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Abstract: The Qilian Mountains (QLMs), an important ecological protective barrier and major water
resource connotation area in the Hexi Corridor region, have an important impact on ecological
security in western China due to their ecological changes. However, most existing studies have
investigated vegetation changes and their main driving forces in the QLMs on the basis of a single
scale. Thus, the interactions among multiple environmental factors in the QLMs are still unclear.
This study was based on normalised difference vegetation index (NDVI) data from 2000 to 2019. We
systematically analysed the spatial and temporal characteristics of the QLMs at multiple time scales
using trend analysis, ensemble empirical mode decomposition, Geodetector, and correlation analysis
methods. At different time scales under single-factor and multi-factor interactions, we examined the
mechanisms of the vegetation changes and their drivers. Our results showed that the vegetation in
the QLMs showed a trend of overall improvement in 2000–2019, at a rate of 0.88 × 10−3, mainly in
the central western regions. The NDVI in the QLMs showed a short change cycle of 3 and 5 years and
a long-term trend. Sunshine time and wind speed were the main drivers of the vegetation variation
in the QLMs, followed by temperature. Precipitation affected the vegetation spatial variation within
a certain altitude range. However, temperature and precipitation had stronger explanatory powers
for the vegetation variation in the western QLMs than in the eastern part. Their interaction was the
dominant factor in the regional differences in vegetation. The responses of the NDVI to temperature
and precipitation were stronger in the long time series. The main drivers of vegetation variation were
land surface temperature and precipitation in the east and temperature and evapotranspiration in
the west. Precipitation was the main driver of vegetation growth in the northern and southwestern
QLMs on both the short- and long-term scales. Vegetation changes were more significantly influenced
by short-term temperature changes in the east but by a combination of temperature and precipitation
in most parts of the QLMs on a 5-year time scale.

Keywords: vegetation change; driver; EEMD; Geodetector; QLMs

1. Introduction

The ecological environment is an important barrier to human survival on earth. In
recent years, with the active promotion of urbanisation and rapid industrialisation, the
ecological environment has been changing drastically. Protection of the ecological environ-
ment and its rational exploitation have become increasingly important in the context of
sustainable development [1]. Surface vegetation is a sensitive indicator of environmental
change that can directly respond to the overall ecological environmental situation [2] and
then provide reliable information for ecological environment construction and protection.
As an effective index for characterising surface vegetation changes, the normalised dif-
ference vegetation index (NDVI) can fully reveal the spatial pattern of vegetation cover
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and its heterogeneity and has been widely used in monitoring vegetation productivity,
drought, desertification, and ecological environment [3–5]. Many human activities such as
deforestation, overgrazing, and mineral development have adverse effects on the ecologi-
cal environment. Thus, the use of the NDVI as an indicator to account for and evaluate
regional vegetation cover changes and examine the driving factors affecting vegetation
changes is of great practical significance to the improvement and restoration of the local
ecological environment. The NDVI is also useful for reconciling the contradiction between
socio-economic development and ecological environmental protection.

In recent years, along with the rapid development of remote sensing technology with
good application prospects, ecological environment monitoring based on remote sensing
technology has become an indispensable technical tool [6]. Satellite-based NDVI can
accurately reflect the density and growth of vegetation cover and is the most commonly
used indicator for characterising the status of surface vegetation [7]. On this basis, many
scholars have conducted fruitful studies on vegetation changes on the global and regional
scales by using NDVI datasets [8–10]. At the global level, global vegetation cover has
increased since 1980, which is mainly attributed to improved climatic conditions and
elevated CO2 concentrations [11]. Since 1990, increased brownout trends have slowed
down the growth rate of the global average of the NDVI. Since 2000, global vegetation has
been at risk of shifting from long-term increases to degradation as the climate continues
to warm [12]. At regional scales, vegetation NDVI trends vary and are associated with
multiple factors, so quantifying the drivers and the interaction of multiple factors is key in
the research on the mechanisms of vegetation changes.

Furthermore, the NDVI in China has continued to increase over the past 30 years, with
a clear spatial increase in North China and an overall decrease in South China. The NDVI
in the arid and semi-arid regions of northwest China increased significantly in spring,
whereas that in northern and northeastern China showed an increasing trend in summer
and autumn [13]. In the case of northwest China, which has a special topography, the NDVI
of vegetation showed an overall increasing trend, and the vegetation changes showed a
significant regional variability. Studies have shown that the NDVI of the vegetation changes
in northwest China is weakly correlated with temperature as a whole, whereas that in arid
and semi-arid areas is negatively correlated with temperature. The change in the NDVI in
different vegetation types has spatial and temporal variabilities, and the correlation with
factors such as temperature and precipitation also had notable differences [14].

