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Abstract: Shrublands are the main vegetation component in the Gobi region and contribute consider-
ably to its ecosystem. Accurately classifying individual shrub vegetation species to understand their
spatial distributions and to effectively monitor species diversity in the Gobi ecosystem is essential.
High-resolution remote sensing data create vegetation type inventories over large areas. However,
high spectral similarity between shrublands and surrounding areas remains a challenge. In this study,
we provide a case study that integrates object-based image analysis (OBIA) and the random forest
(RF) model to classify shrubland species automatically. The Gobi region on the southern slope of the
Tian Shan Mountains in Northwest China was analyzed using readily available unmanned aerial
vehicle (UAV) RGB imagery (1.5 cm spatial resolution). Different spectral and texture index images
were derived from UAV RGB images as variables for species classification. Principal component
analysis (PCA) extracted features from different types of variable sets (original bands, original bands
+ spectral indices, and original bands + spectral indices + texture indices). We tested the ability of
several non-parametric decision tree models and different types of variable sets to classify shrub
species. Moreover, we analyzed three main shrubland areas comprising different shrub species
and compared the prediction accuracies of the optimal model in combination with different types
of variable sets. We found that the RF model could generate higher accuracy compared with the
other two models. The best results were obtained using a combination of the optimal variable set
and the RF model with an 88.63% overall accuracy and 0.82 kappa coefficient. Integrating OBIA
and RF in the species classification process provides a promising method for automatic mapping
of individual shrub species in the Gobi region and can reduce the workload of individual shrub
species classification.

Keywords: shrub species classification; unmanned aerial vehicle; RGB image; object-based image
analysis; spectral indices; texture indices

1. Introduction

Shrubs are dominant plants in the extremely arid Gobi region of China [1]. Shrub
vegetation patches are the main components of shrub communities [2]. The shrub species
and their spatial distributions reflect the species composition of a shrub community and
the spatial configurations of different species, both of which are fundamental indices
in ecological research and key metrics in vegetation surveys of the Gobi region [3,4].
Although actual individual shrub species and spatial distribution data can be obtained
using traditional field survey methods (i.e., line transects, quadrats, and belt transects) [5],
it is difficult to accurately monitor shrub vegetation communities at a landscape scale
because traditional field methods obtain data from plant communities at small scales. It
is also more difficult and time-consuming to conduct field surveys at the scale of a single
plant in areas with harsh natural conditions (e.g., the Gobi Desert) and data omissions may
occur [6], which leads to uncertainties in the analytical results for species composition and
the spatial distribution of shrub communities in such regions.

Remote Sens. 2021, 13, 4995. https://doi.org/10.3390/rs13244995 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5424-396X
https://doi.org/10.3390/rs13244995
https://doi.org/10.3390/rs13244995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13244995
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13244995?type=check_update&version=2


Remote Sens. 2021, 13, 4995 2 of 28

Over the past few decades, an increasing number of studies have been conducted
on the identification and spatial distributions of vegetation species using remote sensing
technology [7–11]. Most of these studies have focused on species classification at the
landscape scale in forest, wetland, and tropical rainforest regions based on high, medium,
and low spatial resolution satellite remote sensing data. Few studies have been conducted
on species classification in the Gobi region. Most shrubs found in this region are sparse
and less diverse than in forests, thereby increasing the difficulty of detecting them with
satellite remote sensing technology and restricting its application. Fortunately, remote
sensing technology is developing towards the generation and application of data with a
high temporal and spatial resolution [12]. In recent years, the application of unmanned
aerial vehicles (UAVs) for remote sensing in vegetation resource surveys and ecological
research has improved significantly due to their high spatial resolution, speed, low cost, and
reusability [13]. This has enabled the high-resolution classification of individual vegetation
species in UAV images, as well as rapid mapping of spatial vegetation distributions in the
Gobi region at a landscape scale.

Remotely sensed data obtained using UAVs have mainly included light detection
and ranging (Lidar) point clouds, hyperspectral images, multispectral images, and RGB
images [14–16]. In general, vegetation species classification based on Lidar point clouds is
achieved using a range of features related to tree structures. For instance, the geometric
part of Lidar data have been used to detect the architecture of tree crowns [17], while
the intensity of the backscattered signal can be used to differentiate foliage type [18] and
leaf size [19]. Classification of vegetation species based on aerial multispectral images
and hyperspectral images is accomplished by combining spectral features with spatial
features [16,20,21]. However, deriving the architecture of crowns from Lidar data requires
extremely high-quality point cloud data when the local surface vegetation is less than
2 m tall, which makes data collection in the Gobi area difficult where sparse shrubs are
only 15 cm high [5]. In addition, the high cost and complicated data processing related
to hyperspectral images have seriously hindered their application and popularity [22].
In contrast, the common digital camera sensors carried by UAV have wider application
prospects because they are inexpensive and can quickly acquire high spatial resolution
RGB images [23]. Although they lack the three-dimensional information of a Lidar point
cloud and the detailed spectral information contained in multispectral or hyperspectral
images, their spatial structure feature is quite robust [24]. Recently, various non-parametric
decision tree algorithms, including support vector machine (SVM), random forest (RF),
and kernel nearest neighbor (k-NN), have been most used to classify vegetation species
based on UAV RGB images [25–28]. The RF algorithm, also known as machine learning, is
an integrated model that builds decision trees by randomly selecting variables and training
sample data [29,30]. It is regarded as the optimal classification model for remote sensing
data in areas with complex environments and noise because of its high predictive stability
and classification accuracy compared to other traditional classification models [31,32].

Establishing feature sets is the basis for vegetation species classification [33,34]. The
UAV RGB images are composed of three bands (red, green, and blue), each of which has
a high resolution. Therefore, the effective utilization of the spectral data and the spatial
structural features of UAV RGB images are critical for accurately classifying vegetation
species. Spectral indices are often used to identify vegetation features. Currently, various
spectral indices (i.e., excess blue index (ExB), visible atmospherically resistant index (VARI),
and red blue ratio index (RBRI)) have been developed for UAV RGB images [35]. Some
studies have successfully used different spectral indices to distinguish dominant species
from non-dominant species in desert areas and extract their location information [5,36].
However, due to the spectral heterogeneity and spatial complexity of the target area,
classifying vegetation species using one or more simple spectral indices is complex [37,38].
With the advance in machine vision and pattern recognition technology, crown texture
features have become more meaningful for classifying vegetation species [39–41]. Crown
texture features are helpful for distinguishing species with small spectral differences



Remote Sens. 2021, 13, 4995 3 of 28

but different canopy surface structures [42]. Textural features of images are commonly
quantified by Gray-level co-occurrence matrix (GLCM) indices, which are fundamental
indices in image texture analysis because of their ability to capture changes in objects with
different textures, including smooth, irregular, or bumpy tree crowns and grasses [43].
Each index can highlight specific texture properties, such as smoothness, convexity, and
irregularity, which can improve the classification accuracy of different objects [44]. In
previous studies, eight GLCM indices (mean, variance, correlation, contrast, dissimilarity,
homogeneity, energy, and entropy) have been used to characterize the landscape patterns of
urban canopies, results of which have shown that GLCM indices can effectively represent
the textural and structural characteristics of different canopy types [45]. In addition to these
derived spectral or textural indices, complementary variables such as digital elevation
models, digital surface models, etc., have been used for complex classification tasks.

