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Abstract: Magnetotelluric (MT) sounding data can easily be damaged by various types of noise,
especially in industrial areas, where the quality of measured data is poor. Most traditional de-noising
methods are ineffective to the low signal-to-noise ratio of data. To solve the above problem, we
propose the use of a de-noising method for the detection of noise in MT data based on discrete
wavelet transform and singular value decomposition (SVD), with multiscale dispersion entropy
and phase space reconstruction carried out for pretreatment. No “over processing” takes place in
the proposed method. Compared with wavelet transform and SVD decomposition in synthetic
tests, the proposed method removes the profile of noise more completely, including large-scale noise
and impulse noise. For high levels or low levels of noise, the proposed method can increase the
signal-to-noise ratio of data more obviously. Moreover, application to the field MT data can prove the
performance of the proposed method. The proposed method is a feasible method for the elimination
of various noise types and can improve MT data with high noise levels, obtaining a recovery in the
response. It can improve abrupt points and distortion in MT response curves more effectively than
the robust method can.

Keywords: magnetotelluric; multiscale dispersion entropy; phase space reconstruction; wavelet
transform; SVD decomposition

1. Introduction

Magnetotelluric (MT) sounding can be used to explore subsurface structures by observ-
ing the natural orthogonal electric and magnetic fields. Compared with controlled-source
signals, natural MT signals have the advantages of a wide frequency range, deep explo-
ration depth, and easy-to-use equipment. Therefore, MT is widely used in many fields,
such as marine exploration, volcano monitoring, and geodynamic interpretation [1–3].
However, during the period of observation, MT data are vulnerable to distortions from
electromagnetic wave emitted by high-voltage lines, communication radio stations, and
underground mining machines around monitoring sites. In general, the intensity of noise
is stronger than that of the MT signal, which can even be completely submerged by cultural
noise, causing isolated points and distortions in apparent resistivity-phase curves, which
are used to image geoelectrical structures. Therefore, it is necessary to improve the continu-
ity and smoothness of the apparent resistivity-phase curves calculated based on impedance
estimation. Two major types of methods are used in the impedance estimation of MT
data according to the processing objects: frequency-domain methods and time-domain
methods. One is an electric and magnetic field spectrum or power spectrum obtained by
time–frequency transform, while the other is the time series of electric and magnetic fields
and is directly observed.
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Least squares estimation [4–6] and the robust method [7–9] are classic frequency-
domain de-noising methods used in MT. There is a high correlation between horizontal
MT signal components; thus, the least squares method, which uses a cross power spectrum,
can eliminate the uncorrelated noise when there is no correlation between the signal and
noise. However, the noise is always correlated with measured data; thus, the improvement
of the traditional least squares method is biased. Based on the least squares method, the
robust method was introduced for MT de-noising and can reduce the weight coefficients
of noise through statistical analysis and coherency [7,10]. Smirnov (2003) proposed the
criteria of the weight coefficient based on repeated median (RM), which is suitable for use
in a strong-noise environment [11]. Chave (2014) introduced the maximum likelihood esti-
mation method, which makes use of the distribution of noise data to calculate weights [12].
However, the robust method is insensitive to correlated noise and dependent on the quality
of the data. In order to reduce noise weight coefficients, the amplitude of the signal must be
far higher than that of the noise [13,14]. For correlated noise, Gamble et al. (1979) proposed
the remote reference (RR) method. However, in industrialized areas such as ore mining
areas, the quality of data is poor, meaning that any improvement made by the RR method
is weak [15–17]. Oettinger et al. (2001) further introduced a signal-to-noise separation
method with two remote reference sites to improve the de-noising ability of the RR method
when used for a single site [18]. However, there has always been no solution to selecting
the location of reference sites and the method is expensive.