As a watershed between the Qinghai-Tibet Plateau and the northern inland desert,
the Qilian Mountains (QLMs) are an important ecological barrier in northwest China and
a major water resource culmination area in the Hexi Corridor region. Their ecological
changes not only affect the local socioeconomic and ecological environments but also play
an extremely important regulatory role in the ecological security of western China [15]. The
QLMs are also a fragile ecological zone in northwest China, which is extremely sensitive to
climate change and human activities owing to its highly unstable natural conditions [16].
Therefore, the vegetation cover changes reflected by the NDVI in the QLMs are significantly
related to the spatial heterogeneity of climate factors. The changes in vegetation growth
and regional ecological structure within a certain time scale are inevitably influenced by
abrupt changes in climate factors.

Vegetation change and its drivers are characterised by multiple time scales, and their
relationships are also scale dependent [17]. However, most existing studies on the QLMs
have used a single time scale and spatial scale to analyse vegetation change patterns. While
most long-term changes in climate variables exhibit non-linear and non-smooth complex
processes with different time scales and periodic oscillations [18], a single time scale cannot
accurately reflect the interactions between vegetation and climate transformations. By
focusing on region-wide or larger-scale vegetation characterisations, reflecting on the
comprehensive microscopic characteristics of vegetation changes and their patterns is
difficult [19]. Moreover, a previous study on vegetation and driver interrelationships
in the QLMs did not consider the complex relationships between geographic variables
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and lacked a quantitative evaluation of the interaction between two or more drivers [20].
Geodetector can assess the main drivers of regional vegetation and the interaction between
variables from the perspective of spatial heterogeneity and stratification [21,22], which can
be introduced in studies on the drivers of vegetation change in QLMs.

In view of this, on the basis of the MODIS and GIMMS NDVI data of the QLMs in
the periods 2000–2019 and 1982–2006, this study combined various meteorological data,
digital elevation models (DEMs), land surface temperatures (LSTs), and evapotranspiration
(ET). The linear trend and ensemble empirical mode decomposition (EEMD) methods were
used to analyse the evolution pattern of vegetation in the QLMs on multiple time scales.
Geodetector was applied to determine the main control factors of vegetation change and
the interaction between the factors. The quantitative relationships between vegetation
change and the driving factors were examined to provide technical support for ecological
restoration, conservation, and sustainable development of the QLMs and a reference for
the study of vegetation cover change in the same types of areas.

2. Study Area and Data
2.1. Study Area

The QLMs are the dividing line between the three major plateaus, namely Loess,
Mengxin, and Qinghai-Tibet, in the arid and semi-arid regions of inland northwest China [23].
The geographical coordinates lie between 93◦30′–103◦ E and 36◦30′–39◦30′ N. The total
length is around 1000 km, and the width is around 300 km [15,24]. The QLMs extend
from Wushaoling in the east to the Dangjinshan Pass and Altun Mountain in the west and
are bounded by the Hexi Corridor in the north and adjacent to the Qaidam Basin in the
south. The terrain is high in the southwest and low in the northeast, consisting of several
northwest-to-southeast-trending mountain ranges and wide valleys, with peaks mostly
higher than 4000 m in elevation. Qinghai Lake is its largest lake (Figure 1). The QLMs
belong to the mid-latitude northern temperate zone, which is a typical continental climate
of the plateau.
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Owing to the influence of atmospheric circulation and high altitude, the water and heat
conditions in the QLMs vary greatly from east to west, with an average annual temperature
of around 0.6 °C and annual precipitation of around 400 mm, decreasing from east to west.
As a result of the special topography and abundant water vapour overhead, precipitation
is higher in the mountains by around 400–700 mm [25–27]. The QLMs water system is
dominated by glacial meltwater recharge and mountain precipitation. The distribution of
vegetation in the area is affected by the southeast monsoon and the redistribution of water
and heat conditions and terrain patterns. Thus, the QLMs show unique vertical zonation
characteristics, with semi-desert grasslands, mountain desertification grasslands, mountain
forest grasslands, alpine scrub meadows, alpine meadows, and alpine sparse meadows
distributed from low to high altitudes [28]. Owing to complex topographic and climatic
conditions, the natural ecosystems in the region are fragile and sensitive to climate change.
The changing characteristics of vegetation in the QLMs have attracted great attention in
China.

2.2. Data

Vegetation data were obtained from MOD13Q1 data, with a temporal resolution of 16
d and a spatial resolution of 250 m from NASA for the period 2000–2019 (https://ladsweb.
modaps.eosdis.nasa.gov/, accessed on 29 September 2021). The downloaded MODIS
NDVI data were pre-processed using the MODIS Reprojection Tool (MRT) for stitching,
projection conversion, and cropping. The monthly data were maximally synthesised using
the maximum value compound (MVC) method to eliminate the interference of clouds,
atmosphere, and solar altitude angle [16]. An NDVI of 0.1 or more is generally considered
to indicate vegetation cover. For this reason, in this study, we cropped out areas without
vegetation cover, such as bare soil, gobi deserts, water bodies, snow, and ice, with NDVI
values < 0.1 [29]. Owing to the short time series of the MODIS data, the GIMMS NDVI and
MODIS NDVI data were partially fused to extend the time series for the examination of
the cyclic relationship with the NDVI.