Ideally, the classification accuracy increases with more variables [46]. However, issues
such as high variable correlation and increased computational complexity can undermine
the classification accuracy and efficiency [47]. Therefore, it is necessary to find a feature
subset that can balance the prediction accuracy and model efficiency. Principal component
analysis (PCA) can be used for feature extraction and data dimensionality reduction. In
remote sensing image classification tasks, PCA transforms input bands to generate a new
set of uncorrelated variables, which have reduced dimensionality while retaining the
essential information [48]. The resulting principal component (PC) band is a combination
of input bands. PC bands containing the main information can be used directly for remote
sensing image classification instead of the original bands [49].

Previous studies of vegetation species classification have mainly focused on stand
scale classification, and the study objects have generally been pure or mixed forests of
artificially planted trees that were aggregated and had high densities [11,50–52]. However,
few studies have classified the species of individual plants growing in original shrub
vegetation communities in the Gobi region. A few studies have focused on the canopy
segmentation of a single plant, and the research targets have generally been tall tree
species [53]. The surface of the Gobi region comprises sparse shrub vegetation patches,
Gobi gravel, and heterogeneous soil patches. Due to the long-term impact of environmental
factors, such as dust weather and water limitations, the vegetation community types in the
Gobi region are quite different: the plants are short and sparse, and their growth varies
significantly. In high spatial resolution UAV RGB images obtained from this area, the
changes in noise, light, and spectral resolution in the image background and within the
plant canopy increase the heterogeneity among the pixels, which has a large negative
impact on the classification results and increases the difficulty of species classification
based on the image pixels.

Object-based image analysis (OBIA) has great potential for addressing this issue [54,55].
OBIA uses homogeneous areas of the image, which replace individual pixels as the basic
elements of image analysis. Simultaneously, the texture features of the region can be
used for classification [56]. This method includes two parts: image segmentation and
classification. More accurate classification of vegetation species can be achieved with an
appropriate image segmentation algorithm. Multi-scale segmentation is a widely used
bottom-up algorithm that combines adjacent pixels to form homogeneous and adjacent
objects (blocks) by adjusting different parameters to minimize the average difference be-
tween the objects [57]. The multi-scale segmentation parameters include scale, shape,
and tightness. Studies have shown that varying segmentation parameters greatly affects
the quality of the image segmentation [58,59]. When processing high spatial resolution
images of vegetation, OBIA directly classifies the segmented vegetation canopy to lower
the negative effect of pixel spectral changes, thereby capturing multi-pixel vegetation
targets more effectively than single pixel-based classification and obtaining more accurate
classification results [54]. Previous research has shown that the OBIA method is superior
to the pixel-based classification method for classifying vegetation species, particularly in
high spatial resolution images [60].
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Taking into account challenges of classifying individual shrub species at a fine scale
and rapidly mapping their spatial distributions in the complex surface environment of the
Gobi region, as well as the impacts of different classification methods and variable sets on
species classification accuracy, this study aimed to: (1) test the shrub species classification
capabilities of several non-parametric decision tree classifiers and different sets of variables
with UAV RGB images of the Gobi area to determine the optimal classifier with the best set
of variable; (2) integrate this optimal classifier with OBIA to develop a reliable strategy for
shrub species classification based on UAV RGB images of the Gobi region; and (3) classify
shrub species in the Gobi region using the optimal classifier and reveal spatial patterns of
shrub species at different locations in the Gobi region.

2. Materials and Methods
2.1. Study Area

The study area (41.840518–42.061273◦ N, 83.84486–84.212092◦ E) is located in the Gobi
region in northern Luntai County, Xinjiang, China (Figure 1). This region is composed
of alluvial fans of different sizes that were formed by seasonal rivers, which is a typical
landscape type in the Gobi region. The study area has a typical continental climate in
the middle temperate zone that is characterized by arid conditions, little rain, and high
evaporation. Precipitation mostly occurs from June to August, with average annual precip-
itation and evaporation of 47.4 and 2082 mm, respectively. The study area covers an area of
~374 km2, with an altitude range of 1050–1350 m and a slope range of 0–10◦. The ground
surface in the study region consists primarily of Gobi gravel and soil crusts, with hard soil
surfaces. These topographic and climatic conditions have contributed to the formation of a
unique Gobi shrub vegetation community.
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Figure 1. Location of the study area (yellow rectangle) in the Gobi region. The backdrop is a Landsat-8 satellite image.

The Gobi region is mainly covered by bare land with sparsely distributed vegetation
composed of shrub species (e.g., Ephedra przewalskii, Salsola laricifolia, Sarcozygium xanthoxy-
lon, Gymnocarpos przewalskii, and Reaumuria songarica). Four vegetation alliances (namely
EPPR, EPPR–SAXA–GYPR, EPPR–SALA–GYPR, and EPPR–SALA) represent the domi-
nant habitat types. These four alliances are the dominant habitats of Ephedra przewalskii
and exhibit a repetitive pattern of shrubs throughout the landscape. The EPPR consists
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entirely of Ephedra przewalskii. EPPR–SAXA–GYPR is the main shrub species-dominant
habitat that includes Ephedra przewalskii, Sarcozygium xanthoxylon, and Gymnocarpos prze-
walskii. The EPPR–SALA habitat consists of Ephedra przewalskii and Salsola laricifolia. The
EPPR–SALA–GYPR habitat is composed of Ephedra przewalskii, Salsola laricifolia, and Gym-
nocarpos przewalskii.

2.2. Field Sampling Data

Field surveys were conducted from July to September in 2018, 2019, and 2020 (vegetation-
growing season). We developed four survey transects within the study area by referring to a
four-band (red, green, blue, and near-infrared; NIR) high-resolution satellite image obtained
in 2018. Six representative 100 × 100 m plots were positioned along each transect, parallel to
the elevation gradient. In addition, to maintain the uniformity of the vegetation survey, we
randomly selected another 14 plots. In total, we analyzed 38 sample plots that covered all of
the vegetation alliance types. The distribution of sampling locations is shown in Figure 2.

A Hemisphere S320 GPS (Hemisphere GNSS, Inc., Calgary, AB, Canada) device with
±10 mm horizontal precision was used to collect the location information at each plot. The
GPS location, shrub species, shrub height, crown breadth, and survival status of each shrub
within the plot areas were also recorded simultaneously. Based on the plot data collected
in 2018, we delineated the vegetation alliances in the study area and designed a species
classification scheme that included four different shrub species category. During the three
years (2018 to 2020) of field investigations in the study area, we did not find any significant
changes in the spatial distributions of the vegetation alliances and shrub species. Therefore,
in this study, we assumed that vegetation alliances are unvarying.

2.3. Acquisition and Pre-Processing of UAV RGB Images

UAV images were acquired at 60 m ground height between time points 12:00 and 14:00
in July 2018 under fine weather conditions. The DJI Phantom 4pro UAV (DJI-Innovations,
Shenzhen, China) was used for high quality RGB image collection, which uses a quadrotor
flight system that integrates a waypoint navigation system and a digital camera. The
camera was set to shoot the plots vertically, resulting in 194 raw images per plot at an
average pixel size of 1.5 cm. The forward overlap was 70% and the side overlap was 80%.
A total of 38 survey flights were conducted, covering all of the 100 × 100 m plots. We
measured five ground control points (GCP) at each plot and used GPS to georeference
the images.

