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Abstract: Clutter suppression is a challenging problem for passive bistatic radar systems, given the
complexity of actual clutter scenarios (stationary, time-varying and fractional-order clutter). Such
complex clutter induces intense sidelobes in the entire range-Doppler plane and thus degrades
target-detection performance, especially for low-observable targets. In this paper, a novel method,
denominated as the batch version of the extensive cancellation algorithm (ECA) in the frequency
domain (ECA-FB), is presented for the first time, to suppress stationary clutter and its sidelobes.
Specifically, in this method, the received signal is first divided into short batches in the frequency
domain to coarsen the range resolution, and then the clutter is removed over each batch via ECA.
Further, to suppress the time-varying clutter, a Doppler-shifted version of ECA-FB (ECA-FBD) is
proposed. Compared with the popular ECA and ECA-B methods, the proposed ECA-FB and ECA-
FBD obtained superior complex clutter suppression and slow-moving target detection performance
with lower computational complexity. A series of simulation and experimental results are provided
to demonstrate the validity of the proposed methods.

Keywords: passive bistatic radar; complex clutter; subband processing; low-observable target detection

1. Introduction

The development of effective and low-cost surveillance sensors to detect and iden-
tify the moving objects approaching important infrastructure finds its place among the
major challenges of the last decades. With tremendous advances in hardware and signal-
processing technology, radar has the potential to obtain target-detecting information that
can provide far-distant sensing abilities in all-weather and light conditions [1,2]. Particu-
larly, passive bistatic radar (PBR) has drawn substantial interest as airspace and ground
surveillance sensors in civilian and military fields, owing to their several advantages [3–5].
Absent dedicated transmitter equipment, PBR is significantly less expensive, invisible, and
non-electromagnetic [6,7]. Additionally, readily available transmitters, such as frequency
modulation (FM) [8,9], digital audio broadcast (DAB) [10,11], digital television terrestrial
multimedia broadcasting (DTMB) [12,13] and long-term evolution (LTE) [14,15], are tilted
towards the ground to illuminate their signals, which confers to PBR systems low-altitude
and ultra-low-altitude detection capabilities [16,17].

In PBR systems, the target detection is performed by calculating the cross-correlation
function between the Doppler-shifted version of the time-delayed reference signal and
surveillance signal, i.e., a cross-ambiguity function (CAF) [5,18]. The reference signal,
accessed by using a separate and specialized antenna aimed towards the illuminator, is
a noisy replica of the direct path signal. Generally, due to a particularity of PBR systems,
the reference signal is not subject to the PBR designer. Its specific structure type and inher-
ent autocorrelation feature may lead to unwanted peaks and sidelobes in the ambiguity
function (AF) [19,20]. These sidelobes often have a level not much lower than the main
peak, which may raise the range-Doppler (RD) pedestal, and thus degrade the detection
probability.
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In general, the surveillance signal is collected via an antenna pointed at specific
objects in the airspace of interest. Nevertheless, a small fraction of the direct path signal
from the illumination and a series of complex clutter will also be inevitably received
by the surveillance antenna [21,22]. Particularly, the complex clutter is characterized by
the following properties: (1) Stationary clutter; the clutter is formed by the reflection of
stationary objects, such as buildings, hills, and ground, consisting of the time-delayed
copies of the reference signal without Doppler shift [4,23,24]. (2) Time-varying clutter;
in fact, when the PBR operates in a slow-movement environment (e.g., shrubs, lakes, or
sea), clutter may present some spread in the Doppler spectrum and is no longer regarded
as stationary [25,26]. (3) Fractional-order clutter; which is an extension of the above two
types of clutter. In practice, the delay of stationary and time-varying clutter may not be
an integer multiple of the sampling period, and the clutter can be occupied at delays in
between sample points, distributed across delay bins [27]. The energy of these undesired
clutter components is much greater than the target echo. Therefore, after the calculation of
CAF, the target will be completely masked by the mainlobes and sidelobes, resulting from
direct path signal and complex clutter. In addition, the effect of sidelobes is extended the
entire RD plane due to the transmitted signal being a continuous wave, which is different
from conventional pulse radar. Hence, clutter suppression is particularly crucial for PBR
systems to mitigate the masking effect. Note that the direct-path signal can be regarded as
strong stationary clutter because they have a similar influence in the RD plane.

At present, a variety of methods have been developed for clutter removal with dif-
ferent perspectives, which can be divided into three primary kinds. First, spatial filtering
is one of the most commonly applied techniques because it allows for generating nulls in
the directions of all clutter [28–30]. However, due to the diffuse reflection effect, clutter
will expand in the azimuth and occur in the same beam with the target, introducing per-
formance loss. The second kind is temporal filtering techniques, in which the extensive
cancellation algorithm (ECA) [20,31] and its batched version (ECA-B) [16,26,31] are widely
employed for different PBR prototypes. The main idea of ECA is that the surveillance signal
is projected into an orthogonal subspace formed by a great deal of time-delayed reference
signals, and then the filters’ coefficients can be estimated over by averaging over the whole
coherent processing interval (CPI). However, the method requires a large calculation and
storage cost. Further, considering the time-varying clutter suppression, increasing the
subspace dimensions with the Doppler shift is much more costly. Subsequently, to acquire
better cancellation performance, the ECA-B is proposed via updating the filter weights
in each batch duration. While ECA-B can reduce the cost to some extent and against the
time-varying environment, it will yield periodical peaks deriving from the slowly moving
targets and clutter and remove far-distance targets with small Doppler shift. In addition,
the sliding version (ECA-S) [26] is proposed to counteract the limitation of ECA-B by setting
two overlapped batches’ durations. All three methods are based on the construction of a
large-dimensional subspace in the time domain, which means these methods demand high
computational and memory loads for specific clutter rejection, as they involve cumbersome
matrix operation. Thus, fractional delays are not considered in the experimental scenario
of these methods.