In this study, the GIMMS NDVI dataset, with a resolution of 8 km and temporal
resolution of 15 d, for the period 1982–2006 was selected from the National Oceanic and
Atmospheric Administration land dataset [18]. The GIMMS NDVI data were obtained from
the WGS84 dataset and pre-processed with radiometric correction, geometric refinement
correction, atmospheric correction, bad-line removal, cloud removal, and so forth. The data
quality was good and had a long time series, which is widely used in current large-scale
vegetation change studies [30]. The LST and ET data were also obtained from the MOD11A2
and MOD16A2 datasets provided by NASA (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 29 September 2021), which were stitched, reprojected, cropped, and synthesised
with maximum values. MVC was used to support the discussion of the correlation between
the vegetation changes and the LST and ET in the QLMs.

The meteorological data selected for this study were obtained from the China Meteoro-
logical Science Data Sharing Service (http://data.cma.cn/, accessed on 29 September 2021).
These include the monthly mean temperature, precipitation, mean wind speed, sunshine
hours, and relative humidity data of five meteorological factors from 2000 to 2019. These
data cover 16 meteorological stations in the QLMs and surrounding areas and were used
to discuss the main drivers of vegetation change in the QLMs.

The DEM data were obtained from the geospatial data cloud (http://www.gscloud.
cn/, accessed on 29 September 2021). The DEM data were obtained from the SRTM DEM
data, with a spatial resolution of 90 m, an absolute horizontal error of 20 m, and a vertical
error of 16 m (90% confidence level) [31]. The projection was transformed and resampled
to match the geographic coordinates and resolution to the vegetation NDVI data.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://data.cma.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
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3. Methods
3.1. Unary Linear Regression Trend Method

In this study, the linear trend method was used to simulate the vegetation cover
change trend in the QLMs from 2000 to 2019. In this method, the rate of vegetation change
was calculated using the following formula:

Θslope =
n×∑n

i=1(i× NDVIi)−∑n
i=1 i×∑n

i=1 NDVIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

In Equation (1), n is the cumulative number of years in the monitoring period, NDVIi
is the NDVI in year i, and θslope is the change rate. θslope > 0 indicates an increasing NDVI
trend over n years, and conversely, θslope < 0 indicates a decreasing NDVI trend [32]. The F
test was used to determine the significance level of the vegetation change trends. On the
basis of the range of changes in the slope of the trend line, highly significant improvement
(θslope > 0, p ≤ 0.01), significant improvement (θslope > 0, 0.01 < p ≤ 0.05), insignificant
change (p > 0.05), significant decrease (θslope < 0, 0.01 < p ≤ 0.05), and highly significant
decrease (θslope < 0, p ≤ 0.01) were observed in the five change intervals [33].

3.2. NDVI Data Fusion

In this study, MODIS NDVI data from 2000 to 2019 and the reconstructed GIMMS
NDVI dataset from 1982 to 2006 were selected to remove as much noise as possible and
reduce the impact on the effectiveness of surface vegetation monitoring. NDVI reconstruc-
tion methods can be broadly classified into four categories [31]: (1) Savitzky-Golay filtering
method; (2) Fourier fitting method; (3) threshold methods such as standard deviation and
best exponential slope extraction; and (4) asymmetric function fitting methods such as
asymmetric Gaussian function fitting and weighted least squares linear regression. The
literature analysis revealed that the asymmetric Gaussian function fitting method had
better results. Therefore, in this study, an asymmetric Gaussian function was used to
reduce noise in the MODIS NDVI series, and the NDVI values of the study area were
calculated. The asymmetric Gaussian function was first fitted to the data points around the
extremes by using the local Gaussian function. Then, the adjacent local functions obtained
from the fitting were spliced to form the global fitting function [30,34]. The local function
is expressed as:

f (t) = c1 + c2 × g(t, x1, x2, x3, x4, x5) (2)

where c1 and c2 are the coefficients of the basic function, which determine the baseline
and amplitude of the local fitting function, respectively, and the function g is a Gaussian
function with the expression

g(t, x1, x2, x3, x4, x5) =

exp
[
−
(

t−x1
x2

)x3
]

t ≥ x1

exp
[
−
(

x1−t
x4

)x5
]

t < x1
(3)

where x1 is the time scale at which the extreme value is located; x2 and x3 are the coefficients
determining the width and flatness of the Gaussian right-hand function, respectively; and
x4 and x5 are the coefficients determining the width and flatness of the left-hand function,
respectively.