UAV image pre-processing was performed using the Agisoft PhotoScan software
(Agisoft LLC, Petersburg, Russia), which uses the structure from motion algorithm to
extract features that appear in a series of overlapping images. Each feature point was
georeferenced using the ground control points, after which high-resolution orthomosaics
were exported for each of the RGB bands. A total of 38 plots were produced from the
UAV RGB orthomosaics. Example results of pre-processing are shown for three plots in
Figure 2, which clearly shows morphological characteristics and species information for
shrubs. Figure 3 shows ground-based field survey photos of the different shrub species
and their corresponding UAV images.

2.4. Fine Scale Classification of Individual Shrub Species
2.4.1. UAV RGB Image Segmentation

Figure 4 shows the workflow for classification of individual shrub species. When the
input data pixel size (in this case, 1.5 cm) is smaller than the size of the vegetation patches,
an OBIA approach is recommended [54,61–63]. This approach consists of two parts: image
segmentation and classification. Multi-scale segmentation is a region-based segmentation
method that merges a pixel with adjacent pixels to create homogeneous and contiguous
segments [34]. This method includes three parameters (scale, shape, and tightness) that
can each affect the results. We used the multi-scale segmentation method to implement
image segmentation prior to shrub species classification in this study. Canopy crowns
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of the different shrub species in the study area differ; therefore, to avoid over or under-
segmentation, we considered the canopy segmentation as the main principal and used
the visual discriminant method to determine the optimal segmentation parameters. The
multi-scale segmentation of all UAV images was conducted using the eCognition Developer
9 software (Trimble Inc., Munich, Germany).
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2.4.2. Variable Derivation for Classification

Referring to previous studies of spectral and textural indices [24,33,45,64–72], we de-
fined two categories of features that included both the original spectral bands (three bands)
and spectral and textural indices derived from the UAV RGB images, and used them to
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characterize the spectral and textural features of the images. In addition, we carefully
considered other features that are helpful for image classification based on a literature
review (Appendix B, Table A3).

In this study, we obtained 23 derived indices based on three RGB bands (Appendix B,
Table A3). Additionally, we calculated eight GLCM indices (mean, variance, homogeneity,
contrast, dissimilarity, entropy, energy, and correlation) (Appendix A, Table A1) using
the blue, green, and red bands. Next, 24 texture variables were generated. For all of
the variables, we calculated the mean and standard deviation for all segments. All of
the derived variables were stacked together with the original bands (RGB) to construct
a new layer with 100 variable sets for classification. The variable sets used for shrub
species classification were divided into four types, namely: (A) original bands (Red, Green,
and Blue bands), (B) original bands + all derived spectral bands, (C) original bands + all
derived texture bands, and (D) original bands + all derived spectral bands + all derived
texture bands. Analyses were performed in R (R Core Team, R Foundation for Statistical
Computing, Vienna, Austria), ENVI 5.3 (Exelis VIS, Boulder, CO, USA), and ArcGIS 10.7
(ESRI, Redlands, CA, USA).

PCA was used to decorrelate the data and reduce the dataset dimension of the four
sets of variables. This method eliminates the duplication of information shared between
different variables. The number of variables resulting from PCA is the same as the number
of input variables. In addition, eigenvalues are used to identify useful components. In
general, the first three components contain most of the information. The first PCA band
includes the widest percentage of the data variance, while the later PCA bands contain
more noise [48]. In this study, the A-PC, B-PC, C-PC, and D-PC represent the sets of
variables used in the classification experiments of shrub species after principal component
analysis (PCA) of variable sets A, B, C, and D, respectively. Since this research only focused
on shrub vegetation, the non-vegetation pixels were masked out during PCA. The mask
images were extracted based on the visible vegetation index. See Section 2.4.4 for specific
implementation of this process.

2.4.3. Training and Testing Data Construction

The locations and species information of single shrubs within the plot areas collected
in 2018 and 2019 were imported into the ArcGIS 10.7 software as ground reference sampling
points to construct training and testing datasets for shrub species classification and accuracy
verification. Based on the species classification scheme that included four shrub species,
and the density of the species we investigated, samples with different sizes were selected
for each shrub species. In total, 2991 random segments (which correspond to the ~4% of
the total segments, Table 1) segmented from UAV images of three vegetation alliances
were selected. These segments were then divided into two datasets (including the 70%
(2094 segments) and 30% (897 segments) of segments) using a random stratified sampling
approach for training and testing procedures (accuracy assessment). The class names and
their descriptions are presented in Table 1.

Table 1. The shrub species classification category adopted and the number of training and testing samples.

Class Description Training
(Number of Segments)

Testing
(Number of Segments)

Ephedra przewalskii
The corresponding average height and crown width are 0.41 and 1 m.
Growth between individual plants greatly differed. In UAV images,

the individual shrub mostly appears yellowish green.
1067 457

Salsola laricifolia
The average height is 0.25 m, and the average crown width is 0.49 m.

It is often associated with individual Ephedra przewalskii plant. In
UAV images, the individual shrub mostly appears dark green.

686 294

Sarcozygium xanthoxylon
Shrub vegetation with fewer leaves and more thick branches. The

average height is 0.47 m, and the average crown width is 0.83 m. In
UAV images, the individual shrub mostly appears light green.

159 68

Gymnocarpos przewalskii

Shrub vegetation with fewer leaves and more twigs. The average
height is 0.34 m, the average crown width is 0.64 m, and the number

of Gymnocarpos przewalskii is less. In UAV images, the individual
shrub mostly appears light green.

182 78
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2.4.4. Shrub Species Classification

In the classification step, segments generated from the UAV images of shrub vegeta-
tion alliances formed the basic units for classification. In order to exclude the influence
of background information on shrub species classification, five commonly used visible
vegetation indices (excess green red index (ExGR), green blue ratio index (GBRI), vege-
tative index (VEG), red green blue vegetation index (RGBVI), excess green index (ExG))
were combined with a fixed threshold classification method to extract vegetation and
non-vegetation segments. We first determined classification thresholds of vegetation and
non-vegetation feature types using the mean value of each index. Plant regions of interest
were then binarized using a selected threshold value for all segments. Segments with a
mean vegetation index greater than the optimal threshold values were classified as vegeta-
tion, and were otherwise classified as non-vegetation [73]. After comparing the vegetation
and non-vegetation classification accuracy of five vegetation indices, we used the one with
the highest classification accuracy to divide all images into vegetation and non-vegetation
segments. Detailed vegetation classification was then conducted based on the confirmed
class of vegetation. The vegetation and non-vegetation mask images were also applied to
improve the classification efficiency.

Notably, different combinations of variables in the dataset will lead to deviations in
the classification results, and could affect the computational efficiency and model accuracy.
In this study, we conducted four classification experiments with different types (A-PC,
B-PC, C-PC, and D-PC) of variable sets to analyze the influence of different types of derived
variable sets (spectral indices and texture indices) on species classification. Moreover, we
compared the classification accuracy for both RF, SVM, and k-NN classifiers to select the
top model with optimal variable set and classifier. The classification was completed using
2094 training samples in the R package ‘caret’ [74].