In addition to the above-mentioned frequency-domain methods, time-domain meth-
ods can be used to improve the accuracy of impedance estimation. Empirical mode decom-
position (EMD) [19,20] adaptively decomposes signals to intrinsic mode functions (IMFs)
with different frequencies and a residual component. However, there the mode-mixing
phenomenon occurs in EMD. The use of EEMD [21] and CEEMD [22] has been further
proposed, which weakens the effect of mode-mixing, but there are also other problems,
such as the existence of recovery error and the longer computing times needed. The math-
ematical morphological filtering method [23] and sparse decomposition algorithm [24]
are effective only when the selection of parameters in the method is appropriate, which
is affected by human factors that interfere greatly, and it is difficult to suppress multiple
types of noise simultaneously. Morlet et al. (1982) introduced the method of continuous
wavelet transform to signal analysis [25] and a series of mother wavelet transforms was
further proposed [26–29]. Kumar and Foufoula-Georgiou (1997) proposed the application
of discrete wavelet transform to geophysical signal processing [30]. Trad and Travassos
(2000) introduced the wavelet threshold de-noising method based on the distribution of
noise data [31]. Escalas et al. (2013) introduced polarization analysis for processing signals
in wavelet domain in order to separate signals and noise [32]. However, the improvement
of wavelet transform is also dependent on the selection of the parameters, such as the
mother wavelet function and wavelet decomposition levels. Meanwhile, the most common
way to select parameters for a method is through experience or repeated experiments, but
this approach is influenced by subjective factors as well as being time-consuming.

Obviously, these methods are ineffective in improving the quality of data when the
signal-to-noise ratio is low and the selection of the parameters used in methods is inap-
propriate. When the selected parameters are inappropriate, losses of signals can occur,
or the methods may not even be capable of removing noise. Thus, we propose the use
of a de-noising method based on discrete wavelet transform and iterative singular value
decomposition (SVD). In this paper, the traditional SVD is improved by iterative loop that
can extract noise more completely. Combined with discrete wavelet transform, the use
of this method for the identification of various types of noise, including large-scale noise
and impulse noise, is feasible. Meanwhile, multiscale dispersion entropy and phase space
reconstruction are applied in this method to reduce the loss of signal and adaptively select
parameters. To demonstrate the accuracy and stability of the proposed method, the pro-
posed method is applied to process the MT field data of Linze area and Qilian area, China.
Compared with traditional SVD decomposition, wavelet transform and the robust method,
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the proposed method can remove the various noise more thoroughly and obtain the useful
MT response curves, which more truly reflect the subsurface electromagnetic structure.

2. Methods
2.1. Multiscale Dispersion Entropy

In general, compared with natural MT signals, cultural noise is expected to show a
certain direction of polarization. Multiscale dispersion entropy (MDE) can identify the
differences between the signal and cultural noise, and the MDE of cultural noise is smaller
than that of signals. Compared with multiscale sample entropy (MSE), multiscale fuzzy
entropy (MFE), and multiscale approximate entropy (MAE), the calculation of MDE is
simpler and faster [33]. Multiscale dispersion entropy is defined as follows [34,35]:

(1) Time series uj (j = 1, 2, . . . , N) are taken via a coarse graining preprocessing for
non-overlapping segments xb and are obtained as follows:

xb =
1
τ

b∗τ
∑

j=(b−1)∗τ+1
uj, (1 ≤ b ≤ L) (1)

where τ is the scale factor, L = [N/τ] represents the length of the data segment, N is
the length of time series, and [•] is the integral function.

(2) xb is mapped to c classes from 1 to c. First, the normal cumulative distribution function
(NCDF) is employed to map the segment to yb from 0 to 1:

yb =
1

σ
√

2π

xb∫
−∞

e
−(t−rms)2

2σ2 dt (2)

where rms represents the root mean square and σ is the standard deviation (SD) of the
segment, t is the length of observation time in each data segment. A linear algorithm
zb

c = round(c• yb + 0.5) is used for yb to zb
c from 1 to c. Then, the embedding dimension

m and time delay d are introduced to reconstruct zi
m,c as follows:

zi
m,c =

{
zi

c, zi+d
c · · · zi+(m−1)d

c
}

(3)

where i = 1, 2 . . . L−(m−1)d. The number of possible dispersion patterns πv0···vm−1