Meanwhile, a generalized subband cancellation (GSC) [32] method is proposed to
remove fractional-order clutter by replacing the temporal shift operation with the linear
phase modulation in the frequency domain. The essence of this method is still to construct
a complete clutter subspace. In addition to being aimed at reducing computational and
memory burdens, the ECA by carrier (ECA-C) [33] and its extension ECA by the carrier
and Doppler shift (ECA-CD) [25,34] are developed. The undesired components are rejected
in each subcarrier with small cost. However, this type of method is only suitable when the
transmitted signal adopts an orthogonal frequency division multiplex (OFDM) modulation
with cyclic prefix (CP-OFDM), and thus has great limitations.

To tackle the aforementioned problems, we first present an advanced version of the
ECA for stationary clutter (including fractional and integer order) suppression. This
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method divides the received signal into short portions in the frequency domain and then
estimate the clutter coefficients over each portion via ECA. The method can be regarded
as the batch version of ECA in the frequency domain, so we named it ECA-FB. Its core is
that the PBR range resolution is dependent on the signal bandwidth; the division in the
frequency domain means that the range resolution becomes coarser. Therefore, the ECA-
FB allows a wider cancellation notch in the range dimension, since the received signal is
processed in short batches in the frequency domain. Secondly, we further present a Doppler-
shifted version of the ECA-FB (ECA-FBD) for the rejection of time-varying clutter. The
ECA-FBD is equivalent to adding Doppler shift to the clutter subspace formed by ECA-FB.
Therefore, it allows suppressing the time-varying clutter with specific Doppler distribution
characteristics. Besides, since the division of the signal frequency spectrum will make the
range resolution coarser, the fractional-order clutter can also be effectively suppressed
in this paper. The effectiveness of the presented methods is evaluated by numerical and
measured data collected from FM- and DTMB-based PBR systems. Generally speaking,
the proposed methods can achieve superior suppression performance compared with
ECA and ECA-B, with a lower computational complexity and memory burden, which is a
remarkable advantage for PBR real-time signal processing.

The remainder of the paper is organized as follows. The signal model is introduced,
and the problems faced are analyzed in Section 2. Section 3 analyzes the limitation of
popular methods, ECA and ECA-B, respectively. The proposed methods are elaborated in
Section 4. The computational costs of the proposed methods are investigated in Section 5.
In Sections 6 and 7, the effectiveness of the proposed methods is verified by simulated and
measured data, respectively. A relevant summary and conclusions are given in Section 8.

2. Signal Model and Problem Analysis

In this section, the signal model with different clutter types is established, and its
effect on range-Doppler processing is analyzed.

2.1. Signal Model

A typical PBR system scenario under the complex clutter environment is constructed
in Figure 1a. Additionally, as a new system radar, the typical PBR system signal processing
scheme is also given in Figure 1b. We suppose that the transmitter is an omnidirectional
antenna in the azimuth angle and the PBR receiver consists of two types of antennas: the
dedicated reference antenna steers towards the illuminator and the surveillance antenna
pointed in the airspace to be detected.

Assuming that the illuminator transmits a narrow signal w(t) with bandwidth B, after
the down-conversion, the complex envelope of reference signal is given as

r(t) = arw(t) + nr(t) (1)

where ar is the complex altitude and nr(t) is the white Gaussian noise.
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Figure 1. PBR system model: (a) observation scenario; (b) signal processing scheme.

For the representation of surveillance signal, different contributions are considered in
this paper. Since the commonly used illuminators operate at U/V band, the complex clutter
can be regarded as a collection of multiple discrete scatterers, which mainly causes powerful
reflections [31]. Hence, the continuously and densely distributed clutter backscattering
environment can be emulated by the reflections of a great deal of such scatterers. The
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surveillance signal contaminated by stationary clutter is first analyzed following the above
assumption, and its complex envelope is shown as

s(t) = a0w(t) +
Nc

∑
i=1

aiw(t− τci) +
Nt

∑
m=1

bmw(t− τm) exp(−j2π ftmt) + ns(t) (2)

where a0 is the complex altitude of the direct path signal by the side/back lobe of the
surveillance signal. ai and τci are the complex amplitude and the propagation delay (in
respect to direct path signal) of ith stationary scatterer component, respectively. Particularly,
the delays τci involve fractional and integer multiple of the sampling period. Nc is the
number of scatterer components. bm, τm and ftm are the complex amplitude, delay and
Doppler frequency shift of the mth target, respectively. Nt is the target number. ns(t) is the
white Gaussian noise term in the surveillance signal.

Considering the time-varying environment, the surveillance signal is also influenced
by the slow-moving clutter. Compared with stationary clutter, the time-varying clutter
is characterized by the nonzero Doppler spectrum, i.e., clutter scatterers distribute in a
specific velocity scope with zero center [16,35]. Thus, the time-varying clutter can be
represented by a set of continuous frequency components around the zero-Doppler, as
follows

y(t) =
Np

∑
p=1

exp(−j2π fcpt)
Nq

∑
q=1

cpqw(t− τpq) (3)

where fcp is the spread Doppler frequency; cpq and τpq are the complex amplitude and delay
of the qth time-varying clutter with doppler shift fcp, respectively. Similarly, τpq involves a
fractional and integer multiple of the sampling period. Np·Nq is the number of scatterers.

