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Abstract: This work addresses the development of a PAR model in the entire territory of mainland
Spain. Thus, a specific model is developed for each location of the study field. The new PAR model
consists of a combination of the estimates of two previous models that had unequal performances in
different climates. In fact, one of them showed better results with Mediterranean climate, whereas
the other obtained better results under oceanic climate. Interestingly, the new PAR model showed
similar performance when validated at seven stations in mainland Spain with Mediterranean or
oceanic climate. Furthermore, all validation slopes ranged from 0.99 to 1.00; the intercepts were less
than 3.70 µmol m−2 s−1; the R2 were greater than 0.988, while MBE was closer to zero percent than
−0.39%; and RMSE were less than 6.21%. The estimates of the PAR model introduced in this work
were then used to develop PAR maps over mainland Spain that represent daily PAR averages of each
month and a full year at all locations in the study field.

Keywords: photosynthetically active radiation; PAR; modeling; maps

1. Introduction

Photosynthetically active radiation (PAR) is the portion of the solar spectrum that
ranges from 400 to 700 nm [1,2]. This range corresponds to the wavelengths that plants
use to perform photosynthesis. In recent years, there has been a growing interest in
measuring this variable due to its numerous applications in different fields of study, such as
calculations involving gross primary production (GPP) or terrestrial net primary production
(NPP) [3,4]. PAR is also an important variable for estimating the growth of biomass and
microalgae [5–11]. Another example of PAR use is that when designing or choosing a
greenhouse cover, the optical properties of the cover in the PAR range must be taken into
account [12,13]. Therefore, PAR is an interesting variable when assessing the potential
growth of a crop or when determining, in terms of agricultural productivity, which is the
most suitable place.

Radiometric stations that provide PAR measurements are scarce and not always
available at the required location. Thus, PAR estimates provided by satellite products.
such as the Climate Monitoring Satellite Facility (CM-SAF) and the Moderate Resolution
Imaging Spectroradiometer (MODIS). or by empirical models, are often used. For example,
some authors have used Kato bands [14] to develop PAR models [15,16]. Others have
developed multilinear PAR models that include global horizontal irradiance (GHI), global
extraterrestrial irradiance, air temperature, relative humidity, clearness index, skylight
brightness, solar elevation angle, solar zenith angle, dew point temperature, aerosol optical
depth, air mass, total ozone column, total precipitable water, water vapor pressure, or
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saturation water vapor pressure as input variables [17–26]. Non-linear PAR models [27–29]
have also been carried out in previous works.

The variability of solar irradiance and the spatial and temporal variability of the
PAR/GHI ratio have previously been addressed [17,30–32]. Solar irradiance depends
on cloudiness and the presence of aerosols [33]. According to Ångström’s law [34], the
extinction of irradiance due to aerosols is higher for shorter wavelengths. Therefore, the
ultraviolet and visible bands are the bands most affected by the presence of aerosols [35].
Consequently, PAR models are highly dependent on the climatic and atmospheric condi-
tions in which they were developed. Therefore, PAR models only obtain accurate estimates
in locations where the climate and atmospheric conditions are similar to those in which
they were developed.

The present work focuses in PAR modeling in Spain. Previous studies have addressed
this topic [17–19,36,37]. The main climates present in mainland Spain according to the
Köppen–Geiger classification [38–41] are oceanic varieties in northern and northwestern
Spain, Mediterranean varieties in central, eastern and southern areas, arid climates in the
southeast, and mountainous climates in the main mountain ranges of the Iberian Peninsula.

In a previous study [17], two PAR models for mainland Spain were developed using
two different datasets; the first model was developed using the estimates provided by CM-
SAF, while the second was developed using the data set supplied by MODIS. According
to [17], the results of the model that used CM-SAF estimates for its development were
better in the Mediterranean and arid areas. By contrast, the best results in the oceanic areas
were obtained with the model developed from the MODIS estimates.

