbor 

 

 

 

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 32 
 

 

( )

( )

1 0 0 1 1 0 0

1 1

2 0 0 2 2 0 0

2 2

2

2 2

2

2 2

i i i i i i i
i i

i i i i i i i
i

i i i i

i

i i i i

i

i

y x y x x x
x

k k k k

k

k

y
y

y x y x x x y
x

k
y

k k k

' '

' '

, ,

, ,

  + − + +
=  

  


 + − +


−


− +

= 
 

 (16) 

If the slope is 0, we obtain new endpoints as follows: 

( ) ( )

( ) ( )

1 1 1 0

2 2 2 0

i i i i

i i i i

x y x y

x y x y

' '

' '

, ,

, ,

 =


=

 (17) 

If the slope is 2, we obtain new endpoints as follows: 

( ) ( )

( ) ( )

1 1 0 1

2 2 0 2

i i i i

i i i i

x y x y

x y x y

' '

' '

, ,

, ,

 =


=

 (18) 

Therefore, the line is determined by the midpoint and the slope, and the range of the 

line is determined by the new endpoints. Finally, we show the process of finding the 

straight lines and drawing them all, as shown in Table 4. 

2k =

( )1 1i ix y' ',

( )2 2i ix y' ',

( )1 1i ix y,

( )2 2i ix y,

( )0 0i ix y,

0k =

( )1 1i ix y' ',

( )2 2i ix y' ',
( )1 1i ix y,

( )2 2i ix y, ( )0 0i ix y,

1 1k ,= −

( )1 1i ix y' ',

( )2 2i ix y' ',

( )1 1i ix y,

( )2 2i ix y,

( )0 0i ix y,

 

Figure 17. The process of determining new endpoints. The dotted line is defined by the midpoint 

( )0 0i ix y,  and the slope k . If the slope is 1 or −1, the vertical point of the raw endpoints on the line 

is the new endpoint. We calculate the points in which the original endpoint intersects the line in 

both the horizontal and vertical directions; the midpoint of the points is a new endpoint. If the slope 

is 0, the abscissa of the new endpoints is the same as the raw endpoints, and the ordinate is the same 

as the midpoint. If the slope is 2, the abscissa of the new endpoints is the same as the midpoint, and 

the ordinate is the same as the raw endpoints. 

Table 4. The process of finding lines. In these images, each line segment is represented by a separate color except black. 
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Table 4. Cont.

Result Details

update lines based on
endpoint and slope
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Figure 18. The result of line correction. All the lines that satisfy the condition are connected and we show them in detail. 
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2.4. Structure Reconstruction

In this part, we optimize the lines and reduce them to three-dimensional planes. In
the last section, due to the error of scan registration, we removed the smooth intersection
of the adjacent segments. Therefore, we propose a method to connect the lines. The basic
steps of this method are as follows:

1. Assuming that the known condition is the endpoint p1, the nearest endpoint p2 of the
other lines is calculated. Additionally, we then calculate the distance d between the
two endpoints.

2. The distance threshold is set to avoid two lines that are far apart from each other
being connected. Then, we compare the distance d to the threshold.

3. If the distance is less than the threshold and the two lines are perpendicular, the lines
corresponding to the two endpoints are connected and the endpoints p1 and p2 are
replaced by the intersection. For the slopes k1 and k2 of the two lines, we think these
two lines are perpendicular if they satisfy the condition:

|k1 − k2| = 2 or ‖ k1| − |k2 ‖ = 1 (19)

The results are shown in Figure 18. To better demonstrate the accuracy of the ex-
perimental results, we spliced and compared the lines with the raw data, as shown in
Figure 19.
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Figure 19. Comparison of experimental results. The yellow line is the result that we obtain and the
black points are the raw data. We obtain the basic outline of the data, and the reason why some parts
are not considered lines is that the points are discontinuous or the slope changes are complicated.