2.2. PBR Target Detection

In PBR systems, the target detection method, i.e., CAF, is based on the optimal matched
filter concept. The Doppler-shifted version of the time-delayed reference signal is used
to generate a bank of parallel filters [6,36]. Each filter matched to a target at delay τ and
Doppler frequency fd. Therefore, the CAF is also called as range-Doppler processing, and it
can be given as

χ(τ, fd) =
∫ T/2

−T/2
s(t)r∗(t− τ) exp(−j2π fdt)dt (4)

where T is integration time.
Performing a Fourier transform on (4), another form of CAF can be obtained,

χ f (τ, fd) =
∫ B/2

−B/2
S∗( f )R( f − fd) exp(j2π f τ)d f (5)

where S(f ) and R(f ) are the corresponding frequency-domain form of s(t) and r(t).
A matched filter receiver can enhance the target detection performance. The target

range and velocity information can be evaluated by finding the maximum of the detection
function (4) and (5). However, when the complex clutter is present in surveillance signal,
the target is completely undetectable owning to the extensive range-Doppler spreading of
clutter sidelobes.

3. ECA and ECA-B Analysis
3.1. ECA Analysis

In PBR, the ECA [20,31] is a widely used method for clutter suppression, since the
filter coefficients are estimated without an iteration convergence process. The ECA operates
by projecting the surveillance to the orthogonal subspace formed by different Doppler-shift
versions of the time-delayed reference signal. Each vector in this specific clutter subspace
corresponds to a clutter component to be removed. Its principle is described as follows.
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In general, the PBR operates with signals sampled with a sampling rate fs. The nth
sample is taken at time n/fs, and we can write the samples s(t) as

s = [s[0], s[1], · · · , s[N − 1]]T (6)

where N = T·fs is the number of samples within the CPI, [·]T is the transpose operator.
The samples of reference signal r(t) can be given as

r = [r[−D + 1], r[−D + 2], · · · , r[0], r[1], · · · , r[N − 1]]T (7)

where D-1 is the number of additional samples to ensure the desired integration over an
extent of D time-delayed bins.

Subsequently, the projecting subspace is generated as

X = Γ[Λ−FRref, Λ−F+1Rref, · · · , Λ0Rref, · · · , ΛFRref] (8)

where Γ is the incidence matrix ensuring that only the last N rows of the following matrix
are considered, which is shown as

Γ = {Γmn}
m=1,··· ,N
n=1,··· ,N+D−1

, Γmn =

{
1 m = n− D + 1

0 otherwise
(9)

ΛF is a diagonal matrix which is applied to add the Doppler shift information.

ΛF= diag[1, exp(j2 πF), · · · , exp(j2πF(N + D− 1))] (10)

And rref is zero-Doppler projecting subspace written as

Rref = [R,ηR,η2R, · · · ,ηK−1R] (11)

where Γ is a permutation matrix to generate a one-sample-delayed reference signal matched
to a clutter scatterer, defined as

η = {ηmn}m,n=1,··· ,N+D−1,ηmn =

{
1 m = n + 1
0 otherwise

(12)

Therefore, a (2F + 1)K-dimensional clutter subspace is defined based on the columns
of X. By resorting to least square (LS) criterion, the filter weight to be estimated is calcu-
lated as

α = (XHX)
−1

XHs (13)

where [·]H is Hermitian transpose operator. Therefore, the surveillance signal without
clutter is achieved as

ssur = s− Xα (14)

Generally, the ECA is able of accurately estimating the clutter coefficients under the
condition of enough CPI. Nevertheless, the construction of a subspace requires correspon-
dence with every possible scatterer. Thus, the subspace dimension is usually extremely
large, due to the complexity of the practical propagation environment, i.e., the multipath
clutter is distributed over a mass of range cells. The vast computational complexity and
memory cost pose a serious challenge to engineering implementations of ECA. Therefore,
the ECA is only performed in the case of stationary clutter.
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3.2. ECA-B Analysis

In order to improve the PBR’s adaptability to time-varying clutter environment, the
ECA-B [26,31] is proposed. Assuming that the signal is divided into LB batches, each batch
contains NB = N/LB samples. The suppression result of the lth batch can be given as

ssur−l = sl − X̂l α̂l (15)

where X̂l represents the subspace in each batch, which is only consisted of time-delayed
rl; α̂l is the filter coefficient in each batch. As the filter coefficients are updated in a short
duration, the cancellation notch is extended in the frequency domain, which produces two
improvements. The first is that the system becomes capable of rejecting time-varying clutter.
Then, and secondly, the computational cost is relatively reduced, due to the subspace’s
dimensional reduction.

However, the ECA-B method still has the following limitations. Firstly, due to the
non-satisfactory cancellation notch feature in the frequency domain, i.e., the transition
band falls slowly, the effective width (stop band) of the cancellation notch in the frequency
domain is less than 1/TB, where TB is the batch duration. Figure 2 shows the frequency
selectivity (the cancellation notch feature in frequency domain) of the ECA-B with different
batch durations. In Figure 2, an FM signal is simulated as the direct path signal, at the
sampling rate and CPI are fs = 200 kHz and T = 1 s, respectively. It can be shown that, to
remove the clutter with a Doppler spectrum bandwidth of 1/TB, the received signal should
be divided into smaller batches. However, a smaller batch duration will cause a series of
periodic peaks and reduce the target SNR simultaneously; in the case of the slow-moving
target, this is close to the transition zone. Figure 3 shows the RD result of a target located
in the transition-band in which periodic peaks occur, seriously degrading the detection
probability. In Figure 3, the batch duration TB is 10 ms, and the target is located at −28 Hz
and in the 50th range bin.

In an actual clutter environment, an interesting feature of the time-varying clutter is
that it is spread in the velocity direction for short ranges. For longer ranges, the clutter
energy is distributed in the zero-velocity resolution cell [4]. Therefore, when a distant target
has the same Doppler characteristics as short-range clutter, the target will be removed.
Figure 4 shows the distribution characteristics of the complex clutter, where the data
is received via DTMB-based PBR system. Note that the time-varying clutter spectrum
is presented after the stationary clutter is suppressed, since the sidelobes of the strong
stationary clutter will mask the time-varying clutter.