In the present work, a new daily PAR model is presented that covers mainland Spain.
This new model is developed using a linear combination of the estimates provided by the
two PAR models elaborated in [17]. The model is validated at seven radiometric stations
located on mainland Spain. Next, the estimates supplied by the new model are used to
create the first monthly and annual PAR maps in mainland Spain.

This study is structured as follows. First, the data set employed and the mathematical
tools used to develop the PAR model are described. Next, the results of the validation of
the model with data provided by seven stations located throughout the study territory
are presented. The monthly and annual PAR maps of mainland Spain developed using
the estimates provided by the new PAR model are then shown. The results are discussed
subsequently and, finally, the most significant conclusions are discussed.

2. Materials and Methods

The two models elaborated in [17] used estimates from two satellite datasets—CM-
SAF and MODIS—that cover the location of the Iberian Peninsula, where mainland Spain is
located. The grid of both data sets ranges from 35.3◦N to 44.0◦N in latitude and from 9.5◦W
to 3.5◦E in longitude. The CM-SAF grid had a resolution of 0.1◦ × 0.1◦, while the MODIS
grid had a resolution of 5 km. In particular, the CM-SAF data set corresponded to the
years 1999 to 2011 of the Spectral Resolved Irradiance (SRI) product, which belongs to the
EUMETSAT Satellite Application Facility network [42,43]. On the other hand, the MODIS
data set corresponded to the dates from 1 January 2018, to 31 May 2019 of the MCD18A1-
MODIS/Terra+Aqua Surface Radiation Daily/3 Hour L3 Global 5 km SIN Grid [44] and
MCD18A2-MODIS/Terra+Aqua Photosynthetically Active Radiation Daily/3-Hour L3
Global 5 km SIN Grid [45,46] products.

Both models developed in [17] have the following mathematical structure:

PAR = α·GHI + β (1)

where α and β are specific coefficients for each point of the grid corresponding to mainland
Spain. Thus, both models are valid for the whole study territory, giving specific estimates
for each point.

For the present work, data from seven radiometric stations belonging to the GEOPAR
Project (Project CGL2016-79284-P AEI/FEDER/UE) were used. Figure 1 shows the loca-
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tions of the stations that provided data on GHI, PAR, air temperature, and relative humidity.
Further details of each station can be found in Table 1.
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Figure 1. Location of the stations belonging to the GEOPAR project that provided the data.

Table 1. Details of the location of the seven stations belonging to the GEOPAR project. Note that the
altitude is given in meters above sea level, whereas the latitude and longitude are given in degrees
(◦), where positive values indicate north and east, respectively.

Station Altitude
(m)

Latitude
(◦, +N)

Longitude
(◦, +E) Climate

Álava-NEIKER 520 42.85 −2.62 oceanic
Albacete-ITAP 698 39.04 −2.08 Mediterranean

Asturias-SERIDA 6 43.48 −5.44 oceanic
Córdoba-IFAPA 91 37.86 −4.80 Mediterranean

Lugo-USC 447 43.00 −7.54 oceanic
Salamanca-CIALE 777 40.98 −5.72 Mediterranean
Zaragoza-Aula Dei 226 41.73 −0.81 Mediterranean

Depending on their climate, the stations can be classified into two groups: those
that feature a humid climate (oceanic varieties) and those with a dry climate (Mediter-
ranean varieties). In the first group are Álava-NEIKER, Asturias-SERIDA, and Lugo-USC.
Albacete-ITAP, Córdoba-IFAPA, Salamanca-CIALE, and Zaragoza-Aula Dei belong to the
second group.

As none of the GEOPAR project stations were located in the Spanish archipelagos, the
study field was set to mainland Spain because the climate on the islands is quite particular
and there was no way to validate the estimates of the PAR model in those places.