that can be assigned to each time-series zi
m,c is equal to cm, since the signal has m

members and each member can be an integer from 1 to c. Finally, for each cm potential
dispersion pattern, the relative frequency is defined as follows:

p
(
πv0···vm−1

)
=

Number
{

i
∣∣i ≤ L− (m− 1)d, zi

m,c has type πv0···vm−1

}
L− (m− 1)d

(4)

where p
(
πv0···vm−1

)
represents the number of dispersion patterns πv0···vm−1 that are

assigned to zi
m,c divided by the total number of embedding signals with embedding

dimension m. v0 = zc
i , v1 = zc

i+d . . . , vm−1 = zc
i+(m−1)d.

(3) The MDE is obtained as follows:

MDErms = E(x, τ, m, c, d) = [e1, e2 · · · , eτ ] (5)

where e(x, m, c, d) = −
cm

∑
π=1

p
(
πv0···vm−1

)
× ln

(
p
(
πv0···vm−1

))
represents the dispersion

entropy based on Shannon’s entropy.

2.2. Phase Space Reconstruction

As a part of the chaos theory, phase space reconstruction is applied to indicate the
number of real phase spaces in one-dimensional vectors, such as dynamical systems and
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time series, with differences seen between the correlation of data [36–38]. The algorithm
is employed twice in the proposed method for (1) the selection of wavelet decomposition
levels and (2) matrix construction before SVD decomposition.

Suppose U = {u1, u2 . . . uN}, where N is the length of the signal, is reconstructed to
different phase space vectors xi = {ui, ui+τ . . . ui + (m−1)τ} (i = 1, 2, . . . , m) through the
method of delay, where τ denotes time delay and m is the embedding dimension. Thus,
the two parameters are necessary for the reconstruction. In general, various methods can
be used to obtain τ, such as autocorrelation function [39], experience [40], and mutual
information function [41]. However, compared with the above two methods, the third
method is expected to process non-linear and non-stationary data. For the selection of m in
this paper, false nearest neighbors (FNN) [42] are introduced to obtain m, where m must
satisfy m > 2h + 1 (Takens theory) [43] and h represents the real dimension of attractors.

2.2.1. Mutual Information Function

Consider a general coupled system (S,Q), where [s, q] = [x(t), x(t + τ)] and the entropy
of the system is H. When x is measured at time t, the average uncertainty of x at time t + τ
is defined by averaging H(Q|si) over si as follows:

H(Q|S) = ∑
i

Ps(si)H(Q|si)

= H(S, Q)− H(S)
(6)

where H(Q|s) is the uncertainty of q given a measurement of s and H(S,Q) is the uncertainty
of q in isolation. Thus, the measurement of s that reduces the uncertainty of q is:

I(Q, S) = H(Q) + H(S)− H(S, Q)
= I(S, Q)

(7)

where I(S,Q) is the mutual information of coupled system (S,Q). Thus, mutual information
can be generalized as follows:

In(X0, X1, · · · , Xn) = ∑
j

(
H
(
Xj
))
− H(X0, X1, · · · , Xn) (8)

when the one-dimensional vector is the time-delay reconstruction and the first minimum
in In(τ) is employed as time delay τ.

2.2.2. False Nearest Neighbors

The nearest neighbor of xi = {ui, ui+τ . . . ui+(m−1)τ} by xi
0 = {ui

0, ui+τ
0 . . . ui+(m−1)τ

0}
within a certain distance in m dimensions is denoted. Then, the square Euclidian distance
is as follows:

Ri(m) =

√√√√m−1

∑
j=0

(
ui+j − u0

i+j
)2

(9)

When dimension m increases to dimension m + 1, the distance is expressed as:

Ri(m + 1) =

√√√√m−1

∑
j=0

(
ui+j − u0

i+j
)2

+ (ui+m − u0
i+m)

2 (10)

Then, a1(i, m) is given as follows:

a1(i, m) =
Ri(m + 1)

Ri(m)
(11)

For a1(i, m) ≥ 10, the neighbor is identified as false; in contrast, m is the embed-
ding dimension.
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2.3. Discrete Wavelet Transform