Finally, we reconstruct the three-dimensional plane from the resulting lines. Now,
we need to figure out the height of each line. In the previous section, we calculated the
ground plane and calculated the height of each point above the ground. Before we achieve
this, the endpoints are restored by Equation (10). We calculate the nearest neighbors of the
midpoints of each line segment and choose the height of the line as the maximum distance
between these neighbors and the ground. If the height is close to the distance between the
ceiling and the floor, the height changes to that distance. The result is shown in Figure 20.
At this point, we have introduced the principle of the whole algorithm in detail. In the next
section, we will evaluate the performance of the algorithm with multiple sets of data.
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3. Experimental Results
3.1. Preparation of Experimental Data

The equipment used to collect data is shown in Figure 21. The experimental equipment
was a backpack system integrating LiDAR, an inertial measurement unit (IMU), a wireless
module, and an upper computer. The surroundings are sensed by a 16-line mechanical
LiDAR at a frequency of 0.5 s and surface information about surrounding objects is scanned
by the LiDAR. The IMU is used to measure the attitude information of LiDAR and we fuse
it with each frame point cloud by the robotic operating system (ROS) in the upper computer.
The processed data are transmitted to a computer for display through the wireless module.
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Figure 21. The experimental equipment. It is a backpack system integrating LiDAR, an inertial
measurement unit (IMU), a wireless module, and an upper computer.

We adopted LeGO-LOAM to implement the scan registration of data. In the algo-
rithm, the attitude

[
tz, θroll , θpitch

]
is obtained from the ground features, and the attitude[

tx, ty, θyaw
]

is calculated according to the remaining point cloud features. Therefore, the
matching error is caused by too few ground features, and another error is caused by the
Euler angles turning too fast in a short time. In the following experimental results, these
two aspects may be the causes of the error. Finally, we present some important parameters
for the next three scenarios: the number n f ac of grids for the floor and ceiling is extracted
in Section 2.1. Radius rGROR and threshold nGROR of the GROR filter, magnification nmoc
of the coordinates, the distance dp that connects parallel lines, and the distance dv between
the vertical lines are shown in Table 5.

Table 5. Some important parameter settings for the scenarios.

nfac rGROR nGROR nmoc dp dv

Scene 1 200 0.01 10 100 10 40

Scene 2 600 0.03 10 10 5 8

Scene 3 300 0.03 10 10 15 5
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3.2. Results

In this section, we use three real scenarios to test our algorithm. We carried the
equipment on our backs and the LiDAR was about 1.8 m away from the ground. We
followed a fixed trajectory and tried to keep the posture of the device stable as we moved.
Finally, three data points are prepared: a room, a floor, and some rooms.

3.2.1. Experiment Scene 1

We extracted the structure of a single room in the first data point; the room was about
7.69 m × 6.35 m × 3 m (length × width × height). The experimental scene is shown in
Figure 22a, and the two-dimensional plan of the scene is shown in Figure 22b. To better
show the interior structure, we removed the ceiling in the second section. The measured
point cloud data are shown in Figure 22c, and the final result is shown in Figure 22d.
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Figure 22. The resulting presentation of scene 1: (a) photo of the real scene; (b) the two-dimensional plane of the scene; we
measured the dimensions of the room and marked the starting point and trajectory; (c) point cloud data after removing the
ceiling; (d) the result of the reconstruction of the interior structure, and each color represents a plane.

It can be seen from the experimental results that the basic structure of the room has
been restored, but we can see that there are some flaws in the results. There are gaps
between some adjacent planes. In the previous sections, we joined planes if they were
adjacent and the distance between them was less than the threshold. In real scene 1, due
to the glass between the curtains not being sensed by the LiDAR, we kept the gaps in the
result. At the same time, the large gaps due to measurement errors were preserved.

3.2.2. Experiment Scene 2

We chose the floor of the school building as the second scenario to test the method.
The point cloud we collected is shown in Figure 23a and the result of algorithm pro-
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cessing is shown in Figure 23b. Similarly, we present the two-dimensional plan of the
floor in Figure 23c, and we provide real photos of the two positions on the floor and the
corresponding reconstruction results, as shown in Figure 23d–g.
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Comparing the results with the real scene, we can see that all the walls are well
restored. At the time of measurement, we did not enter any rooms. Some of the doors were
open and others were closed, which is why some of the doors were empty in our results.
At the same time, due to the attention to detail in our method, uneven sampling and the
error of the matching algorithm may result in faults in the same plane.

3.2.3. Experiment Scene 3

In scene 3, we chose an interior environment with multiple rooms. The raw data are
shown in Figure 24a, and the result is shown in Figure 24b. We drew the two-dimensional
plan of the data as shown in Figure 24c and a comparison of the result with the real world
as shown in Figure 24d,e.