Daily averages of PAR and GHI data from radiometric stations were collected over
a period of more than two years, specifically from 7 May 2019 to 30 June 2021. This data
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set was randomly divided into two subsets with the same number of recordings. The first
subset was used to train the PAR model, whereas the second subset was used to validate
the model.

To develop the PAR model, an analogous technique to that described in [47,48] was
applied. This methodology consisted of a linear fit between the estimates of the models
developed in [17] from MODIS and CM-SAF and the measurements at the radiometric
stations, as Equation (2) indicates.

PAR = a·PARMODIS Model + b·PARCM-SAF Model + c (2)

where the PARMODIS Model is the estimates from the MODIS model, the PARCM-SAF Model is
the estimates from the CM-SAF model and a, b, and c are the fitting coefficients.

To obtain estimates from the MODIS and CM-SAF models, the coefficients of these
models were linearly interpolated to the coordinates of the location of each station and
then both models were fed with the GHI data measured at the stations to calculate the PAR
estimates. In this way, it is possible to obtain the coefficients a, b, and c that correspond to
each station. Therefore, the fitting coefficients obtained for the location of the stations were
linearly extrapolated on a least-squares approximation of the gradient at the boundary to
each location of the original data grid, in order to obtain a PAR model that covers the entire
territory of mainland Spain.

To validate the new model, its estimates were compared with PAR measurements
in the seven stations. Statistics such as the slope and intercept of the scatterplot between
the PAR estimates and the PAR measurements, the coefficient of determination (R2), the
mean bias error (MBE) and the root mean square error (RMSE) were used to address the
goodness of the models.

slope =
∑n

i=1(PARModel(i)− PARModel)
(
PARMeasured(i)− PARMeasured

)
∑n

i=1
(
PARMeasured(i)− PARMeasured

)2 (3)

intercept = PARModel − slope × PARMeasured (4)

MBE =
1
n

n

∑
i=1

(PARModel(i)− PARMeasured(i)) (5)

RMSE =

√
1
n

n

∑
i=1

(PARModel(i)− PARMeasured(i))
2 (6)

R2 =
σ2

ModelPAR MeasuredPAR
σ2

ModelPAR ∗ σ2
MeasurePAR

(7)

where, PARModel are the estimates of the model, PARMeasured are the PAR measurements,
n is the number of recordings, σ2

ModelPAR MeasuredPAR is the covariance of the measured
and modeled PAR, σ2

ModelPAR is the variance of the modeled PAR, and σ2
MeasurePAR is the

variance of the measured PAR.
The daily PAR average of each month was then calculated using the estimates of the

new model for every point of the grid corresponding to mainland Spain. Similarly, annual
averages of PAR estimates were calculated. In order to make these calculations, monthly
and annual averages of the CM-SAF and MODIS PAR estimates were used to feed the
PAR model.

These monthly and annual PAR averages, estimated using the PAR model, were
subsequently used to develop PAR maps over mainland Spain. To calculate these estimates
from the PAR model estimates, it was necessary to also use estimates from the CM-SAF
and MODIS datasets.

The daily data collected from the seven stations were filtered, eliminating any data that
did not meet any of the following conditions. The PAR/GHI ratio (both variables in W/m2

so that the ratio was dimensionless) was between 0.3 and 0.6, relative humidity between
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0 and 100%, air temperatures between −40 and 60 ◦C, and clearness indexes (kt) between
0 and 1. These criteria were used to discard any data recorded under environmental
conditions outside the tolerance range of the instruments and to discard any data whose
values do not make physical sense (for example, PAR values in µmol m−2 s−1 should be
higher than GHI values in W m−2).

3. Results

After applying the rejection criteria to all the data, the number of remaining records
for each station is shown in Table 2.

Table 2. Number of recordings of each station before and after applying the rejection criteria.