The global formula derived from the local formula is

F(t) =

{
a(t)× f1(t) + [1− a(t)]× f2(t) t1 < t < t2

b(t)× f2(t) + [1− b(t)]× f3(t) t2 < t < t3
(4)

where f1(t) is the local fit function around the left minimum, f3(t) is the local fit function
around the right minimum, and f2(t) is the local fit function around the middle maximum.
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a(t) and b(t) are the normalised distance factors of t, respectively, ranging from 0 to 1.
Figure 2 shows the NDVI fitting effect based on the asymmetric Gaussian function.
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3.3. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a signal time-frequency processing method.
It is based on the Hilbert–Huang transform, which can decompose a signal into a finite
number of intrinsic mode function (IMF) components containing local features of the origi-
nal signal at different time scales and a trend component according to the characteristics of
the signal itself [35,36]. EEMD is an improved empirical mode decomposition method [37].
EEMD inherits the adaptive characteristics of EMD and effectively solves the modal mixing
problem by introducing auxiliary white noise [18]. In this study, the EEMD model was
used to analyse long-term vegetation periodicity.

The EEMD decomposition steps are as follows:

1. Add a certain number (np) of Gaussian white noise ωj(t) to the signal x(t) to obtain a
large number of noisy new signals Xj(t).

Xj(t) = x(t) + ωj(t) (5)

j = 1, 2, · · · , np (6)

2. Decompose the new signal Xj(t) by EMD method to obtain the IMF component (ci)
and the trend term (rn):

Xj(t) =
n

∑
i=1

cij + rnj (7)

where cij and rnj denote the IMF component and trend term, respectively.
3. Repeat the above steps for np times; each time, a new white noise sequence with the

same amplitude is added.
4. The IMFs and rn obtained from each decomposition are pooled and averaged so that

the added white noises cancel each other as follows.

ci(t) =
1

np

np

∑
j=1

cij(t) (8)

rn =
1

np

np

∑
j=1

rnj(t) (9)

where ci(t) is the ith IMF component obtained by decomposition of the initial signal,
and rn is the trend term.
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The variation period of each IMF component is as follows:

Tk =
N

NPk
(10)

where N is the length of the IMF component and NPk is the number of extreme value points
of the kth IMF component.

The significance of IMF components at different time scales can be estimated by the
variance contribution ratio, as follows:

Si =
k

∑
i=1

(ci(t))
2 −

(
k

∑
i=1

ci(t)

)2

(11)

S =
Si

∑i−1
i=1 Si

× 100% (12)

where Si is the variance of the ith component ci(t) and S is the variance contribution of this
component. The larger the value of S, the more volatile and important this component [35].

3.4. Geodetector

Geodetector is a statistical method proposed by Wang [38] that can quantitatively
detect spatial dissimilarity and reveal the driving force. The core idea of the method is that
if a factor has a spatially significant influence on the emergence of a phenomenon, then
the factor should have similarities with the spatial distribution of the phenomenon. This
method can detect the influence of a single factor and judge the strength of multi-factor
interactions.

Geodetector consists of four detectors: variance and factor detection, interaction detec-
tion, risk area detection, and ecological detection. We used variance and factor detection,
interaction detection, and ecological detection to analyse the quantitative relationship
between vegetation change and the driving factors.

Variance and factor detection identifies the extent to which factor X explains the spatial
divergence of an attribute Y. The value of q is measured in the range of [0,1]. The larger the
value of q, the stronger the explanatory power of the independent variable X on attribute
Y, and the weaker the opposite. The expressions are as follows:

q = 1− SSW
SST

(13)

SSW =
∫ L

h=1
Nhσ2

h (14)

SST = Nσ2 (15)

where h = 1, . . . ; L is the stratification (Strata) of variable Y or factor X, classification or
partition; Nh and N are the numbers of cells in stratum h and the whole area, respectively;
and σ2

h and σ2 are the variance of the Y values in stratum h and the whole area, respectively.
SSW and SST are the sum of the within sum of the squares and total sum of the squares,
respectively.

Interaction detection identifies interactions between different risk factors Xs and
assesses the explanatory power of factors X1 and X2 when acting together to increase or
decrease the explanatory power of the dependent variable Y. The assessment is performed
by calculating the q values of X1 and X2 on Y, q(X1) and q(X2), respectively. Then, the q
values when X1 and X2 interact, q(X1 ∩ X2), were calculated. Finally, q(X1), q(X2), and q(X1
∩ X2) were compared. The relationship between the two factors can be divided into the
following categories (Table 1):
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Table 1. Types of interactions between two independent and dependent variables.