Wavelet transform is defined as continuous wavelet transform (CWT) [44] and discrete
wavelet transform (DWT) [30]. DWT has been introduced in the proposed method, in order
to inversely transform the signal in the wavelet domain into a time series, which is available
for further processing by SVD decomposition. Mother wavelet function and wavelet
decomposition levels are the parameters used in wavelet transform. In MT signals, coifN is
most suitable as the mother wavelet function, where N = 5 obtains a better result [45,46].
Meanwhile, the wavelet decomposition level in the proposed method is calculated using
phase space reconstruction.

The definition of the DWT of u(t) is:

W f (m, n) = λ0
−m/2

∫
u(t)ψ

(
λ0
−mt− nt0

)
dt (12)

Ψm,n(t) =
1√
λ0m Ψ

(
t− nt0λ0

m

λ0m

)
= λ0

−m/2Ψ
(
λ0
−mt− nt

)
(13)

Equation (13) represents the mother wavelet function. m and n are the integers. λ0
is the scale. t is the temporal shift and t0 is initial condition. Wf (m, n) denotes the wave
coefficients, which satisfy the following expression:

A‖ f ‖2 ≤∑
m

∑
n

∣∣∣W f (m, n)
∣∣∣2 ≤ B‖ f ‖2 (14)

where A > 0, B < ∞ are both characteristic constants of the wavelet and the choices of
λ0 and t0 are correlated with them [30]. Thus, the inverse wavelet transform is obtained
as follows:

f (t) =
2

A + B∑
m

∑
n

W f (m, n)Ψm,n + γ (15)

2.4. SVD Decomposition

Suppose that X = [x1
T, x2

T, . . . xn
T]T, where X∈Rm × n. The following formulation of

the SVD method [47] is:
X = USVT (16)

where S =

{
(diag(σ1, σ2, · · · σP), O)T , m > n
(diag(σ1, σ2, · · · σP), O) , m < n

, S∈Rm × n represents a diagonal matrix,

O is the zero matrix, σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, and p = min(m, n), which are the singular values
of X in descending order. U is an m × m matrix, of which the columns are orthonormal. V
is an n × n matrix, of which the rows are orthonormal.

In general, there are two methods for transforming a one-dimensional vector to a
matrix [48]: one involves non-overlapping the signal to N segments, while the other
involves transforming the vector to a HERMIT matrix, where τ is 1. However, the methods
above are special cases in the construction of the matrix and will not eliminate cultural noise
effectively. Thus, the method of delay is applied in this paper; this selects the parameters
τ and m with the consideration of data in different actual situations. Compared with
artificially selected parameters, this method improves the precision and time-consuming
characteristics. Meanwhile, we improve SVD decomposition with the iteration until the
MDE of all components is more than the threshold, which is the termination criterion for
the iteration, to achieve the complete separation of signal and noise.

σi = σi
s + σi

n(i = 1, 2, · · · , k) (17)

Y = Xs + Xn =
[

Us Un
][ Ss 0

0 Sn

][
Vs

T

Vn
T

]
(18)
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where σs
i and Xs represent the effective signal section and σn

i and Xn are the noise section.
The two-norm f =

(
‖∑ Xs‖2

)
min is employed to estimate the signal and the reconstruction

matrix of the signal is expressed as follows:

Xs = UsSsVs
T (19)

where Xs is the average of all the reconstruction matrices. Equations (15)–(18) are repeated
until MDE

(
XS
)
> ε, where ε is the threshold, for which the value is the same as the MDE

in Section 2.1, which is employed to filter noisy data.
The steps adopted in this paper are as follows (in Figure 1):

1. Overlap data to segments to ensure the continuity of the data;
2. Calculate the MDE for each data segment, for which the value below the threshold is

the noisy data segment;
3. Apply phase space reconstruction to calculate the number of wavelet decomposition

level in noisy data segments;
4. Perform discrete wavelet transform and discrete wavelet inverse transform for multi-

ple components;
5. Decompose the components using iterative SVD to obtain the de-noised section;
6. Reconstruct the MT de-noising signal with the useful data segments given in Step 1

and the de-noising data segments given in Step 5, where the average value of the two
segments is adopted for the overlapping data.
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3. Synthetic Cases