Station Number of Original
Recordings

Number of Recordings
after Filtering

Álava-NEIKER 785 784
Albacete-ITAP 785 783

Asturias-SERIDA 784 779
Córdoba-IFAPA 785 784

Lugo-USC 785 769
Salamanca-CIALE 785 785
Zaragoza-Aula Dei 785 782

Table 2 reveals that in Salamanca-CIALE, all the original recordings passed filtering.
By contrast, the highest number of rejected recordings was in Lugo-USC. The number of
original recordings was 785 in all stations, except in Asturias-SERIDA, where one day of
data was lost.

The filtered data set for each station was randomly divided into two subsets, each
containing the same number of recordings. The first subset was used to develop the PAR
model, whereas the second subset was used to validate the model. The first subset was also
used to calculate the estimates of the CM-SAF and MODIS models of [17] for the location
of each station.

The next step was to develop the PAR model itself. Therefore, the coefficients a, b, and
c were calculated for each station by multilinear fitting according to Equation (2), where
the PAR estimates of the CM-SAF and MODIS models are fitted to real PAR measurements
from the seven stations. Table 3 shows the fitting coefficients for each station.

Table 3. Fitting coefficients a, b, and c for each station.

Station a b c (µmol m−2 s−1)

Álava-NEIKER 0.26 0.79 −9.58
Albacete-ITAP −0.25 1.36 −18.46

Asturias-SERIDA −0.41 1.54 −20.41
Córdoba-IFAPA −0.09 1.18 −13.89

Lugo-USC 1.24 −0.27 −0.71
Salamanca-CIALE 0.34 0.66 −8.02
Zaragoza-Aula Dei 0.29 0.79 −9.77

The fitting coefficients vary from station to station. Therefore, to develop a model
that covers the entire field of study, these coefficients were linearly extrapolated to the
surface of mainland Spain on a grid with a resolution of 5 Km from 35.3◦N to 44.0◦N in
latitude and from 9.5◦W to 3.5◦E in longitude. The coefficients for each point on the grid
are illustrated in Figures 2–4, respectively.
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These coefficients needed to be validated with another data set before developing the
PAR model for the entire mainland of mainland Spain. Therefore, a validation test was
carried out using the validation data subset of the stations.

For this reason, the PAR estimates obtained using the validation data subset were
compared to the real measurements from the stations. That is, the GHI data from the
validation subset were utilized to calculate the assessments of the CM-SAF and MODIS
models; then these assessments along with the corresponding coefficients a, b and c were
used to calculate the estimates of the new PAR model for each station. Finally, the estimates
of the new PAR model were compared with the PAR data measured at each station, as
illustrated by the following scatterplots. Table 4 summarizes all the validation metrics at
each station.

Table 4. Summary of the validation results at each station.

Álava-
NEIKER

Albacete-
ITAP

Asturias-
SERIDA

Córdoba-
IFAPA Lugo-USC Salamanca-

CIALE

Zaragoza-
Aula
Dei

PAR model

Slope 0.99 1.00 0.99 1.00 0.99 0.99 1.00
Intercept 2.28 −0.07 1.26 −0.55 1.74 3.70 1.28

R2 0.997 0.997 0.995 0.997 0.988 0.988 0.998
MBE 0.04 −0.39 −0.17 0.10 −0.02 −0.38 0.06

RMSE 3.19 2.54 4.38 2.47 6.21 5.71 2.25

Figure 5 reveals the linear fit between the estimates of the PAR model and the measured
PAR data, where the red line represents the linear fit. Indeed, the slope is close to the
unit in all the stations, and the intercepts are close to zero, being 3.70 the highest intercept
(Salamanca-CIALE). The R2 obtained is greater than 0.99 in all cases except Lugo-USC and
Salamanca-CIALE, where the R2 is 0.988. The highest RMSE values were also reached at
these two stations, with 6.21% and 5.75%, respectively. Regarding the MBE results, in all
stations, the MBE was close to zero, −0.39% being the highest value (Albacete-ITAP).
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Developing PAR Maps