Figure 2. The frequency selectivity of ECA-B with different batch duration.
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Figure 3. RD result after ECA-B clutter suppression with a batch duration TL = 10 ms.

Figure 4. Complex clutter (stationary time-varying clutter) spectrum of measured DTMB data: (a) stationary clutter;
(b) time-varying clutter.

Additionally, both the ECA and ECA-B methods are temporal filters, as the constructed
large-dimensional subspace in the time-domain cannot fully represent all the actual clutter
characteristics, such as fractional-order clutter. Hence, the clutter suppression performance
is further limited.

4. Complex Clutter Suppression via ECA-FB and ECA-FBD

In order to achieve better clutter cancellation performance with limited computational
cost, a novel ECA-FB method and its enhanced version, ECA-FBD are proposed. The
detailed process is introduced as follows.

4.1. ECA-FB

From the implementation of ECA-B, we can conclude that the cancellation notch is
extended in the frequency domain by dividing the receiving signal into small batches.
Therefore, the time-varying clutter can be removed without increasing the subspace di-
mension. Inspired by ECA-B, we developed a batch version of the ECA in the frequency
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domain (ECA-FB) to cope with stationary clutter. Specifically, in this method, the received
signal is divided into a set of consecutive short fragments (subbands) in the frequency
domain, then the ECA is performed to subtract the stationary clutter component from the
surveillance signal without the construction of clutter subspace.

Performing a discrete Fourier transform (DFT) on the surveillance and reference
signals, the surveillance signal in Doppler frequency domain is represented as

S[g] = a0W[g] +
Nc

∑
i=1

aiW[g] exp(−j2πgnτci /N) +
Nt

∑
m=1

bmW[g− g fdm
] exp(−j2πgnτm /N) + Ns[g] (16)

where W[g] is the Doppler spectrum of direct path signal, g = 1, · · · , N is the normalized
Doppler unit corresponding to the Doppler frequency; nτci is the normalized delay unit of
ith clutter with delay τci, nτci = τci · fs; g fdm

and nτm are the normalized Doppler and delay
unit of the mth target with Doppler fdm and delay τm,nτm = τm · fs.

The reference signal in Doppler frequency domain is given as

R[g] = arW[g] + Nr[g] (17)

Assuming that the signal bandwidth is B, the signal S[g] and R[g] are subsequently
divided into a set of consecutive short fragments (subbands) with bandwidth BL. Each
subband contains NL samples. The lth subband signal is expressed as

Sl [g] =
Nc

∑
i=0

aiWl [g] exp(−j2πgnτci /N) +
Nt

∑
m=1

bmWl [g− g fdm
] exp(−j2πgnτm /N) + Nsl [g] (18)

Rl [g] = arWl [g] + Nrl [g] (19)

where l = 1, 2,· · · , L; g = 1,2,· · · , NL, L is the number of subbands. Note that the direct
path signal and stationary clutter are merged in (18), nτc0 = 0 denotes the delay of the
direct-path signal.

In PBR field, the range resolution ∆R [37] is related to the signal bandwidth, as follows

∆R =
c

2B cos(β/2)
(20)

where c is the light speed; β is the bistatic angle.
It can be seen from (20) that the division of signal subbands will coarsen the range

resolution ∆R. The range resolution in each subband will be further written as

∆RL =
c

2BL cos(β/2)
(21)

When the number of signal subbands is large enough, so that the coverage of the range
resolution ∆RL exceeds the maximum clutter distance, all the stationary clutter will occupy
only one degree of freedom (DOF) in each subband. As a consequence, the influence of
stationary clutter (including fractional-order clutter) can be regarded as exactly the same
for all the frequency component at the same subband, and thus the lth subband surveillance
signal can be written as

Sl = Wl

Nc

∑
i=0

ai exp(−j2πgnτci /N) +
Nt

∑
m=1

bm exp(−j2πgnτm /N)W fdm
l

+ Nsl (22)

From (22), it is clear that the spectrum W l of each subband is independent of its
delay to the direct path signal. Accordingly, the contributions of series of clutter for each
frequency component g at the same lth subband can be combined to a complex amplitude
correlated with W l. In particular, we pay more attention to the subband surveillance signal;
since the Doppler shift is derived from the target movement, the target signal spectrum
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W fdm
l can be regarded as uncorrelated with W l. Therefore, applying the ECA to reject

stationary clutter in each subband, the corresponding outputs are shown as

Ssur−l = Sl − X̃l α̃l (23)

where X̃l is the subspace to projecting the subband surveillance signal Sl. Since the DOF of
clutter is limited to 1, the subspace X̃l can be regarded as the subband reference signal Rl,
formed by just one vector with the dimension NL × 1, as follows

X̃l = [Rl [0], Rl [1], · · · , Rl [NL − 1]]T (24)

which means the clutter coefficient α̃l to be estimated is a complex constant. Thus, the
ECA-FB can achieve an improved rejection of stationary clutter with significantly reduced
computational and memory burden, especially for dense stationary clutter distributed
over large distances. Finally, all the subband surveillance signals, after stationary clutter
suppression, are recombined Ssur = [Ssur-0, Ssur-1, · · · , Ssur-L-1], and therefore coherent
integration is performed to achieve target information via (5).

Supposing that the stationary clutter order is 100 in the surveillance signal, we per-
form ECA-FB with the different number of subbands to illustrate the performance of the
algorithm. The corresponding RD results at the zero Doppler cut are given in Figure 5,
from which we can find that the more subbands, the wider the cancellation notch formed
by ECA-FB.

Figure 5. Zero Doppler cut of RD result after clutter cancellation via ECA-FB with different sub-
band numbers.

4.2. ECA-FBD

Assuming that the PBR operates in a specific environment (shrub, lake, or sea), the
clutter may present a narrow but nevertheless nonzero spectral width, which cannot be
completely stationary. Therefore, to suppress such time-varying clutter, we further propose
a modified ECA-FB method with Doppler extension (ECA-FBD).