Three classifiers were used to classify segments from four stacked variable sets into
shrub species types. The k-NN classifier uses the observed Euclidean distance to classify
it to the nearest training sample observation and assign it to the class. It is usually used
for single tree detection in forests [28,75]. The SVM classifier has strong robustness to
noise and high-dimensional data, requires relatively little training data, is widely used
in tree species classification, and is suitable for complex canopy vegetation [25,75]. The
default parameters of the caret package were used in SVM and k-NN classifiers. The RF
classifier provides two decision tree models (classification regression tree (CART) and
conditional inference tree) to perform the classification. CART is a binary tree for recursive
partitioning, and the CART based random forest (CART-RF) model tends to generate
higher classification accuracies [46]. CART-RF required two parameters: the number of
features inside the set (mtry) and the overall number of trees (ntree). Both parameters for
the CART-RF model were selected by testing them with 10-fold cross validation on the
training data. To optimize the two parameters, we set the ntree value to 500, and tested it
with the mtry values used in [3,9]. We then chose the combination of values that yielded
the highest accuracy (ntree = 500 and mtry = 7).

After obtaining the optimal classification variable set and the top classification model,
we classified shrub species from UAV images of 38 survey plots and counted the number
and area of species in each plot.

2.4.5. Classification Model Validation

We first evaluated the vegetation and non-vegetation results extracted by five vege-
tation indices using the overall accuracy (OA) and Kappa coefficient and identified the
vegetation index with the highest vegetation classification accuracy. Thereafter, we com-
pared the accuracy of different types of variable sets in three classification models to assess
the contributions of the derived indices (spectral indices and texture indices) and the shrub
species classification capabilities of different models in the Gobi region. In this step, a
confusion matrix was constructed using the 897 independent test segments (30% of the
segments). The selected accuracy indicators included OA, user accuracy (UA), producer
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accuracy (PA), and the Kappa coefficient (Appendix A, Table A2). In addition, we also
visually compared the shrub species classification maps of four types of variable sets
generated by the optimal model.

3. Results
3.1. Image Segmentation Parameter Selection

A combination of different parameters, including scale, shape, and tightness, was
examined to select the optimal parameter set for the multi-scale segmentation. In considera-
tion of the image pixel resolution and the canopy widths of the different shrub species, each
parameter was tested with four different values used in previous studies. The ranges and
intervals of these values were not exactly the same. The ranges of the shape and tightness
parameters were both 0.3–0.7. The scale ranged from 20 to 100. The segmentation results for
the different parameters are shown in Figure 5. We first tested the scale parameters with the
shape and tightness parameters initially set to 0.5. As shown in Figure 5, the segmentation
was too scattered at scale parameters of 20 and 50. Under-segmentation occurred when
the scale was 100. When the scale was 80, neighboring canopies with similar features were
combined into one class.

We then tested the shape and tightness parameters. The scale value was set to the
already-determined optimal value of 80, while the tightness parameter was initially set
to 0.5. When the shape parameter was 0.3, we obtained a more regular crown shape,
which we determined was the optimal value. When the scale and shape were set to 80
and 0.3, respectively, we found that a tightness value of 0.7 yielded a more complete
canopy segmentation. Therefore, we set the scale, shape, and tightness parameters to 80,
0.3, and 0.7, respectively, and used the optimal combined parameters of the multi-scale
segmentation method. These parameters produced segments with relatively homogeneous
spectral and textural features.
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3.2. Classification Results for Vegetation and Non-Vegetation

The threshold values of the five vegetation indices (ExG, ExGR, GBRI, RGBVI, and
VEG) were 0.03, −0.11, 1.4, 0.07, and 1.03, respectively. Based on thresholds of different
vegetation indices, we obtained the vegetation distribution maps of EXG, ExGR, GBRI,
RGBVI, and VEG. A sample of the results is presented in Figure 6, with the vegetation areas
and non-vegetation areas shown in white and black, respectively. As is shown in Figure 6,
the ExG and RGBVI indices exhibited significant differences from the other indices, in
terms of the grey values representing vegetation and non-vegetation areas. The grey values
of the vegetation and non-vegetation area were similar for the remaining vegetation indices.
The vegetation distribution maps extracted with ExGR and GBRI were very similar, and
they both exhibited more misclassifications in the classification process. In most cases, the
vegetation commonly exhibited mutual crossovers and overlapped with the non-vegetation
area, and the bare soil was commonly mistaken for vegetation. In other words, neither
ExGR nor GBRI could discriminate between plants and the background, with the chosen
threshold values. The VEG index could distinguish most plants well, but mutual crossovers
between some vegetation types and bare soil existed. Therefore, it was clear that ExG and
RGBVI were better at separating vegetation from the background in the Gobi region. To
better compare the vegetation classification accuracy of different vegetation indices, we
classified the vegetation of 38 samples in the Gobi region using each vegetation index. The
results shown in Table 2 indicate that ExG performed the best in vegetation classification,
with an OA of 0.96 and a maximum Kappa coefficient of 0.93 (Table 2).

3.3. Classification Results for Individual Shrub Species

PCA produced uncorrelated bands, and the main information was usually contained
with the first few components. The important components were selected from all principal
components in each type of variable set. Among the four types of variable sets, PC1 and
PC2 represented the majority of information, about 94% (Appendix C, Table A4). The first
six components with the highest variance were used in each type of variable set, although
P3–P6 showed lower information (less than 2.22%, Table A4). All six components were
included as the classification input. This was done to reduce the possibility of omissions
resulting from the contribution of low-information variables.

Three classifiers were used to classify species from different variable sets. The RF
model returned the highest OA (78% on average) and Kappa (0.65 on average), closely
followed by the SVM with an average OA and Kappa of 76% and 0.63, respectively. The
highest classification accuracy value was produced by a combination of the D-PC variable
set and the RF model, with 89% OA and Kappa of 0.82. The results generated by RF and
SVM were significantly higher than those generated by k-NN (average OA of 0.62 and
average Kappa of 0.50). The evaluations of the three classifiers are presented in Table 3.

Table 4 shows the shrub species classification results generated by a combination of the
RF model and four types of variable set (A-PC, B-PC, C-PC, and D-PC). The classification
maps for individual shrub species generated by the D-PC variable set (containing a combi-
nation of the original bands, all derived spectral indices, and all derived texture indices)
had the highest OA, while the classification maps from the A-PC variable set that contained
only the original bands had the lowest OA (Tables 3 and 4). When original bands were
combined with all derived spectral indices for shrub species classification, the prediction
accuracy was significantly higher, as shown by the B-PC variable set. The combination
of original bands and all derived textural indices also improved the prediction accuracy,
as shown by the C-PC variable set. However, the classification accuracy produced by the
C-PC variable set was slightly lower than that of the B-PC variable set. Moreover, when
comparing the UA with the PA, the D-PC variable set generated classification maps with
higher accuracies across different categories. Three vegetation alliance types containing
at least two shrub species were selected for a more detailed examination of the results,
to compare the shrub species classification results in different vegetation alliances. The
classification results for each vegetation alliance are shown in Appendix D, Tables A5–A7.
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Table 2. Accuracy evaluation of vegetation extraction from different vegetation index images.

Vegetation Indices Overall Accuracy (%) Kappa Coefficient

ExGR 67.07 0.35
GBRI 71.27 0.42
VEG 86.19 0.71

RGBVI 94.53 0.88
ExG 96.31 0.93

bbreviations: excess green red index (ExGR), green blue ratio index (GBRI), vegetative index (VEG), red green
blue vegetation index (RGBVI), excess green index (ExG).
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Table 3. Accuracy comparison for different classifiers with different types of variable set.