We entered most of the rooms during the measurement and all the doors were closed.
Due to the complexity of the scene corresponding to the data, there was a major difference
between the two frames when the device entered the room, which led to a major error in
scan registration. Therefore, the error of our results is larger than that of the first two data
points. However, all the rooms were restored well, so the result was satisfactory.
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3.2.4. Relevant Parameters of the Experiment

We aim to obtain indoor structural information in a fast and efficient way, so we list
running time, data volume, and distance parameters. In our approach, we employed a
series of ways to reduce the amount of data. Therefore, on the premise of ensuring the
authenticity and validity of parameters, and to demonstrate the efficiency of our method,
we calculated the time of the following parts in Table 6: the time tc−g of fitting the ceiling
and ground, the time t f−v of projection, filtering, and voxelization, and the time ti−r from
image to three-dimensional reconstruction. To reflect the changes in the amount of data in
the process, we counted the number nraw of initial points, the number nwall of wall points,
the number nvoxel of two-dimensional points after projection and voxelization, and the size
iimage × jimage of the image, as shown in Table 7. To verify the accuracy of the algorithm,
we compare it with the actual data using the following aspects in Tables 8 and 9: ceiling
equation Acx + Bcy + Ccz + Dc = 0 and ground equation Agx + Bgy + Cgz + Dg = 0
after first calculation, the number nplane of planes, the length ls, width ws, height hs of the
building simulation data, the length lr, width wr, height hr of the building real data, the
error between the actual value and the predicted value of the three aspects σl , σw, σh, and
the mean precision ξ. In Table 10, we list the characteristics of different reconstruction
methods in recent years. The function and purpose of each method are not completely
the same. To reflect the innovation of our method and solve the problem, we evaluate it
while considering the following aspects: (1) sources of data; the effect of the algorithm can
be affected by different data; (2) ground calculation; the ground is found as the base by
our method without any conditions such as LiDAR attitude; (3) filtering; if no filtering is
used, the algorithm has strong robustness; (4) data optimization; data optimization shows
that the algorithm has high processing performance; (5) the manifestation of doors and
windows; the details show the precision of the algorithm; (6) accuracy of the number of
planes; if all planes are found, the accuracy of the algorithm is high.
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Table 6. The running time of several algorithms.

tc−g tf−v ti−r

Scene 1 4.064 s 45.432 s 1.995 s

Scene 2 7.735 s 57.559 s 2.037 s

Scene 3 5.644 s 78.373 s 2.034 s

Table 7. The data volume statistics of several steps algorithm.

nraw nwall nvoxel iimage×jimage

Scene 1 720,224 × 3 537,721 × 3 26,349 × 2 701 × 776

Scene 2 1,804,574 × 3 768,450 × 3 7858 × 2 406 × 571

Scene 3 1,568,974 × 3 756,038 × 3 2143 × 2 187 × 52

Table 8. Fitting the parameters of the ceiling and floor equations.

Ac Bc Cc Dc Ag Bg Cg Dg

Scene 1 −0.015 0.1674 0.9858 −1.3243 −0.0181 0.1523 0.9882 1.6697

Scene 2 0.2833 −0.0893 0.9549 −0.7801 0.2807 −0.0877 0.9558 1.7295

Scene 3 −0.0039 0.0277 0.9996 −1.1052 −0.0125 0.0325 0.9994 1.4702

Table 9. Parameter comparison between the actual scenario and the predicted scenario.

nplane ls ws hs lr wr hr σl σw σh ξ

Scene 1 53 7.652 m 6.337 m 2.994 m 7.690 m 6.350 m 3.000 m 0.038 m 0.013 m 0.006 m 0.019 m

Scene 2 86 56.360 m 39.390 m 2.510 m 56.400 m 39.435 m 2.500 m 0.040 m 0.045 m 0.010 m 0.030 m

Scene 3 46 61.444 m 15.815 m 2.575 m 61.400 m 15.800 m 2.560 m 0.044 m 0.015 m 0.015 m 0.025 m

Table 10. Comparison of the characteristics of several different methods. Aspect 1: sources of data; Aspect 2: ground
calculation; Aspect 3: filtering; Aspect 4: data optimization; Aspect 5: the manifestation of doors and windows; Aspect 6:
accuracy of the number of planes.