Firstly, after stationary clutter suppression, the surveillance signal contaminated by
time-varying clutter in the frequency domain can be written as

S̃sur =
Np

∑
p=1

Nq

∑
q=1

cpq exp(−j2πgnτpq /N)Wfcp +
Nt

∑
m=1

bm exp(−j2πgnøm /N)Wfdm + Nt (25)

where g fcp and nτpq are the normalized Doppler and delay unit of the Doppler fcp and delay
τpq; Nt is the combination of noise and residual clutter.
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In (25), it is obvious that the time-varying clutter can be regarded as a collection of
multiple time-delayed scatterers at a specific Doppler frequency shift, fcp. Meanwhile, from
the previous section, we know that the division of subbands can limit the DOF of clutter
in the range dimension. Therefore, the time-varying projecting subspace can be formed
by adding a continuous Doppler shift to the stationary clutter subspace X̃l . Specifically,
in ECA-FBD method, the surveillance signal S̃sur in (25) and reference signal R in (17)
are redivided into LD subbands to limit the DOF of the time-varying clutter in the range
dimension. The projecting subspace in the lth (l = 1,2,· · · , LD) subband is given as follows

X̃D−l = [η̃−Rl , η̃
2
−−Rl , · · · , η̃F

−−Rl , η̃+Rl , η̃
2
+−Rl , · · · , η̃F

+−Rl ] (26)

where η̃− and η̃+ are the left and right permutation matrix to generate different Doppler
shift features in frequency domain, respectively, defined as

η̃− = { η̃−mn}m,n=1,··· ,NLD−1, η̃−mn =

{
1 n = m + 1
0 otherwise

(27)

η̃+ = { η̃+mn}m,n=1,··· ,NLD−1, η̃+mn =

{
1 m = n + 1
0 otherwise

(28)

where NLD is the length of subband signal.
Therefore, a 2F-dimensional time-varying clutter subspace is defined based on the

columns of X̃D−l . By resorting to LS criterion, the filter coefficients can be estimated and
thus mitigate the time-varying clutter.

Noted that in ECA-FBD, the number of Doppler extension F and the number of
subbands LD can be set flexibly to adapt different time-varying environments. Usually,
LD < L, due to the Doppler-shifted clutter being distributed over short ranges, as shown
in Figure 4; otherwise far-distant targets with the same Doppler shift will also be sup-
pressed. Therefore, the ECA-FBD is considered a cascade method of ECA-FB in the
presence of a time-varying clutter environment. Additionally, the summarized framework
of the proposed method is given in Algorithm 1 while the flowchart is shown in Figure 6.

Algorithm 1. The main processes of the proposed methods

1
Input: Original surveillance signal s(t) and reference signal r(t), subbands number L, LD and
Doppler extension number F.

2 Discrete Fourier transform: Apply DFT on s(t) and r(t) to obtain S(g) and R(g), respectively.
3 Subband division: Divide the signal S[g] and R[g] into L fragments with bandwidth BL.
4 Stationary clutter suppression: Go through each l in [1, L] to conduct ECA operation.
5 For l = 1, · · · , L do
6 Construct the one-dimensional clutter subspace X̃l = [Rl [0], Rl [1], · · · , Rl [NL − 1]]T via (24).
7 Estimate the clutter coefficient α̃l .
8 Subtract the stationary clutter component to obtain the clutter suppressed signal Ssur-l.
9 end
10 Subband synthesis: Recombine the subband signal to achieve Ssur.
11 Subband redivision: Redivide the signal Ssur and R into LD fragments.
12 Time-varying clutter suppression: Go through each l in [1, LD] to conduct ECA operation.
14 For l = 1, · · · , LD do

15 Construct the clutter subspace X̃D−l = [η̃−Rl , η̃
2
−Rl , · · · , η̃F

−Rl , η̃+Rl , η̃
2
+Rl , · · · , η̃F

+Rl ] via
(26)–(28).

16 Subtract the time-varying clutter component.
17 end

18
Output: Recombine the subband signal after removing time-varying clutter and then output
it for coherent integration.
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Figure 6. Flow chart of the proposed methods.

5. Performance Analysis and Some Remarks
5.1. Computational Complexity

In what follows, the computational complexity of major steps in the proposed methods
are analyzed in terms of complex multiplications (Mcs). Specifically, due to the ECA-FB and
ECA-FBD being presented for stationary and time-varying clutter suppression, respectively,
we analyze the computational cost of these methods in two scenarios. Without a loss of
generality, fractional-order clutter is not considered in this section.

(1) Stationary clutter scenario: Assuming that the clutter order is K, the computational
complexity of ECA-FB and ECA are analyzed as follows. Specifically, in ECA-FB, the
received signal is first converted from the temporal domain to the frequency domain
by performing FFT, which requires Nlog2(N) Mcs. Then, the signal in the frequency
domain is divided into L subbands with the length of NL. In each subband, ECA is

performed, i.e., Ssur−l = Sl − X̃l(X̃
H
l X̃l)

−1
X̃

H
l Sl is repeated in each subband. For simplicity,

we assume that xl = (X̃
H
l X̃l)