Variable Set
k-NN SVM RF

OA Kappa OA Kappa OA Kappa

A-PC 0.53 0.42 0.65 0.48 0.69 0.50
B-PC 0.62 0.46 0.77 0.63 0.79 0.66
C-PC 0.61 0.44 0.74 0.61 0.76 0.61
D-PC 0.73 0.68 0.86 0.8 0.89 0.82

Mean 0.62 0.5 0.76 0.63 0.78 0.65
Abbreviations: overall accuracy (OA), k-nearest neighbors (k-NN), support vector machine (SVM), random
forest (RF).

In each shrub vegetation alliance, the highest classification accuracy was generated by
the D-PC variable set, while the lowest classification accuracy was generated by the A-PC
variable set. Furthermore, we determined that EPPR–SALA (including two shrub species)
had a higher classification accuracy than the other two vegetation alliances. The highest
OA and Kappa values obtained based on the best variable set exceeded 94% and 0.89,
respectively (Appendix D, Table A6). However, the results of the four variable sets differed
greatly between EPPR–SALA–GYPR and EPPR–SAXA–GYPR, especially for B-PC and
C-PC. In EPPR–SALA–GYPR, the classification accuracy obtained by the variable set B-PC
was higher than that generated by C-PC, while the opposite result was generated in EPPR–
SAXA–GYPR (Appendix D, Tables A5 and A7). The individual shrub species classification
maps for the three vegetation alliances, generated by the four types of variable sets, are
shown in Figure 7.

When examining the classification success per shrub species, the classification of
Ephedra przewalskii was the most accurate since it was the dominant species in all commu-
nity alliances (Table 4). In EPPR–SAXA–GYPR and EPPR–SALA–GYPR, the classification
accuracy of Gymnocarpos przewalskii was low, particularly in EPPR–SALA–GYPR. In ad-
dition, the PA and UA of Gymnocarpos przewalskii generated by the optimal variable set
(D-PC) were only 0.71 and 0.56, respectively (Appendix D, Table A7), which were far lower
than the classification accuracies of the other shrub species. However, the classification
accuracy of Gymnocarpos przewalskii generated by D-PC was much higher, as the PA and UA
generated by A-PC were 0.29 and 0.24, respectively. In EPPR–SAXA–GYPR, the classifica-
tion accuracy of Sarcozygium xanthoxylon generated by A-PC was relatively low. However,
with the addition of spectral and texture indices as classification variables, the classification
accuracy was significantly improved. Its PA and UA increased from 0.43 and 0.5 to 0.68
and 0.77, respectively (Appendix D, Table A5). Moreover, it is worth noting that variable
sets C-PC and D-PC produced the same classification accuracy in EPPR–SAXA–GYPR.

In general, whether from the perspective of vegetation alliance type or shrub species
category, B-PC (including original bands and all derived spectral indices) and C-PC (in-
cluding original bands and all derived texture indices) both produced higher accuracies
than A-PC, which only used the original band information to classify the shrub species. In
contrast, the classification generated by C-PC was slightly less accurate than that of B-PC.
The optimal variable set D-PC, which integrates all spectral and textural variables, has
the highest classification accuracy, and is more conducive to classifying individual shrub
species with different spectral and spatial complexities in the Gobi surface environment.

Table 5 shows statistical results of species types and quantity in 38 sample plots,
obtained with a combination of the optimal variable set (D-PC) and RF model. The spatial
distributions of species across different regions of the alluvial fans are shown in Figure 8
(Figure 8 shows only three groups of typical plots, representing the top, middle, and bottom
of alluvial fans, respectively). Overall, the number of different species was the greatest
at the top of the alluvial fan. As the altitude decreased, the type and number of plants
decreased significantly. At the bottom of the alluvial fans, only a few Ephedra przewalskii
survived. From Figure 8, the spatial distribution of different species on alluvial fans in the
Gobi region can be intuitively understood.
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Table 4. Comparison of classification accuracies of individual shrub species maps for four types of variable set generated by
the random forest (RF) model.

Variable Set Class Producer
Accuracy

Number of
Samples

Ephedra
przewalskii

Salsola
laricifolia

Sarcozygium
xanthoxylon

Gymnocarpos
przewalskii

A-PC

Ephedra przewalskii 0.76 457 347 66 21 23
Salsola laricifolia 0.72 294 64 213 — 17

Sarcozygium
xanthoxylon 0.43 68 31 — 29 8

Gymnocarpos
przewalskii 0.41 78 16 22 8 32

Total 897 458 301 58 80
User Accuracy 0.76 0.71 0.50 0.40

Overall Accuracy
(621/897) = 69.23% Kappa = 0.50

B-PC

Ephedra przewalskii 0.82 457 375 54 13 15
Salsola laricifolia 0.85 294 33 249 — 12

Sarcozygium
xanthoxylon 0.54 68 27 — 37 4

Gymnocarpos
przewalskii 0.59 78 12 15 5 46

Total 897 447 318 55 77
User Accuracy 0.84 0.78 0.67 0.60

Overall Accuracy
(707/897) = 78.82% Kappa = 0.66

C-PC

Ephedra przewalskii 0.78 457 355 82 9 11
Salsola laricifolia 0.78 294 59 228 — 7

Sarcozygium
xanthoxylon 0.66 68 9 — 45 14

Gymnocarpos
przewalskii 0.67 78 7 6 13 52

Total 897 430 316 67 84
User Accuracy 0.83 0.72 0.67 0.62

Overall Accuracy
(680/897) = 75.81% Kappa = 0.61

D-PC

Ephedra przewalskii 0.91 457 418 16 10 13
Salsola laricifolia 0.93 294 10 274 — 10

Sarcozygium
xanthoxylon 0.68 68 19 — 46 3

Gymnocarpos
przewalskii 0.73 78 7 10 4 57

Total 897 454 300 60 83
User Accuracy 0.92 0.91 0.77 0.69

Overall Accuracy
(795/897) = 88.63% Kappa = 0.82

Table 5. The average number of each shrub species at the top, middle, and bottom of alluvial fans in unmanned aerial
vehicle (UAV) images of 38 sample plots in the Gobi region.

Shrub Species
Location Top of Alluvial Fans Middle of Alluvial Fans Bottom of Alluvial Fans

Ephedra przewalskii 228 189 43
Salsola laricifolia 332 219 0

Sarcozygium xanthoxylon 36 31 0
Gymnocarpos przewalskii 42 20 0
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4. Discussion
4.1. Use of Multi-Scale Segmentation to Segment UAV Images

Our findings demonstrate the ability to integrate the multi-scale image segmenta-
tion algorithm with the RF classification model to estimate individual shrub species in a
spatially explicit and consistent way at large scales in the Gobi region. Compared with
mapping shrub species based on pixels or by manual measurements during field surveys,
the individual shrub-based method developed in this study can directly extract varia-
tions between individual shrubs and allows us to combine spectral and structural traits
within and between species [76,77]. However, the quality of image segmentation has a
major effect on the species classification results. The multi-scale segmentation method
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is commonly used in high-resolution image segmentation because of its robustness in
processing high-resolution images. In this study, the species were sparsely distributed
with large gaps between them, so segmentation parameters had varying effects on image
segmentation when classifying individual shrub species. By combining the parameters, we
found that different parameter combinations (scale, shape, and tightness) yielded varying
segmentation results for the UAV images from the Gobi region. The segmentation was
too fragmented at smaller scales, while under-segmentation occurred when the scale was
too large. Moreover, it was difficult to segment plants with large spectral differences, and
adjacent plants with small shape differences were easily incorrectly grouped into the same
segment. Therefore, continuous testing is required to determine the most appropriate
parameter combination to best separate individual shrubs.