To test the effectiveness of the proposed method, various simulated noise was ran-
domly added into natural MT signals with a high signal-to-noise ratio, such as square wave
noise, charge–discharge triangular wave noise, and impulse noise. In order to compare
the recovery results of different methods, we introduced signal-to-noise ratio (SNR), mean
square error (MSE), normalized cross coherence (NCC), and data error (E) to evaluate the
de-noising signals [49,50]:

SNR = 20lg
‖y(n)‖2

‖y(n)− x(n)‖2
(20)

MSE =

√
∑N

n−1(y(n)− x(n))2

N
(21)
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NCC =
∑N

n−1 y(n) · x(n)√(
∑N

n−1 y2(n)
)
·
(

∑N
n−1 x2(n)

) (22)

E =
‖y(n)− x(n)‖2
‖y(n)‖2

(23)

S/N = 20lg
‖y(n)‖2
‖x(n)‖2

(24)

where y(n) represents the de-noised signal, x(n) denotes the original signal, ||•||2 is a
2-norm function, and S/N denotes the level of added noise. The value of 0 dB indicates
that the intensity of the added noise is much stronger than the useful signal, which means
that the noise level is high. On the contrary, 40 dB represents that the intensity of added
noise is low. When S/N is 40 dB, the intensity of the noise is only one percent of the useful
signal, meaning that it has little influence on the useful signal.

As shown in Figure 2, various types of noise (S/N = 0) are added into the synthetic
noisy signal. In Figure 2a, the natural MT signal is measured in Linze Province with a
sampling rate of 15 Hz. Figure 2b shows the addition of square wave noise to the time
series, Figure 2c denotes the addition of charge–discharge triangular wave noise, Figure 2d
shows the addition of impulse noise, and Figure 2e shows the addition of the above various
types of noise. All the noise is added in random positions. Obviously, the useful signal is
completely submerged and its amplitude is far less than that of the noise. Figure 2f–j show
the frequency spectrum of Figure 2a–e. The amplitude shown in Figure 2f is less than the
amplitude shown in Figure 2g,h,j.
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Figure 2. (a) Noise-free MT data, (b) data contaminated by square wave noise, (c) data contaminated
by charge–discharge triangular wave noise, (d) data contaminated by impulse noise, (e) data contam-
inated by various noise. (f–j) is the frequency spectrum corresponding to (a–e). Noise-free MT data
were collected in Linze Province with a sampling rate of 15 Hz. All the noise was randomly simulated.
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3.1. Entropy Analysis

To reduce the loss of signal, multiscale dispersion entropy (MDE) was used to pre-
process the overall data, with noisy data being selected. The MDE was calculated for the
useful signal and noisy signal shown in Table 1 in order to test whether the difference
between different signals could be found. This indicated that there was a sharp gap be-
tween the MDE of noise-free data and that of noisy data, meaning that MDE is capable of
distinguishing different signals. Furthermore, the reason why MDE is more suitable as an
evaluation criterion of noisy data is also shown in Table 1. The multiscale approximate
entropy (MAE) and multiscale fuzzy entropy (MFE) of different signals are approximate
(the difference is less than 0.05); thus, it was difficult to differentiate the noise from the
useful signal. However, there was an obvious difference between the useful signal and
noisy signal in MDE and multiscale sample entropy (MSE). Figure 3 shows their stability
in different conditions. The green dashed line shows the baseline of the MDE, the blue
dashed line shows the baseline of the MSE, and both of the values are shown in Table 1.
The sample points below the baseline are considered to be noisy data. The red solid line
shows the MDE, while the black solid line shows the MSE. The MSE in the useful signal
fluctuates sharply (in Figure 3a). Compared with the data points filtered by the MDE,
there are fewer data points filtered by MSE (In Figure 3b–e). Therefore, the MDE is more
suitable to be used as an evaluation method for distinguishing between signals and noise.
Meanwhile, various types of noise have a different performance of MDE. The signal with
square wave noise has the smallest MDE value, meaning that it is the easiest to be selected
using MDE; the triangle wave is second and the MDE of the signal with the addition of
impulse noise is the closest to that of the useful signal.