−1
and yl = X̃

H
l Sl . Note that both the calculation of xl and

yl include NL Mcs, since the matrix X̃l is a NL × 1 vector, and therefore 1 Mc is needed
for achieving the filter coefficient, αl = xl·yl. After that, the estimation of stationary clutter
X̃lαl requires NL Mcs. Last, the clutter is removed via subtracting X̃lαl from Sl. The overall
computational cost of ECA-FB is Nlog2(N) + (3NL + 1)L Mcs. As for ECA method, which
has been appropriately optimized in [26], and 3N(1 + log2(N)) + K2(1 + log2(K)) Mcs are
required. Due to the subspace dimension of ECA-FB being unrelated to the clutter order,
its computational load is significantly reduced compared with ECA, especially for large
clutter orders and long CPIs. Additionally, it is worth noting that the ECA-FB is more
suitable in parallel processing since the matrix multiplications in each subband are much
smaller and independent of each other.
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(2) Time-varying clutter scenario: Assuming that the time-varying clutter is extended
with a narrow Doppler spectrum, the number of Doppler extension bins is set as 2F, the
computational complexity of ECA-FBD and ECA-B are analyzed as follows. In ECA-FBD,
the received signal in frequency domain is redivided into LD subbands with the length of
ND, and the time-varying projection matrix X̃D−l is generated with dimension ND × 2F.
Therefore, the computational complexities of ECA-FBD are LD[3ND(1 + log2(ND))+ F2((1 +
log2(F)))] Mcs. Besides, the ECA-B needs LB[3 NB(1 + log2(NB)) + K2((1 + log2(K)))] Mcs,
in which the received signal is divided into LB batches, where the length of each batch
is NB. In ECA-B, the projecting subspace dimension is related to the stationary clutter
order K, which is usually much larger than 2F. Therefore, the computational complexity of
ECA-FBD is lower than that of ECA-B.

The detailed computational complexities of above-mentioned methods are concluded
in Table 1. Assuming that the signal sampling rate is fs = 200 kHz and the other relevant
parameters of the clutter suppression are given as: K = 300, F = 20, L = 1000, LD = 100,
LB = 40. The relationship between computational complexity and CPI for different sup-
pression methods are shown in Figure 7. Note that the ECA-FBD is a cascade method of
ECA-FB in the presence of time-varying clutter. On the contrary, the ECA-B can reject the
stationary and time-varying clutter simultaneously. Therefore, in the time-varying clutter
scenario, the sum of the computational complexity of the ECA-FB and ECA-FBD is used to
compare with ECA-B method. It can be seen that the proposed methods have a relatively
lower computational cost than that of the ECA and ECA-B, respectively.

Table 1. Computational complexities of different suppression methods.

Methods Number of Mcs

ECA-FB Nlog2(N) + (3NL + 1)L
ECA-FBD LD[3ND(1 + log2(ND)) + F2((1 + log2(F)))]

ECA 3N(1 + log2(N)) + K2(1 + log2(K))
ECA-B LB[3NB(1 + log2(NB)) + K2((1 + log2(K)))]

Figure 7. The relationship between the computational complexity and CPI of different methods in stationary and time-
varying clutter scenarios: (a) stationary clutter scenario; (b) time-varying clutter scenario.
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5.2. Some Remarks

Remark 1. Compared with ECA, the proposed ECA-FB method can obtain comparable suppression
performance with significantly reduced computational burden and memory cost since there is no
need to construct the multi-dimensional clutter subspace. Especially, the ECA-FB is effective for
the wideband PBR systems (DTMB, LTE). In the same stationary clutter environment, the clutter
order of wideband PBR is larger than for narrow PBR (FM), due to the finer range resolution.

Remark 2. Compared with ECA-B, the ECA-FBD is considered as a cascading method of ECA-FB
in the presence of time-varying clutter. It can not only effectively suppress the time-varying clutter
but also obtain superior detection performance in the presence of slow-moving targets. Specifically,
ECA-FBD would not weaken the slow-moving target SNR and induce periodical peaks. Additionally,
when a distant target has the same Doppler characteristics as the short-range clutter, the target will
not be removed, which is described in Section 7.2 in detail.

Remark 3. In practice, the delay of stationary and time-varying clutter may not be an integer
multiple of the sampling period, which is located at delays in between sample points, distributed
across delay bins. The popular ECA and ECA-B are temporal filters, which have a significant
limitation in the presence of fractional-order clutter. The proposed methods can limit all clutter
types DOF to one via the dividing of subbands, and thus enhance the adaptability of PBR in
fractional-order clutter environments. Therefore, the proposed methods are more effective and robust
to complex clutter environments.

6. Simulation Results

To evaluate the efficiency of the proposed clutter suppression methods, two simulated
scenarios, the stationary and time-varying clutter scenarios, are presented in this section.
Additionally, in order to compare the experiments for complex clutter suppression, ECA
and ECA-B are performed as well. Supposing that the DTMB signal is used as the waveform
of opportunity, and the parameters of DTMB-based PBR system are listed in Table 2. The
simulated parameters of targets and clutter are listed in Table 3. Note that two target
types are considered, one slowly moving target and another relatively fast-moving target.
Based on this, the SNR gain of the PBR system is about 10lg(BT) = 62 dB, and thus the
targets signal SNR after integration are 27 dB, 32 dB, respectively, which is used to evaluate
suppression performance in different clutter scenarios.

Table 2. Parameters of DTMB-based PBR system.

Description Parameter Value

total subcarriers - 3780
carrier frequency fc 666 MHz
sample frequency fs 8 MHz

carrier spacing ∆f 2 kHz
bandwidth B 7.56 MHz

frame header mode - 1
CPI T 0.5 s

Table 3. Simulation parameters of clutter and targets.

Motion
Parameters Target A Target B

Stationary Clutter Time-Varying
ClutterInteger Order Fractional Order

range bins 90 40 0:1:50 0.5:1:10.5 0:1:10
Doppler (Hz) 100 −20 0 0 −10:2:10

CNR/SNR (dB) −39 −34 40:−1:−10 25:−2:5 10:−1:0
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6.1. Stationary Clutter Scenario

In this scenario, the stationary clutter with integer and fractional order in Table 3 are
considered to evaluate the clutter-suppression capabilities. Firstly, the integer order clutter
is synthesized in the surveillance signal, which is emulated by 51 continuous and dense
scatterers. The detailed parameters are listed in Table 3. In addition, the fast-moving target
A at (90, 100 Hz) with SNR of −35 dB is added in the surveillance signal.