4.2. Individual Shrub-Based Species Classification

Assigning individuals to species using a few remotely sensed features extracted from
RGB spectral data is challenging, particularly in the Gobi region where most species are
spectrally similar. Even by coalescing both spectral and textural features, only ~89% of
all individuals could be correctly assigned to a species (Tables 3 and 4). However, this
level of accuracy was considerable for classification of individual shrub species from
only UAV RGB images. In addition, the background (Gobi gravel, sandbags, shadows,
etc.) of the Gobi surface has become more complicated due to intense light radiation and
erosion by wind and sand throughout the year, making shrub species classification more
difficult. The vegetation index can distinguish between vegetation and non-vegetation
areas. In this study, we tested the ability of five commonly used vegetation indices to
classify vegetation and non-vegetation. The results showed that both ExG and RGBVI could
effectively distinguish between vegetation and non-vegetation areas. This has also been
verified in many other studies [78,79]. By comparing the vegetation and non-vegetation
classification results of the five vegetation indices, we further found that ExG had better
vegetation extraction capability than RGBVI in the Gobi region with complex background.
This discovery can improve the efficiency of future research on vegetation classification
and species classification in the Gobi region.

Four types of variable sets and three classifiers were used for shrub species classifica-
tion, and PCA was used for feature extraction of each type of variable set. We found that
the feature extraction process could provide more reliable and efficient classifications of
the variable sets. The first three components of each type of variable set generated by PCA
retained most of the information of the different variable sets, which effectively removed
redundant variables and significantly improved the classification efficiency. However, in
order to balance the computational efficiency and avoid omissions of the contribution for
species classification resulting from the low-information variables, the first six components
of each variable set were used for the shrub species classification. Of these three classifiers,
the RF model produced higher classification accuracy compared with the other two classi-
fiers. However, results of different classifiers showed that the SVM also had a high potential
for shrub species classification, although its classification accuracy was slightly lower than
RF (Table 3). This was consistent with some previous studies [15,80,81]. In addition, the
variable set consisting of the original RGB bands and all the derived spectral and texture
indices had more obvious advantages over the others, particularly for some shrub species
that were hard to differentiate (e.g., Gymnocarpos przewalskii and Sarcozygium xanthoxylon).
Therefore, the variable set selection process was more conducive to classifying these shrub
species. Overall, the best variable set combined with the RF model successfully mapped
individual shrub species in different vegetation alliances in the Gobi region, with OA and
Kappa values of 88.63% and 0.82, respectively.

In the classification process of the three shrub vegetation alliances, the vegetation
alliance EPPR–SALA produced higher shrub species classification accuracy than the other
two vegetation alliances, indicating that the quantity of shrub species in a shrub vegetation
alliance affects the classification accuracy. In general, fewer species will achieve higher
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classification accuracy, while more species will increase the noise caused by the spectral and
textural similarities among the different species, complicating classification and reducing
classification accuracy [81]. In addition, as shown in Table 4, the optimal variable set D-PC
yielded a higher classification accuracy than the variable set B-PC that only contained the
original bands and all derived spectral indices. This may be because textural information
helps to distinguish between different species at various scales. This was consistent with
the findings of several previous studies. For instance, Tian et al. found that textural mea-
surements could be useful for distinguishing between conifers and broadleaved trees [30],
while Cao et al. concluded that textural measurements could help distinguish between tree
species with weak spectral differences but large differences in leaf surface structures [55].
Furthermore, the differences between the classification results of the variable sets B-PC and
C-PC in the vegetation alliances EPPR–SAXA–GYPR and EPPR–SALA–GYPR showed that
both spectral information and texture information could affect the species classification
accuracy. Therefore, it was difficult to distinguish shrub species using only spectral infor-
mation or texture information. The combined use of spectral indices and texture indices
helps to classify shrub species accurately in the Gobi region.

4.3. Spatial Distribution of Vegetation in Different Areas of Alluvial Fans

The species classification results for the 38 sample plots, using the optimal variable
set and the RF model, revealed large spatial heterogeneity in the plant composition on
the alluvial fan surfaces on the southern slope of the Tian Shan Mountains in the Gobi
region. This may be closely correlated with the elevation and the redistribution of water
by microtopography. At the top of alluvial fans, due to the flat terrain, the floodwater
flowed slowly through the area and stayed on the surface for a long time, resulting in
sufficient soil moisture and relatively uniform spatial configuration, which was conducive
to the growth of different species. As a result, plants in this region demonstrated a random
distribution pattern, with a relatively high number and kinds of plants. The middle and
bottom areas of the alluvial fans were more affected by flood erosion and the combined
effect of microtopography, forming shallow channels of different sizes. As the floodwater
flows through these channels, some of the water seeps into the soil and feeds the plants.
As a result, plants in this region were clustered and distributed in channels of varying
sizes. In the middle of the alluvial fans, the number of plants was slightly lower than that
at the top of the fan due to the limited number of channels, but the kinds of plants are
similar. However, at the bottom of alluvial fans, due to the strong evaporation in the Gobi
region and the influence of water permeation in the soil surface, the water flow reached
this region with a slow speed and a small amount of water, which resulted in limited water
supply for plant growth. Therefore, only a small amount of vegetation was distributed in
the narrow shallow channel at the bottom of the alluvial fans, and plants of a single type
tended to occupy these areas.

As a result of global warming and the drying caused by climate change, local sand-
storms were also increasing year by year. In recent years, sandstorms occurred frequently
on the edge of the oasis in southern Xinjiang, which seriously threatened the production
and lives of people living along the edge of the oasis. The Gobi area in the north of the
oasis on the southern slope of the Tian Shan Mountains is closely connected with the oasis,
and the vegetation in this area plays an important role in inhibiting the flow of sand on
the surface of the Gobi area. A comprehensive understanding of the spatial distribution of
different species in the Gobi region is important for ecologists studying the vegetation in
this region, including the impact of climate change on vegetation patterns, and for forest
managers to take reasonable measures to manage the vegetation in the region. Simulta-
neously, the spatial distribution of shrub vegetation species on alluvial fans in the Gobi
area indirectly reflected the spatial pattern of soil moisture, which provides a basis for
afforestation planning in this area.
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4.4. Advantages and Limitations

The method developed in this study is not without limitations. One disadvantage is
that adequate sample data must be obtainable for a given area to train the RF model. The
training data do not need to be spatially uniform, but it can be challenging to obtain suffi-
cient species survey data from individual shrubs in the extremely harsh Gobi environment.
Moreover, researchers need to have adequate knowledge of plant taxonomy to accurately
distinguish the shrub vegetation species. Furthermore, due to the limitations of the vegeta-
tion index, shaded areas, Gobi gravel, or bare ground environments can be misclassified
as vegetation if they have similar spectral, textural, and morphological attributes in the
vegetation and non-vegetation classification stage. Shrub plants that have similar spectral
and textural characteristics to bare ground, such as Gymnocarpos przewalskii and Sarcozygium
xanthoxylon, can also be misclassified. This was an issue for the UAV RGB image-based
classifications; however, the OBIA re-shaping helped to mitigate misclassifications in a way
that cannot be achieved using only the vegetation index. Irregularly shaped objects were
excluded using OBIA, or based on their spectral or textural properties. As such, it was
possible to automatically segment the UAV images and obtain individual shrub polygons.