Judgment Basis Interaction

q(X1∩X2) < Min(q(X1), q(X2)) Non-linear weakening
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1)), q(X2)) Single-factor nonlinear attenuation
q(X1∩X2) > Max(q(X1), q(X2)) Two-factor enhancement
q (X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

3.5. Correlation Analysis

We used a correlation analysis to study the relationship between NDVI and climate
factors, mainly to study the degrees of correlation of NDVI to temperature and precipitation,
and the correlation coefficient was within the range [−1,1]. The larger the absolute value
of the correlation coefficient, the higher the correlation between vegetation change and
climate factors, and the smaller the absolute value of the correlation coefficient, the lower
the correlation between the two [39].

4. Results
4.1. Spatial and Temporal Characteristics of the Vegetation Changes in the QLMs

In terms of time, the NDVI change rate in the QLMs during the growing season was
0.88 × 10−3 (Figure 3). The mean NDVI value in the QLMs during the growing season
from 2000 to 2019 showed an upward trend of fluctuation, with the minimum (0.31) and
maximum values (0.34) appearing in 2001 and 2017, respectively. From 2000 to 2005, the
NDVI showed an upward trend, with a growth rate of 4.20 × 10−3. From 2005 to 2008 and
from 2012 to 2016, the NDVI showed a decreasing trend and reached the smallest value in
2008. From 2008 to 2012, the NDVI showed an upward trend of fluctuation and increased
rapidly, with a growth rate of 23.33 × 10−3 from 2016 to 2017, reaching the maximum value
in 2017.
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Spatially, the vegetation distribution in the QLMs showed obvious spatial differences
and generally decreased from east to west (Figure 4). The high vegetation coverage
areas were mainly concentrated in Wushaoling, Daban Mountain, Lenglongling Mountain,
Qinghai Nanshan, and other typical grassland coverage areas in the east, with NDVI values
ranging from 0.5 to 0.7, accounting for 17.53% of the total area. The vegetation coverage
areas of Corridor Nanshan, Tuolai Mountain, Datong Mountain, and the northwest part
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of Qinghai Lake were less than those of the high vegetation areas mentioned earlier, with
NDVI values between 0.3 and 0.5.
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Figure 4. Spatial distribution characteristics of vegetation in the QLMs.

The spatial change rate of vegetation in the growing season was between −0.6 and 0.6
(Figure 5a), indicating a significant growth trend. The regions with a change rate higher
than 0.2 were mainly distributed on the north and south sides of the QLMs, including Buha
River, Qinghai Nanshan, and both sides of Laji Mountains in the south and Lenglongling
Mountain and Tuolai Mountain in the north. The regions with large negative change
rates were mainly distributed in the middle and east of the study area, with change rates
between −0.2 and −0.6. The proportion of the area with a negative change rate between
0.4 and 0.6 was small, accounting for 0.05% of the area. The areas with a negative change
rate between 0.2 and 0.4 were mainly distributed among the basins of the Datong River,
Huangshui River, and Shiyang River.

In the west of the study area, the vegetation change rate was relatively low, mostly
between −0.2 and 0.2. The areas with significant increases and decreases in vegetation
coverage accounted for 32.55% and 1.56%, respectively (Figure 5b). The significant increase
was roughly similar to the area spatial distribution of the change rate higher than 0.2,
which was distributed in the Buha River basin and both sides of the Laji Mountains. In
the northwest of the study area, the vegetation change rates of the North and Shule River
basins were not high but showed significant increase trends. The area of vegetation with
an extremely significant increase accounted for 19.45%. Areas with significant vegetation
degradation were distributed in the Datonghe River and Huangshui River basins. Vegeta-
tion degradation was obvious in the Huangshui River basin, accounting for 0.51% of the
area. In summary, the NDVI value of the QLMs showed an overall improvement trend
from 2000 to 2019, with a spatial distribution characteristic of higher NDVI in the northeast
and lower NDVI in northwest. The vegetation improved significantly in the central and
western regions, whereas the local vegetation degradation was significant in the eastern
region of the QLMs.
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4.2. Vegetation Change Characteristics of the QLMs at Different Time Scales
4.2.1. Periodicity Analysis

The decomposition of EEMD should take into account the following factors: The data
are greater than or equal to two extreme values. The characteristic time scale is defined by
the time interval between the extreme values. If the data have no extreme values at all and
contain only inflection points, they can be differentiated one or more times to reveal the
extreme values. Each IMF must meet two conditions: In the entire data set, the numbers
of extremes and zero crossings must be equal or not more than 1. The average value of
the upper and lower envelopes determined by the maximum and minimum values in the
signal is zero; that is, the upper and lower envelopes are locally symmetrical with respect to
the zero axis. The average period of each IMF component can be obtained by dividing the
number of peaks (local maximums) by the length of time. We extracted the IMF component
of NDVI in the QLMs from 1982 to 2019 by using the EEMD method (Figure 6). Then,
we calculated the oscillation period of each component and its corresponding variance
contribution rate (Table 2) to reveal the cyclical characteristics of the NDVI change.