To remove the masking effect of clutter in the target detection, the ECA-FB and ECA
are performed, respectively. Note that the number of the subbands, L, is set as 1000 to
sufficiently widen the cancellation notch, so the DOF of clutter is limited to one. The
ECA suppression order is set as 51. The corresponding integration results are given in
Figure 8. As is apparent, both the proposed ECA-FB and ECA can effectively remove the
integer-order clutter components, and target A obtained the desired SNR gain, even though
the ECA-FB required little computational cost.

Figure 8. RD results after integer-order clutter cancellation via ECA-FB and ECA: (a) ECA-FB; (b) ECA.

Then, fractional-order clutter is added to the surveillance signal, the RD results after
clutter rejection via ECA-FB and ECA are given in Figure 9a,b, respectively. It can be seen
from Figure 9a that the proposed method can also acquire well suppression performance
in the presence of such clutter scenario, and the targets can be clearly observed. Whereas,
in Figure 9b, target A is substantially masked by the sidelobes of residual fractional-order
clutter, indicating that the ECA is poor in the case of clutter with fractional delays.

6.2. Time-Varying Clutter Scenario

In the following scenario, we access the suppression performance of time-varying
clutter via the proposed ECA-FBD. Specifically, a set of slowly moving scatterers with
narrow Doppler spectrum is used to emulate the time-varying clutter in the surveillance
signal. The maximum range bin is set as 10, since such clutter is distributed over area near
the practical clutter environment and the scope of the time-varying Doppler varies from
−5 to 5 Hz, with a step size of 1 Hz (detailed parameters are listed in Table 3). The target B
is added to the surveillance signal to investigate the suppression performance of proposed
ECA-FBD method in the presence of slowly moving target. Additionally, complex white
Gaussian noise at 10 dB is further added to the surveillance channel to verify the clutter
suppression and target detection performance.
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Figure 9. RD results after fractional-order clutter cancellation via ECA-FB and ECA: (a) ECA-FB; (b) ECA.

In this simulation, ECA-B was performed for comparison. Without loss of generality,
we suppose that the stationary clutter with fractional delays in Section 6.1 have been re-
moved. The RD results, without time-varying clutter cancellation, are given in Figure 10a,b,
in which the target energy is significantly submerged in the noise floor. Figure 10c,d gives
the RD results after clutter suppression via ECA-B, where the batch duration was 20 ms.
As is apparent, the time-varying clutter can be suppressed and the targets A and B are
observed clearly in Figure 10c,d. Whereas a series of periodic Doppler peaks occur around
the slow-moving target B and the target, SNR is obviously reduced. Note that the period
of these peaks is 50 Hz, which corresponds to the batch duration. Additionally, the batch
operation in ECA-B also periodically modulated the time-varying clutter, causing that
clutter to be distributed with a step of 50 Hz, as given in Figure 10c.

Subsequently, the proposed ECA-FBD was implemented for time-varying clutter
removal, and the corresponding RD results are depicted in Figure 10e,f. The number of the
subbands LD was set as 50. As is apparent, the time-varying clutter was rejected completely,
and target A formed a unique peak without ambiguous Doppler peaks. Additionally, it
can be seen from Figure 10f that the SNR of targets A and B are consistent with the desired
system energy gain. In conclusion, considering the time-varying clutter environment, the
proposed ECA-FBD can obtain not only better suppression performance, but also superior
detection performance in the presence of slow-moving targets, as compared with ECA-B.
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Figure 10. RD results before and after clutter cancellation via ECA-B and ECA-FBD: result before
clutter cancellation in top view: (a) and Doppler dimension (b); result of ECA-B in top view (c) and
Doppler dimension (d); result of ECA-FBD in top view (e) and Doppler dimension (f).

7. Experimental Results

In this section, the improvement of the proposed methods, ECA-FB and ECA-FBD
are evaluated using multiple sets of measured data acquired from the experimental PBR
system. The evaluation allows us to further observe the adaptability of the proposed
methods in actual clutter environment.

7.1. Experimental Results for the DTMB-Based PBR

The practical feasibility of the presented method is validated in this section using
field experimental data gathered from a DTMB-based PBR system developed by Xidian
University in China [13]. Figure 11 shows the geometry of the UAV detection experiment
trial. The bistatic angle was β = 102◦. The experiment was performed on 20 December
2019, near an open space at Xidian University. Xi’an television tower was exploited as the
illuminator. The surveillance antenna was a uniform linear array with eight elements. The
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CPI was 0.2 s, and the remaining system parameters are consistent with Table 2. Finally,
the detecting target was a cooperative UAV (DJI INSPIRE 1) flown with a velocity 10 m/s
and at an altitude of approximately 100 m. The purpose of this experiment was to verify
the clutter suppression performance of the proposed ECA-FB in the presence of fractional-
order stationary clutter. In this specific environment, the fractional-order clutter was also
continuously and densely distributed, which was predicted to seriously affect the system’s
detection ability.

Figure 11. Scenario of UAV detection experiment trial.

Firstly, the RD results between the reference signal and raw surveillance signal are
given in Figure 12a,b. It can be seen that the target is completely masked due to the
mainsides and sidelobes of the strong direct path signal and clutter. Subsequently, the
conventional ECA was performed to suppress the undesired clutter components. Note
that the maximum suppressed range bin (clutter order) was set to be 1000, since the range
resolution of DTMB signal is fine, about 40 m. The RD results, after ECA cancellation,
are given in Figure 12c,d, from which we find that several targets have been successfully
detected; the UAV target is marked by a black box, which is located at range bin 12, at
Doppler 27.3 Hz.