Table 1. Entropy values of noise-free data and noisy data.

Different Signals MAE MSE MFE MDE

Noise-free signal 0.2531 1.6493 0.1582 2.7568
With square wave 0.4519 0.9279 0.1369 1.1521
With triangle wave 0.3458 1.3142 0.1174 2.0091
With impulse noise 0.3379 1.5034 0.1041 2.3361
With various noise 0.4323 0.9013 0.1124 1.1055

3.2. Parameter Calculation

After selecting noisy data, the parameters of the method should be calculated. In the
proposed method, the wavelet decomposition level needs to be determined. The whole
data set is divided into different data segments in order to calculate the MDE value for
the evaluation of whether the data segment contains noise; thus, the number of noisy data
segments is different for signals with the addition of different noise. There are six noisy
data segments in the signal with square wave noise. There are 10 noisy data segments in
other signals. The most common method used to determine the wavelet decomposition
level is repeated experiments. In this method, the operator sets the value of the parameter
one by one. To choose the best value, the four signal properties are calculated for each
value. The result of the repeated tests is shown in Figure 4. When the number is 4 or 5, the
improvement is obvious. Thus, the value is set as 4 or 5 by operators through repeated
tests. To verify the reliability of the parameter calculated in the proposed method, the
results determined by the proposed method in different data segments are shown in Table 2.
These values are mainly around 4 or 5, and the same as those calculated by the common
method. In other words, the values of the parameters calculated by the proposed method
are accurate and this method is more efficient.
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3.3. Performance Evaluation

In the section, we analyze the de-noising performance of the proposed method.
Figure 5 shows that the results gained by extracting different types of noise using the
proposed method. In Figure 5a–d, the signal is contaminated with different types of noise
and the noisy data segments are completely selected by MDE with little loss of useful data
around the noise. However, there is an inevitable loss of useful signal, which is overlapped
in the noise, meaning that the noisy signal must be further processed by the proposed
de-noising method. As shown in Figure 5e–h, the profiles of noise are extracted and the
fluctuation of the profile of the noise is decreased after processing by the proposed method.
Compared with processing all the data points, the proposed method with MDE can reduce
the loss of useful signals. In Figure 5i–l, it is indicated that the frequency amplitude of
the noise extracted by the proposed method is same as the amplitude of noisy data (see
Figure 2g–j). Therefore, on the basis of reducing the useful signal, the proposed method
is capable of removing both large-scale noise and impulse noise. However, compared
with the triangular wave noise and impulse noise, the improvement of square wave noise
achieved by the proposed method is better, with less loss of signals.
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Figure 5. Data detected by MDE and the noise time–frequency spectrum extracted by the proposed method. (a) shows the
noisy data selected by MDE in the signal contaminated by square wave noise, (e) indicates the square wave noise extracted
by the proposed method. (b,f) are the results of the signal contaminated by charge–discharge triangular wave. (c,g) denote
the results of data contaminated by impulse noise. (d,h) represent the results of data contaminated by various noise types.
(i–l) are the frequency spectrum corresponding to (e–h).