The PAR model developed in this study was then used to develop, for the first time,
monthly and annual PAR models in mainland Spain. First, the monthly and annual
averages of the daily PAR estimates were calculated using the PAR model. To do that, the
monthly and annual averages of the CM-SAF and MODIS datasets were calculated. As the
resolution of both datasets is different (0.1◦ × 0.1◦ in the CM-SAF case and 5 km × 5 km in
the MODIS case), the CM-SAF grid was resized to have the same resolution in both grids.
This resolution makes this model suitable to conduct generalized or large studies, but
not adequate for more detailed studies. In this way, it was possible to obtain the average
daily PAR estimate for each point on the grid, for every calendar month and for a year.
Next, these estimates were represented on the surface of mainland Spain, as illustrated in
Figures 6 and 7.
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Figure 7. Daily PAR estimates for a year in mainland Spain.

4. Discussion

The PAR model introduced in this work has been validated in seven stations located
throughout mainland Spain with different types of climate (see Table 1), according to
the Köppen–Geiger classification. This model was elaborated as a linear combination
of the two models developed in [17]. These two previous models exhibited different
performances depending on the climate of the location. Thus, while the model developed
from CM-SAF demonstrated good results in places with Mediterranean or dry climates,
the model developed from MODIS obtained its better results in locations with oceanic or
humid climates. The new proposed PAR model has been also compared with three models
proposed by other authors [20,49].

The model proposed in [20] is described in the following equation:

PAR = 2.242·GHI (8)

Different PAR models were proposed by [49] depending of the land use of the site.
One of them was developed for pasture lands and is shown in Equation (9), while the
expression for forest lands is shown in Equation (10).

PAR = 2.023·GHI + 28.557 (9)

PAR = 1.922·GHI + 3.630 (10)

Table 5 illustrates the comparison between the results of the previous models and the
new model, carried out with the validation data set of each station.

Comparing the slopes, the closest value to the unit was obtained with the new model
at every station except at Álava-NEIKER where the closest value was obtained with Aguiar
et al.’s pasture model. Likewise, the intercepts closest to zero belonged to the new model.
By contrast, the results of R2 were similar to those of any of the six models. With regard to
the MBE, the closest values to zero were obtained with the new model except at Albacete-
ITAP and Salamanca-CIALE, where the MODIS model and the CM-SAF model obtained
the closest values to zero, respectively. However, the new model obtained the lowest RMSE
results at all stations.
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Table 5. Comparison between the results of the previous and new model on the seven stations. Note that the intercept is in
µmol m−2 s−1, while the MBE and the RMSE are both in%.

Álava-
NEIKER

Albacete-
ITAP

Asturias-
SERIDA

Córdoba-
IFAPA

Lugo-
USC

Salamanca-
CIALE

Zaragoza-Aula
Dei

CM-SAF model

Slope 0.93 0.92 0.91 0.93 0.94 0.96 0.89
Intercept 13.23 13.72 16.05 12.13 15.84 16.77 13.22

R2 0.997 0.997 0.995 0.997 0.987 0.987 0.998
MBE 3.16 4.72 3.82 4.34 1.45 0.13 7.45

RMSE 6.07 6.46 8.15 5.90 7.59 5.99 9.43

MODIS model

Slope 1.02 1.01 0.96 1.02 1.01 1.04 0.99
Intercept 2.99 −1.60 6.81 0.71 6.30 4.14 1.19

R2 0.997 0.996 0.994 0.997 0.988 0.987 0.998
MBE −2.75 −0.25 1.32 −1.91 −2.83 −4.63 0.58

RMSE 4.52 3.11 5.46 3.40 7.19 7.87 2.52

Escobedo et al.,
2009 model

Slope 1.11 1.10 1.07 1.10 1.10 1.13 1.06
Intercept 3.77 4.96 4.07 5.80 6.49 10.93 8.13