In this study, a promising method of image classification was developed and tested.
Areas of vegetation were first extracted from UAV images using segmentation and the
vegetation index, and then combined with spectral and textural variables within each
segment. The optimal variable set was selected and then used with the RF model to classify
shrub species. However, the complex surface structure in the Gobi region and the general
influence of water limitations on vegetation have resulted in stunted growth and varying
plant health. Further development is therefore required before this method can be used
to create distribution maps of individual shrub species over large areas without extensive
manual editing. Currently, this method is prone to misclassification of shrub species
with similar spectral or textural features, such as Gymnocarpos przewalskii and Sarcozygium
xanthoxylon. However, these shrub species can also be hard to differentiate from each other
without additional data. Besides, the quality of the image segmentation seriously affects
the image classification results. The multi-resolution segmentation method we adopted
had a good segmentation performance. However, many unsatisfactory segmentation
phenomena remain in the complex surface background of the Gobi region, even with an
optimized combination of parameters. One possible solution could be using richer spectral
data for the different shrub species. For example, multi-spectral or hyperspectral sensors
could be carried on a UAV platform [82,83], although this could lead to increased data
collection costs. Another solution may be to obtain deeper features from the UAV RGB
images for image segmentation and shrub species classification. Deep learning is a recently
developed machine learning technology that can mine deep features from data [84,85]. At
present, deep learning has been widely used in target detection, image segmentation, image
classification, and other fields, and has achieved good results [86–88]. The application of
deep learning technology to the classification of shrub species in UAV images from the
Gobi region is very promising.

5. Conclusions

There are few studies of single shrub species classification based on UAV RGB images
in the Gobi region where the surface background is relatively complex. In this work, we
proposed a semi-automated workflow to classify individual shrub species based on readily
available high-resolution UAV RGB images using a combination of OBIA and RF. We also
used PCA to select the best variable sets, and compared the classification accuracies of
different classifiers using various sets of variables. We tested this method on different
shrub species and vegetation alliances in the Gobi region, and were able to map individual
shrub species in all alliances with a mean OA of 88.23% and Kappa of 0.79 using the RF
model developed from the best variable set. The PA and UA results for the different shrub
species indicate that the classification successfully identified most of the shrub species
in each alliance, although the individual shrub species outlines contained false positives
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that had to be removed manually. In addition, we found that the best detection rates
were not necessarily obtained by integrating the derived spectral and textural variables,
although the individual shrub species identified were mapped at a higher accuracy using
this method than by using only the original spectral bands. The process of feature extraction
and variable set selection cannot only improve the running efficiency of the model but
can also yield a higher classification accuracy. Some limitations also exist with respect
to texturally similar backgrounds such as shading, Gobi gravel, and bare ground that
were misclassified as vegetation areas. Nevertheless, the method developed in this study
produced promising results, and reduced the amount of manual labor. Based on this
method, we obtained and statistically analyzed the species classification results of all
sample plots, and obtained the spatial distribution of different species in the study area,
which provided further understanding of the composition and spatial distribution of
vegetation in the Gobi region. Overall, contributions of this study are as follows: (1) we
proposed a combined OBIA and RF model for species classification in the Gobi region based
on UAV RGB imagery. (2) We tested the classification accuracy of individual shrub species
maps with different types of variable sets generated by different models and confirmed
that the combination of spectral and texture indices can significantly improve the species
classification accuracy in the Gobi region. (3) By analyzing the species classification results
of different locations in the Gobi region on the southern slope of the Tian Shan Mountains,
we found that the plant composition of different locations in the Gobi region had greater
spatial heterogeneity. Further developments in deep learning methods will hopefully
lead to refined identifications of different species spectrums and textures. Therefore, the
use of deep learning methods are recommended to identify individual shrub species in
future work.
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Appendix A

Table A1. Description of the selected texture parameters of Gray-Level Co-Occurrence Matrix (GLCM).

Type Variable Description Formula

Gray-level
co-occurrence matrix

(GLCM) indices

Mean Mean measures the average of gray level values in an image. ∑
Ng−1
i=0 ∑

Ng−1
j=0 i·g(i, j)

Variance Measures texture heterogeneity. Variance increases when the
gray level values differ from their mean. ∑

Ng−1
i=0 ∑

Ng−1
j=0 (i− µ)2·g(i, j)

Homogeneity A measure of homogeneity. Sensitive to the presence of near
diagonal elements in a GLCM. ∑

Ng−1
i=0 ∑

Ng−1
j=0

1
1+(i−j)2 ·g(i, j)

Contrast
Contrast measures the drastic change in gray level between

contiguous pixels. Low contrast image features low
spatial frequencies.

∑
Ng−1
i=0 ∑

Ng−1
j=0 (i− j)2·g2(i, j)
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Table A1. Cont.

Type Variable Description Formula

Dissimilarity Dissimilarity is similar to contrast. Instead of weighting the
diagonal exponentially, dissimilarity weights increase linearly. ∑

Ng−1
i=0 ∑

Ng−1
j=0 g(i, j)·|i− j|

Entropy
A measure of the disorder in an image and is highly correlated

to energy. Entropy is high when an image is not
texturally uniform.

∑
Ng−1
i=0 ∑

Ng−1
j=0 g2(i, j)· log(g(i, j))

Energy
Measures texture uniformity, or pixel pair repetitions. High
energy occurs when the distribution of gray level values is

constant or period.

√
∑

Ng−1
i=0 ∑

Ng−1
j=0 g2(i, j)

Correlation
Measures the linear dependency in an image. High correlation
values mean a linear relationship between the gray levels of a

contiguous set of pixel pairs.
∑

Ng−1
i=0 ∑

Ng−1
j=0 (i− µ)·(j− µ)·g(i, j)/σ2

where Ng is the number of gray levels, g(i,j) is the entry (i,j) in the GLCM, µ is the GLCM mean, and σ2 is the GLCM variance.

Table A2. Formulas of the selected accuracy verification indicators of different classifiers.

Name Formula

Producer’s Accuracy (PA) PPA = Xii
X+i

User’s Accuracy (UA) PUA = Xii
Xi+

Overall Accuracy (OA) POA = ∑n
i=1 Xii
M

Kappa Coefficient (Kappa) Kappa =
M ∑n

i=1 Xii−∑n
i=1(Xi+ ·X+i)

M2−∑n
i=1(Xi+ ·X+i)

where Xii is the amount of correctly classified categories in the error matrix; X+i is the amount of real reference
samples in that category; Xi+ is the number of categories classified into this category; and M is the total amount
of samples.

Appendix B

Table A3. The unmanned aerial vehicle (UAV) image data and variables derived from the data.