Figure 6a–j show the time series after eliminating various types of noise using the
proposed method; the corresponding frequency spectrum is shown in Figure 6k–o. Due to
the lack of noisy data, the result of Figure 6f is the same as that of the original signal (see
Figure 6a). The time series after eliminating the square wave noise is shown in Figure 6g,
where it can be seen that the profile of the useful signal is similar to that shown in Figure 6a.
The results after suppressing the triangular wave noise and various other types of noise
are shown in Figure 6h,j. It is evident that there are losses around 500 data point and
2900 data point (see red boxes and blue boxes), with fewer losses seen in Figure 6j. In other
words, when there are various different types of noise in the MT data simultaneously, the
improvement gained by removing triangular waves through the proposed method is better.
Figure 6i shows the time series after eliminating the impulse noise, which is roughly the
same as the noise-free data.
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The improvement results after de-noising through singular value decomposition
(SVD), wavelet transform (WT), and the proposed method (S-W) are shown in Figure 7.
Compared with the results gained using the above two methods for different types of noise,
it can be seen that the proposed method removes the profiles of noise more completely. For
large-scale noise, SVD decomposition and wavelet transform find it difficult to suppress the
interference, with residual noise being left (see blue lines and red lines in Figure 7a–c,j–l).
For impulse noise, the proposed method also achieved better results than the other methods
(In Figure 7d,e). However, compared with the time series seen after eliminating various
types of noise in Figure 7j–l, it can be seen that only subtle differences are achieved
from eliminating one type of noise through different methods. Thus, we introduced the
use of a frequency spectrum to show the differences between the methods (see Figure 8).
Figure 8d–f show the frequency spectrum after impulse noise was removed. The amplitude
is similar because impulse noise has little influence on the frequency domain. For large-
scale noise, obvious differences can be seen in the 0–1 Hz frequency band (see green lines in
Figure 8a–c,g–i,j–l). The amplitude of the spectrum after SVD decomposition and wavelet
transform were performed is greater than that after the proposed method was performed.
In other words, it is difficult for the two above methods to completely suppress various
types of noise.

As shown in Figure 9, four signal properties were calculated to evaluate the de-noising
performance. The green line represents the proposed method, the red line shows the
SVD decomposition, and the black line indicates the wavelet transform. With the increase
in S/N (namely, the level of noise decreased), both the SNR and NCC increased corre-
spondingly and the E and MSE gradually decreased. The values of the signal properties
in the proposed method were always better than those of wavelet transform and SVD
decomposition. Therefore, the proposed method has more advantages for improving the
signal-to-noise ratio.
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Figure 7. The de-noising results obtained after the use of different methods. Black lines represent
the original signal as a reference, blue lines indicate the de-noising results of SVD, red lines denote
the processing results of WT, purple lines show the results improved by the proposed method,
completely covered by black lines. (a–c) show the time series of data contaminated by square noise
after the use of SVD, WT, and the proposed method. (d–f) show the time series of data contaminated
by impulse noise after the above different methods have been used. (g–i) show the time series of
data contaminated by charge–discharge triangular waves after the above different methods have
been used. (j–l) shows the time series of data contaminated by various types of noise after the above
different methods have been used.
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Figure 8. Frequency domain results after the use of the different methods. (a–c) show the spectrum
of data contaminated by square noise after the use of SVD, WF, and the proposed method. (d–f) show
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used. (g–i) show the spectrum of data contaminated by charge–discharge triangular waves after the
above different methods have been used. (j–l) show the spectrum of data contaminated by various
types of noise after the above different methods have been used.
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decomposition and wavelet transform is more than that of the proposed method, showing 
that the signal and noise separation in the proposed method is better and more effective. 

Figure 9. (a) Recovery error (E), (b) NCC, (c) MSE, and (d) SNR of the signals recovered by dif-
ferent methods at different S/Ns. Black line indicates wavelet transform, red line denotes SVD
decomposition, and green line shows the proposed method.

4. Implementation for MT Field Data

In this section, the MT filed data are applied to verify the practicability of the pro-
posed method to improve the MT response, which is measured in Qilian County, Qinghai
Province, with a sampling rate of 15 Hz and a distance between the two sites of 10 km. The
survey area is quite far away from the urban area; thus, the data quality of most of the sites
is good. However, site 380 is close to the industrialized area and the data are contaminated
by various noises, resulting in a low signal-to-noise ratio.