R2 0.998 0.998 0.999 0.996 0.989 0.987 0.998
MBE 12.18 10.87 8.38 11.10 12.32 16.02 8.32

RMSE 14.12 11.96 9.79 12.31 15.64 18.60 9.26

Aguiar et al.,
2012 pasture

model

Slope 1.00 0.98 0.97 0.99 0.99 1.02 0.96
Intercept 31.81 35.05 31.96 34.60 35.83 38.17 36.25

R2 0.998 0.998 0.999 0.996 0.987 0.986 0.998
MBE 9.96 6.76 8.09 6.87 10.37 12.04 4.94

RMSE 10.30 7.08 8.62 7.45 12.42 13.51 5.82

Aguiar et al.,
2012 forest

model

Slope 0.95 0.94 0.92 0.94 0.94 0.98 0.91
Intercept 6.79 9.73 7.00 8.97 9.69 11.89 10.17

R2 0.998 0.998 0.999 0.996 0.986 0.987 0.998
MBE −2.63 −4.17 −5.59 −3.89 −2.80 0.57 −5.91

RMSE 4.64 5.41 7.86 5.32 8.15 5.91 7.67

New model

Slope 0.99 1.00 0.99 1.00 0.99 0.99 1.00
Intercept 2.28 −0.07 1.26 −0.55 1.74 3.70 1.28

R2 0.997 0.997 0.995 0.997 0.988 0.988 0.998
MBE 0.04 −0.39 −0.17 0.10 −0.02 −0.38 0.06

RMSE 3.19 2.54 4.38 2.47 6.21 5.71 2.25

Furthermore, the results of the new model were similar at all stations: all the slopes
were close to the unit; all the intercepts were close to zero, with 3.70 µmol m−2 s−1 being
the highest value (at Salamanca-CIALE); similarly, all the MBEs were close to zero, with
−0.39% being the highest value (at Albacete-ITAP); and the highest RMSE was 6.21%
(at Lugo-USC). According to these results, the new model showed no clear tendency as
evaluated with these datasets and its performance was similar on every station, regardless
of the climate. This result is a consequence of the combination of two previous models.
One of them performed well in Mediterranean climates, while the second model obtained
good results for oceanic climates.

With regard to the PAR maps, they were developed using the new PAR model in-
troduced in this study. As expected, PAR irradiance levels increase during the summer
months and decrease during the winter months. However, some trends and features
remain the same every month. For example, PAR maximums are always reached in the
southeast and central areas of the Iberian Peninsula along with the Guadalquivir and
Ebro valleys. However, minimums of PAR irradiance were reached in northern areas of
the Iberian Peninsula and mountain ranges, such as the Pyrenees, the Central Range, the
Iberian Range, and the Betic Range. Furthermore, the same features are noted on the annual
PAR map, where the minimums and maximums of PAR irradiance are reached in the same
areas. Surprisingly, there are locations on mountain ranges, particularly in the Pyrenees in
winter months, that the model significantly underestimates, producing a result near zero.
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This phenomenon could be related to the slope of the terrain as the sensors of the optical
images used to obtain satellite estimates experience difficulties with the angle of incidence
of the reflectance [50–52]. The presence of snow can cause underestimations as well, as
it could affect the reflectance. This indicates an aspect of this PAR model that requires
improvement, which may become the subject of future study.

These maps can be viewed and the PAR values for each location can be consulted at
https://par.ceta-ciemat.es/en/geopar-maps/ (accesed on 15 October 2021). However, use
is subject to the terms and conditions of the website.

5. Conclusions

A new PAR model has been introduced for Spanish territories. This new model
was developed for each point of the field study from two previous models as a linear
combination of their estimates. The model was validated at seven stations in Spain, four of
them with Mediterranean climates and the remaining three with oceanic climates.

The most significant contribution of this study is the development of a PAR model
that is suitable for any location in mainland Spain, regardless of its climate, to develop
the first PAR maps over Spain. These maps graphically show daily PAR averages at all
locations for each month and for the whole year.
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