NDVI was decomposed into four IMF components with corresponding fluctuation
cycles of 3, 5, 13, and 24 years (Figure 6). Among these components, IMF1 had the
largest variance contribution rate (29.49%), followed by IMF2 (23.51%). The variance
contribution rates of IMF3, IMF4, and the trend term Residue (RES) were 20.50%, 16.63%,
and 9.87%, respectively (Table 2). The cycle detection of IMF1, IMF2, and IMF3 all passed
the significance test of 95%, but the cycle change of IMF4 was not obvious. The trend term
RES showed an upward trend, indicating that the overall NDVI value in the QLMs showed
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an upward trend from 1982 to 2019. In summary, the NDVI in the QLMs mainly showed a
3- and 5-year cycle change and long-term growth trend.
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Table 2. Periods and variance contributions of the IMF components of the QLMs vegetation NDVI
series.

IMF1 IMF2 IMF3 IMF4 Trend Term (RES)

Periodicity 3 5 13 24 ——
Variance

contribution (%) 29.49 23.51 20.50 16.63 9.87

4.2.2. Analysis of Vegetation Change at Multiple Time Scales

As shown in Figures 7 and 8, on the 3-year time scale, the NDVI change rate ranged
from −0.96 to 0.62. The proportions of increasing and decreasing vegetation areas were
56.08% and 43.92%, respectively. This indicates that the vegetation change trend in the
study area was mainly increasing, and 16.65% of the area showed a significant increasing
trend, mainly distributed in the Shule River, Buha River, and Qinghai Nanshan in the west
of the QLMs. However, the NDVI of the area significantly decreased by only 1.26% and
was distributed sporadically in the Datonghe and Huangshui watersheds in the eastern
and central parts of the QLMs.
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time scales in the QLMs.

On the 5-year time scale, the NDVI change rate ranged from −0.97 and 0.96, and
the proportions of increasing and decreasing areas were 86.15% and 13.85%, respectively.
The NDVI showed a significant increasing trend in the whole study area. Compared with
that on the 3-year time scale, the NDVI change rate on the 5-year time scale was larger
and broader. The variation trend of NDVI values was more significant on the 5-year time
scale. The area with an extremely significant increase trend was widely distributed in the
western part of the study area, accounting for 77.64% of the total area. The area with an
extremely significant decrease trend was much larger than that on the 3-year time scale,
accounting for 7.50%, and distributed in the Datong River and Huangshui River basins.
The long-term trend (Figure 5) showed that the NDVI values in the Shule River and Danghe
River basins in the western part of the study area had an obvious increase trend, indicating
that vegetations in these regions were dominated by a long-term trend. However, in the
eastern and central regions, the negative vegetation change on the 5-year time scale was
obvious, indicating that the vegetations in these regions mainly change in a 5-year cycle.

4.3. Drivers of Vegetation Change in the QLMs

On the basis of the longitude, latitude, and altitude information of 16 meteorological
stations in the QLMs, we used the Geodetector model to select eight factors as the driving
factors: temperature (TEMPX1), LST (LSTX2), sunshine time (SUNTX3), precipitation
(PREX4), ET (ETX5), relative humidity (HUMDX6), average wind speed (WINDX7), and
DEM (DEMX8). We then conducted a factor detection analysis on the spatial distribution
characteristics of vegetation and counted the q value of the driving factors (Figure 9a). To
understand whether significant differences exist in the impacts of different factors on the
spatial distribution of vegetation, we performed an ecological detection of the driving
factors (Figure 9b).

The order of the Q value of the factor detector is as follows: SUNTX3> WINDX7 >
TEMPX1 > DEMX8 > LSTX2 > ETX5 > PREX4 > HUMDX6. This indicates that SUNT and
WIND had the strongest explanatory power on the spatial distribution of vegetation in the
QLMs, which were 51.82% and 45.30%, respectively. TEMP was the secondary factor (the
explanatory power was 34.11%). The influence of DEM (explanatory power, 33.86%) on the
spatial distribution of vegetation cannot be ignored. The effects of evapotranspiration, PRE,
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and HUMD on the vegetation of the QLMs were relatively small, and their q values were
at the same level. The explanatory power ranged from 10% to 20%, and the ecological test
result was N. These indicate that the three had the same impact mechanism on the spatial
distribution of vegetation and had no significant differences.
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Figure 9. Factor detection (a) and ecological detection (b) results of the spatial distribution of vegetation.