We randomly selected from the sites with high-quality data, and then took site 300 and
site 380 as examples. As shown in Figure 10, the results obtained after removing different
noise levels are compared with the raw time series. In Figure 10a, it can be seen that the
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field data of site 380 are contaminated by square wave noise and triangular wave noise.
Figure 10b shows the profile extracted by the proposed method, which indicates that the
noise is completely abstracted and that the trend of the useful signal is recovered after
processing using the proposed method (see Figure 10a,c). In Figure 10d, the signal-to-noise
ratio of site 300 is high; the data are only contaminated by impulse noise, which can
also be eliminated using the proposed method. Thus, the improvement obtained by the
proposed method is effective, whether the data are measured with a high noise level or a
low noise level.
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and site 280 processed using the robust method and the proposed methods are shown in 

Figure 10. Time series segments of the real sites 380 and 360 in Qilian area with a sampling rate of
15 Hz. (a) Raw signal of Site 380, (b) noise extracted by the proposed method, and (c) signal de-noised
by the proposed method. (d) Raw signal of site 360, (e) noise extracted by the proposed method, and
(f) signal de-noised by the proposed method.

Figure 11 shows the improvement of site 380 through SVD decomposition, wavelet
transform, and the proposed method. However, when large-scale noise is subtracted
in the previous two methods, there is still impulse noise remaining (see Figure 11b–d).
Meanwhile, in the 0–2 Hz (Figure 10f–h) region, it can be seen that the amplitude of the SVD
decomposition and wavelet transform is more than that of the proposed method, showing
that the signal and noise separation in the proposed method is better and more effective.

The apparent resistivity phase curves of site 380, site 360, site 340, site 320, site 300,
and site 280 processed using the robust method and the proposed methods are shown
in Figure 12. There is are high-quality data for site 360, site 320, and site 300, which
is less contaminated by noise. For these sites, the results of the robust method and the
proposed method are almost the same, which indicates that the improvements made by
the proposed method are reliable and reasonable. However, when the measured data are
contaminated with a higher noise level (which is the case for site 340, site 280, and site 380),
the robust method can only improve the fluctuation of some jump points, indicating that
the improvement is weaker than that gained in the proposed method. For poor-quality
data, the proposed method is able to recover the smoothness of the apparent resistivity
phase curves. Although the improvement of the proposed method is more obvious for ρyx
in site 340 and ρxy in site 280, the de-noising curves of two methods for ρxy in site 340 and
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ρyx in site 280 are overlapping, which further verifies the stability and effectiveness of the
proposed method.
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Figure 11. Time series segment of site 380 after the use of different methods. (a) Raw signal of site
380, (b) noise de-noised by SVD, (c) signal de-noised by WT, (d) noise de-noised by the proposed
method, and (e–h) the frequency spectrum corresponding to (a–d).
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Figure 12. Apparent resistivity phase curves of field sites. The red curves represent the results obtained using raw data. The
green curves denote the results obtained using the data de-noised using the proposed method. The blue curves stand for
the results obtained using the data de-noised by the robust method.

5. Conclusions

To solve the MT response distortions caused by high levels of noise, we propose the
use of a de-noising method based on discrete wavelet transform and singular value decom-
position (SVD) that consists of three sections. Firstly, multiscale dispersion entropy (MDE)
selects noisy data to reduce the loss of useful signal. Then, phase space reconstruction
calculates the values of parameters in the method. Finally, discrete wavelet transform and
iterative SVD decomposition realize the signal–noise separation in MT data.

Compared with the traditional SVD decomposition and wavelet transform achieved
in synthetic tests, the proposed method is more able to eliminate various types of noise
without noise remaining. Meanwhile, the data measured in the Qilian area were used to
test the reasonability of the proposed method. Our method improves the quality of the data
measured in the Qilian area. Furthermore, based on the more continuous and smoother
response curves gained using the proposed method than the robust estimation, we can
deduce that the proposed method is more effective and more suitable for improving the
quality of data with a low signal-to-noise ratio.

The proposed method has many advantages for processing poor-quality data; thus,
it can be applied for the de-noising of MT data in environments with strong interference
(such as industrialized areas). In comparison with conventional methods, the parameters
of the proposed method are selected adaptively according to the characteristics of the data
with no need for manual intervention, which reduces the amount of time needed.
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