After that, the proposed ECA-FB method was applied for clutter removal. Note
that the number of the subbands in the ECA-FB was set at 10,000 for achieving a wider
cancellation notch, as analyzed in Section 4.1. Firstly, the clutter attenuation (CA), defined
as the ratio between the power levels of the surveillance signal before and after clutter
suppression, of the ECA and ECA-FB are shown in Figure 13. It is noted that, compared
with ECA, the CA of ECA-FB was significantly enhanced, about 15 dB, which means the
clutter components were further reduced. Then, the RD processing was performed and
the integration results are shown in Figure 14. It is worth noting that the UAV target is not
only effectively detected, but its SNR is also greatly improved compared with Figure 12c,d,
by almost 13 dB. Significantly, since the UAV target SNR was improved, the micro-Doppler
effect of the rotor wing in the UAV can be observed clearly in Figure 14b, symmetrically
distributed around the UAV fuselage [38]. This is an advantage for the classification and
recognition of UAVs of slow velocity and small sizes in low-altitude areas.
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Figure 12. RD results before and after ECA cancellation: result before clutter cancellation in range dimension (a) and
Doppler dimension (b); result of ECA cancellation in range dimension (c) and Doppler dimension (d).

Figure 13. CA comparison between the ECA and ECA-FB.
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Figure 14. RD results after clutter cancellation via ECA-FB: (a) range dimension; (b) Doppler dimension.

7.2. Experimental Results for the FM-Based PBR

Further, the effectiveness of the proposed methods was verified using the experimental
data collected from an FM-based PBR. The experiment was performed near an open space
at Xi’an Xianyang international Airport. The aim of this experiment was to investigate the
adaptability of the proposed method against complex detection scenarios, i.e., time-varying
clutter, substantial multipath clutter and slow-moving targets. The system operated at the
sampling rate of 200 kHz, and its CPI was 1 s.

In order to carry out comparison experiments for complex clutter suppression, ECA
and ECA-B with different batches were explored as well. The corresponding RD results
after clutter suppression via different methods are given in Figure 15. Firstly, the RD results
after clutter cancellation by ECA are shown in Figure 15a,b, in which we note that two
targets are detected at (169, 98.6 Hz), (198, −20.5 Hz). Additionally, residual clutter occurs
following the ECA clutter suppression because of the time-varying clutter environment,
which presents a spread Doppler spectrum and thus degrades detection ability.

Then, the RD results via ECA-B with different batches are given in Figure 15c–f.
Specifically, Figure 15c,d depicts the RD results of the ECA-B method with a batch duration
of 100 ms. As is apparent, the time-varying clutter is suppressed via the spread of the
cancellation notch in the frequency domain, and the targets’ SNR is improved. After that,
the ECA-B method with batch duration 20 ms was performed for time-varying cancellation.
The RD results are given in Figure 15e,f. It can be observed that the slow-moving target at
(198, −20.5 Hz) suffers from undesirable SNR loss in spite of the better time-varying clutter
suppression performance compared with Figure 15c,d. The reason for this is that the wider
cancellation notch may have weakened the detectability of the slow-moving target, which
is a limitation of ECA-B.

Finally, the ECA-FB and ECA-FBD were cascaded, to cope with such a cluttered
environment. The number of subbands, LD, in ECA-FBD was set as 20 for covering short-
range time-varying clutter. The corresponding results are given in Figure 15g,h, from which
we see that the time-varying clutter is effectively reduced, and the SNR of targets at (169,
98.6 Hz) and (198, −20.5 Hz) are greatly improved. Moreover, two additional targets are
clearly observed at (20, 57.6 Hz) and (238, 5.8 Hz), which means that the proposed methods
were more effective, compared with ECA-B, in terms of detecting slow-moving targets.

In conclusion, the measured results further verify the effectiveness of the proposed
methods, which are consistent with the simulation model constructed in Section 6, com-
pletely, such as Figure 9 corresponds to Figures 11 and 13. Therefore, the proposed ECA-FB
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and ECA-FBD have better adaptability to complex environments, and their survivability
will be greatly improved.

Figure 15. RD results after clutter suppression by different methods: result of ECA in the range
dimension (a) and the Doppler dimension (b); result of ECA-B with batches duration 100 ms in the
range dimension (c) and the Doppler dimension (d); result of ECA-B with batches duration 20 ms in
the range dimension (e) and the Doppler dimension (f); results of ECA-FB&ECA_FBD in the range
dimension (g) and the Doppler dimension (h).
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8. Conclusions

In this paper, we have introduced and analyzed the characteristics of complex clutter
in PBR system. In the presence of complex clutter, the detection performance of a PBR
system will be greatly reduced since the effect of clutter sidelobes spread throughout the
entire RD plane. A novel method, named ECA-FB, was firstly proposed in the frequency
domain for stationary clutter suppression. Specifically, the basis of this method is that the
division of subbands can limit the DOF of stationary clutter (involving fractional-order
clutter) and thus the Doppler spectrum of each subband is independent of its delay to the
direct path signal. Further, considering time-varying clutter environments, we have also
presented a modified method, i.e., the ECA-FBD, conducted by extending the Doppler
shifts to the ECA-FB. Note that the ECA-FBD method was not performed separately, but
in a cascade with ECA-FB in this paper. Compared with ECA-B, the ECA-FBD avoided
the loss of target SNR and the appearance of periodic peaks in the case of slow-moving
target detection. Additionally, the proposed ECA-FB and ECA-FBD methods could not
only obtain better suppression performance in the presence of fractional-order clutter, but
also required lower computation loads compared with temporal methods. Both simulation
and experimental data confirmed the effectiveness of the proposed methods, providing a
valuable basis for their practical application in PBR systems. Although we have focused
on the use of practical FM and DTMB signals in this paper, it should be noted that the
proposed methods can also be applied to the PBRs of other signal types.
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