In Figure 10, the change in colour from maroon (0.2–0.3) to dark blue (0.7–0.8) repre-
sents the changing process of the explanatory power of the interaction from low to high.
The colour of the number represents the degree of explanatory power of the interaction.
The size of the dot indicates the explanatory power of the two interaction factors more
vividly and intuitively, and the two are unified. The interactive detection results (Figure 10)
showed that when two driving factors simultaneously acted on the vegetation NDVI, the
explanatory power of their interaction on the vegetation spatial distribution was greater
than that of a single factor, which is basically enhanced by the two factors. The synergistic
interactions between LST and SUNT (X2 and X3; explanatory power, 74.53%) and between
HUMD and WIND (X6 and X7; 70.11%) were the most obvious, followed by those between
TEMP and SUNT (69.93%), between TEMP and ET (69.69%), and between TEMP and PRE
(69.43%). The interaction of temperature and other driving factors had greater explanatory
power on the spatial distribution characteristics of vegetation. The interactive explanatory
power of TEMP and PRE was significantly stronger than the single-factor explanatory
power of the two driving factors. The explanatory power of PRE in factor detection was
relatively weak but significantly enhanced in the interaction with altitude, indicating that
the explanatory power of PRE on the spatial distribution of vegetation can be reflected only
when a certain elevation is met [40]. The spatial distribution characteristics of vegetation
are affected by not only one factor but also the result of the joint action of multiple factors.
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4.4. Correlation Analysis of Vegetation with Temperature and Precipitation in the QLMs

Although precipitation was relatively weakly explained in factor detection, precipita-
tion was regional in nature, and somewhat influenced by elevation, which is particularly
important in arid regions. Moreover, the interactive explanatory power of temperature
and precipitation on the spatial variation of vegetation in the QLMs was significantly
enhanced. Therefore, we chose to analyse the effects of single- and two-factor interactions
between temperature and precipitation on vegetation at different time scales. As shown
in Figure 11, the positive and negative correlation areas between vegetation and temper-
ature were 67.18% and 32.82% on the 3-year scale, respectively. The correlation was not
significant in most areas. The positive correlation was mainly distributed in the Bayingole
River basin of Qinghai Lake in the south, the Beida River, and the Shule River basin in the
north, accounting for around 7.86% (p < 0.05). The negative correlation area was mainly
distributed in the Huangshui, Datong, and Buha River basins in the east and middle of the
study area, with a significant negative correlation of only 3.28%.
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Figure 11. Spatial distribution of the correlation between vegetation and temperature and precipita-
tion at different time scales.

On the 5-year time scale, the correlation between vegetation NDVI and temperature
was significantly different, showing a spatial distribution state of positive correlation
(40.23%) in the east and negative correlation (59.77%) in the west. The significant positive
correlation was mainly concentrated in the Huangshui River and Shiyang River basins,
accounting for 7.31% of the total area. The significant negative correlation was mainly
distributed in the Shule River, Danghe River, and Bayingole River basin. In the long-term
trend, the areas of positive and negative correlations between vegetation and temperature
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were similar, at 43.18% and 54.12%, respectively. Around 51.56% of the vegetation in
the study area had a significant correlation with temperature, of which 18.01% had a
significant positive correlation, and was mainly distributed in the Laji Mountain, Qinghai
Lake, Shiyang River, and Beidahe River basins. The significant negative correlation was
mainly distributed in the west of the Datong River Basin, Buha River, and Bayingole River.

The long-term warming trend has a certain inhibitory effect on vegetation growth in
these basins. On the 3-year time scale, vegetation and precipitation mainly positively corre-
lated, and the spatial distribution was similar to the correlation distribution of vegetation
temperature. The positive correlation and negative correlations accounted for 58.73% and
41.27% of the study area, respectively, but were not significant. On the 5-year time scale, the
correlation between vegetation NDVI and precipitation was not significant, and the overall
significance level was lower than 0.1. Under the long-term change trend, the correlation
between vegetation and precipitation showed obvious spatial differences. The positive
correlation was mainly distributed in the east of the study area, accounting for 56.66%. Of
this, the extremely significant positive correlation accounted for 9.83% (p < 0.01), which was
mainly concentrated in Henan of Datong and Hubei of Qinghai. The negative correlation
was mainly distributed in the northwest of the study area. The vegetation in the arid area
of the west was more sensitive to water change and had a greater demand for precipitation.
However, the correlation results showed that vegetation in the west mainly negatively
correlated with precipitation. The main reason may be that the different vegetation types
have different demands for precipitation or may be related to the lag between them [16].

Obviously, vegetation change in the QLMs was jointly affected by temperature and
precipitation, and the degrees of response of different regions to temperature and precipi-
tation were different. To further understand the main driving force of vegetation change
in different regions, this study reclassified the P values of the correlations of NDVI with
temperature and precipitation. When the correlation coefficient p between NDVI and
temperature was less than 0.05 and the correlation coefficient p between NDVI and precipi-
tation was greater than 0.05, temperature was considered the main driving force; otherwise,
it was precipitation. When the correlation coefficient p between NDVI and temperature or
between NDVI and precipitation was less than 0.05, we inferred that the vegetation change
was the result of the joint action of temperature and precipitation. However, when both p
values were greater than 0.05, vegetation growth was presumed to have little correlation
with the variables.