Aspect 1 Aspect 2 Aspect 3 Aspect 4 Aspect 5 Aspect 6

Ochmann et al. laser scanner 8 4 8 8 4

Ambrus et al. laser scanner 8 8 4 4 4

Jung et al. laser scanner 8 4 4 4 4

Wang et al. laser scanner 8 4 4 4 4

Xiong et al. laser scanner 8 4 8 4 4

Sanchez et al. laser scanner 8 4 8 4 8

Oesau et al. laser scanner 8 8 4 4 4

Mura et al. laser scanner 8 4 8 4 4

ours LiDAR 4 4 4 4 4
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4. Discussion

First, we evaluated the experimental results of the three scenarios. In scenario 1, all
vertical planes of the room are created and the basic structure is restored. Because of the
curtain, the curved part is removed by our algorithm, which leads to gaps in the plane
formed by the curtain. In our algorithm, we expand the coordinates of the data, and the
uneven sampling areas and the walls with windows contain fewer points. These areas are
removed by our method. Therefore, our method can better restore the details of the room
by enlarging the coordinates, while the room is restored to a rectangle if normal processing
is used. In scenario 2, due to the large area of the scene, we stretched the result vertically for
better detail. We can see that all the open doors are identified as gaps between the planes,
and by comparing the coordinates in the result, we can ensure that the plane precision is
high; for example, the width of the door is about 1 m. The whole floor is well restored,
although there are still a few errors in the plan. This is where our method will need to
be optimized at a later stage. In scenario 3, we went into some rooms selectively, and
the results show that the reconstruction is better. All the rooms are perfectly reproduced,
though there are some errors due to scan registration.

Second, we analyze and discuss the parameters in five tables. In Table 6, although
we optimized the filtering, we can see that most of the time is still spent on filtering
and voxelization. However, in terms of the time and effect of restoring the image to a
three-dimensional plane, the time ti−r of about 2 s shows that our slope-based algorithm
is efficient and fast. Therefore, we will try other filtering approaches to improve the
performance of the program in subsequent work. In Table 7, we can see a gradual decrease
in the amount of data, such as in scene 3, the number of points is reduced to 187 × 52
from 1,568,974 × 3, which is why our approach is efficient. In Table 8, by comparing the
parameters of the ceiling and ground planes, we note that they are parallel. The error of the
room height calculated from these two planes is small (the maximum error does not exceed
0.015), so our method of finding the plane is accurate. We want to restore a model from
the point cloud that is the same size as in the actual scene. In Table 9, by comparing the
calculated length, width, and height with the actual value, the error between the predicted
value and the actual value is, respectively, less than 0.044 m, 0.045 m, and 0.015 m. The
mean error of 0.024 m proves that our algorithm is accurate within the error tolerance.
In Table 10, we overcome the difficulty of LiDAR data processing and achieve similar
results compared with some current methods. The data from LiDAR are easy to obtain
but difficult to process, laser scanner data are difficult to obtain but high precision. We
summarize the advantages and disadvantages of some algorithms. Then, we propose some
methods to optimize and solve these problems in terms of prior knowledge, noise removal,
data optimization, structure extraction, algorithm efficiency, and accuracy. Compared with
existing methods, our method is superior to current algorithms in some respects.

Finally, there are still some shortcomings in our experiment. To make the initial data
tidier, we will test other algorithms to replace the current algorithm for scan registration,
such as LIO-SAM. Our method is currently only applicable to the reconstruction of interior
vertical walls, and circles are recognized as polygons by the method. Therefore, we will
modify the algorithm to accommodate more complex cases and make it more robust.

5. Conclusions

The method proposed in this paper can restore basic interior structure on an equal
scale. In this method, the ceiling and the floor of the room are segmented and fitted, and the
ground plane is used as the reference plane. Then, the wall is projected onto the reference
plane. We filter, regularize, and transform the resulting two-dimensional data into an image.
We extract the skeleton of the image and calculate the slope for each point. The slope that
characterizes a line expands by growing until all points of the line are found. These lines
are optimized and corrected by our method to produce more accurate lines. Finally, these
lines are restored to three-dimensional vertical planes by applying height information.
From the experimental results, the reconstruction effect and parameter analysis all show
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that our method is accurate (mean error of 0.024 m at an average measuring range of
40 m). In the whole algorithm, we pay attention to the improvement of computing speed
and innovation of the algorithm. Therefore, we made a lot of data optimization and
algorithm improvement, and we proposed a new framework to solve the problem of
indoor reconstruction. However, there are some limitations and errors in this method. For
example, parameters need to be adjusted to obtain the best results, and indoor sundries
cannot be reconstructed. Therefore, we will focus on algorithm optimization and detail
processing to make the algorithm more practical in the future.
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