Layer Type Variable Equation Reference

1
Original bands

blue band (B) —
[13]2 green band (G) —

3 red band (R) —

4

Spectral indices

blue green ratio index (BGRI) B/G [64]
5 blue ratio (Bratio) B/(B + G + R) [65]
6 blue red ratio index (BRRI) B/R [64]
7 excess blue index (ExB) 1.4 × blue ratio − green ratio [66]
8 excess green index (ExG) 2 × green ratio − red ratio − blue ratio [66,67]
9 excess green red index (ExGR) ExG − ExR [33]
10 excess red index (ExR) 1.4 × red ratio − green ratio [66]
11 green blue ratio index (GBRI) G/B [65]
12 green ratio (Gratio) G/(B + G + R) [65]
13 green red ratio index (GRRI) G/R [65]
14 Kawashima index (IKAW) (R − B)/(R + B) [68]
15 color intensity index (INT) (R + G + B)/3 [65]
16 modified green red vegetation index (MGRVI) (G2 − R2)/(G2 + R2) [69]
17 modified VARI (MVARI) (G − B)/(G + R − B) [24]
18 normalized green blue difference index (NGBDI) (G − B)/(G + B) [70]
19 red blue ratio index (RBRI) R/B [65]
20 red green blue vegetation index (RGBVI) (G2 − R × B)/(G2 + R × B) [66]
21 red ratio (Rratio) R/(B + G + R) [65]
22 triangular greenness index (TGI) G − (0.39 × R) − (0.61 × B) [71]
23 visible atmospherically resistant index (VARI) (G − R)/(G + R − B) [24]
24 vegetative index (VEG) G/(R0.667 × B0.333) [72]
25 visible-band difference vegetation index (VDVI) (G − R − B)/(G + R + B) [24]
26 Woebbecke index (WI) (G − B)/(G + R) [67]

27–34
Texture indices

B_GLCM (mean, variance, homogeneity, contrast,
dissimilarity, entropy, energy, correlation) —

[45]
35–42 G_GLCM (mean, variance, homogeneity, contrast,

dissimilarity, entropy, energy, correlation) —

43–50 R_GLCM (mean, variance, homogeneity, contrast,
dissimilarity, entropy, energy, correlation) —
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Appendix C

Table A4. Percentage of information contained in the first six components of the principal component
analysis (PCA) of different sets of variables.

Variable Set Principal Components Variance (%)

A-PC

PC1 87.87
PC2 8.22
PC3 2.22
PC4 1.06
PC5 0.49
PC6 0.14

B-PC

PC1 85.67
PC2 8.24
PC3 2.03
PC4 1.28
PC5 0.52
PC6 0.36

C-PC

PC1 82.03
PC2 9.92
PC3 1.76
PC4 0.74
PC5 0.31
PC6 0.25

D-PC

PC1 84.74
PC2 10.46
PC3 1.37
PC4 0.42
PC5 0.4
PC6 0.23

Appendix D

Table A5. Comparison of classification accuracies of individual shrub species maps from EPPR–SAXA–GYPR alliance of four sets of
variables generated by the random forest (RF) model.

Variable Set Class Producer
Accuracy

Number
of Samples

Ephedra
przewalskii

Sarcozygium
xanthoxylon

Gymnocarpos
przewalskii

A-PC

Ephedra przewalskii 0.83 176 146 21 9
Sarcozygium xanthoxylon 0.43 68 31 29 8
Gymnocarpos przewalskii 0.50 44 14 8 22

Total 288 191 58 39
User Accuracy 0.76 0.50 0.56

Overall Accuracy (197/288) = 68.40% Kappa = 0.40

B-PC

Ephedra przewalskii 0.89 176 156 13 7
Sarcozygium xanthoxylon 0.54 68 27 37 4
Gymnocarpos przewalskii 0.70 44 8 5 31

Total 288 191 55 42
User Accuracy 0.82 0.67 0.74

Overall Accuracy (224/288) = 77.78% Kappa = 0.58

C-PC

Ephedra przewalskii 0.92 176 162 9 5
Sarcozygium xanthoxylon 0.66 68 9 45 14
Gymnocarpos przewalskii 0.68 44 1 13 30

Total 288 172 67 49
User Accuracy 0.94 0.67 0.61

Overall Accuracy (237/288) = 82.29% Kappa = 0.68

D-PC

Ephedra przewalskii 0.92 176 162 10 4
Sarcozygium xanthoxylon 0.68 68 19 46 3
Gymnocarpos przewalskii 0.75 44 7 4 33

Total 288 188 60 40
User Accuracy 0.86 0.77 0.83

Overall Accuracy (237/288) = 82.29% Kappa = 0.68
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Table A6. Comparison of classification accuracies of individual shrub species maps from the EPPR–SALA alliance of four
sets of variables generated by the random forest (RF) model.

Variable Set Class Producer Accuracy Number
of Samples

Ephedra
przewalskii Salsola laricifolia

A-PC

Ephedra przewalskii 0.70 137 96 41
Salsola laricifolia 0.71 148 43 105

Total 285 139 146
User Accuracy 0.69 0.72

Overall Accuracy Kappa = 0.41
(201/285) = 70.53%

B-PC

Ephedra przewalskii 0.80 137 109 28
Salsola laricifolia 0.84 148 23 125

Total 285 132 153
User Accuracy 0.83 0.82

Overall Accuracy Kappa = 0.64
(234/285) = 82.11%

C-PC

Ephedra przewalskii 0.74 137 101 36
Salsola laricifolia 0.76 148 36 112

Total 285 137 148
User Accuracy 0.74 0.76

Overall Accuracy Kappa = 0.49
(213/285) = 74.74%

D-PC

Ephedra przewalskii 0.92 137 126 11
Salsola laricifolia 0.97 148 4 144

Total 285 130 155
User Accuracy 0.97 0.93

Overall Accuracy Kappa = 0.89
(270/285) = 94.74%

Table A7. Comparison of classification accuracies of individual shrub species maps from EPPR–SALA–GYPR alliance of four sets of
variables generated by the random forest (RF) model.

Variable Set Class Producer
Accuracy

Number
of Samples

Ephedra
przewalskii

Salsola
laricifolia

Gymnocarpos
przewalskii

A-PC

Ephedra przewalskii 0.73 144 105 25 14
Salsola laricifolia 0.74 146 21 108 17

Gymnocarpos przewalskii 0.29 34 2 22 10
Total 324 128 155 41

User Accuracy 0.82 0.70 0.24
Overall Accuracy

(223/324) = 68.83% Kappa = 0.48

B-PC

Ephedra przewalskii 0.76 144 110 26 8
Salsola laricifolia 0.85 146 10 124 12

Gymnocarpos przewalskii 0.44 34 4 15 15
Total 324 124 165 35

User Accuracy 0.89 0.75 0.43
Overall Accuracy

(249/324) = 76.85% Kappa = 0.61

C-PC

Ephedra przewalskii 0.64 144 92 46 6
Salsola laricifolia 0.79 146 23 116 7

Gymnocarpos przewalskii 0.65 34 6 6 22
Total 324 121 168 35

User Accuracy 0.76 0.69 0.63
Overall Accuracy

(230/324) = 70.99% Kappa = 0.51

D-PC

Ephedra przewalskii 0.90 144 130 5 9
Salsola laricifolia 0.89 146 6 130 10

Gymnocarpos przewalskii 0.71 34 — 10 24
Total 324 136 145 43

User Accuracy 0.96 0.90 0.56
Overall Accuracy

(284/324) = 87.65% Kappa = 0.79
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