From Figure 12, under the long-term trend, around 24.43% of the regional vegetation
change in the study area was mainly driven by precipitation, which was mainly distributed
in the northern and southern marginal basins of the Shule River, Heihe River, and Bayingole
River. The main driving force of around 7.79% of the regional vegetation change was
temperature, which was distributed in the Huangshui and Datong River basins. On the
3-year time scale, the driving effect of temperature on vegetation growth was significantly
enhanced. The main driving force of vegetation change in the Huangshui and Qinghai
Lake basins in the East was temperature, covering an area of 17.40 km2. The driving
force of vegetation change in the entire study area was still precipitation, accounting for
around 26.81%. In the middle of the Chase River, the joint effects of temperature and
precipitation were obvious, accounting for approximately 9.02%. On the 5-year time scale,
temperature was the main driving force, and the area under the joint action of temperature
and precipitation further increased by 11.46%, especially in the Buha River, Heihe River,
and Datong River Basin.
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5. Discussion
5.1. Characteristics of Vegetation Change in the QLMs

The QLMs, located at the junction of Mengxin, Qinghai-Tibet, and Loess Plateau, are a
case in an ecologically fragile area in northwest China. Vegetation plays an important role
in maintaining regional ecological balance. Changes in large-scale vegetation coverage can
reflect the impact of natural and human activities on the ecological environment [41]. On
the other hand, vegetation plays an irreplaceable role in maintaining regional ecological
balance, especially in reducing soil erosion. In recent years, under the influence of global
warming, vegetation in the QLMs has undergone significant changes, showing an upward
trend year after year [42]. This study confirms the previous report that the vegetation
NDVI in the QLMs has shown a fluctuating upward trend in recent decades (Figure 3).
Westerly wind prevails in the central and western parts of the QLMs all year round, while
marine monsoons affect the eastern part. The different moisture sources in the eastern and
western parts cause an increasing trend of precipitation in the QLMs from west to east [43].
This is an important factor that leads to the pattern of more vegetation in the eastern part
and less vegetation in the western part (Figure 4).

From 2000 to 2019, the vegetation in the QLMs showed an improvement trend
(Figure 5). The improvement in overall vegetation coverage depends on the growth of
local vegetation NDVI [44]. The EEMD decomposition results of vegetation NDVI showed
that the vegetation in the QLMs had a significant cycle and long-term increase trend in the
3- and 5-year projections (Figure 6). The NDVI changes were most significant on the 3-year
time scale and over the long-term trends (Figures 7 and 8), indicating that the vegetation
dynamics in the QLMs were mainly characterised by 3-year fluctuations and showed a
continuous increase trend, which was consistent with the time scale of the vegetation NPP
change in northwest China [35].

The implementation of a series of national and local government ecological projects
and policies in recent years may be the main reason for the obvious improvement of
vegetation in the human activity area of the QLMs. For example, the implementation of the
policy of herdsmen moving to the valley area helps reduce grazing pressure in the study
area and promotes the development of vegetation in a good direction [45,46]. Human
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activities such as urbanisation, water diversion projects, and overgrazing have adverse
effects on vegetation in human activity areas. On the other hand, the implementation of
measures such as rectifying mining, hydropower and tourism projects, rotational grazing,
and grazing withdrawal, to a certain extent, promoted the restoration of vegetation. Overall,
the vegetation in the QLMs has improved significantly since 2017. Most of the vegetation
types that showed increases are mixed forests for ecological protection and restoration,
indicating that the implementation of vegetation restoration and ecological protection
policies in the QLMs has positive effects on vegetation improvement.

5.2. Analysis of the Driving Forces of Vegetation Change in the QLMs

Environmental factors such as TEMP, PRE, LST, DEM, ET, WIND, and SUNT were
important driving factors for the temporal and spatial evolutions of the NDVI in the
QLMs (Figure 9). SUNT and WIND were the primary factors that affected the spatial
distribution of vegetation in the QLMs, followed by TEMP, DEM, LST, and ET. PRE and
HUMD ranked lower in the explanatory power of geographical exploration. This study
shows that WIND and SUNT were important factors that affected the growth of desert
vegetation. The increase in WIND was not conducive to the growth of desert vegetation,
while SUNT directly affected the photosynthetic efficiency and productivity of vegetation.
WIND and SUNT have non-negligible impacts on the spatial distribution of vegetation in
the QLMs [47].

In a humid environment, where water supply is enough for vegetation growth, a
change in temperature will directly affect the transpiration and chlorophyll synthesis of
plants. Therefore, temperatures in the Huangshui, Heihe, Datong, and Shiyang River
basins in the east have become the dominant factor affecting the spatial distribution of
vegetation. This corresponds to the existing research conclusions that the impact of temper-
ature change on the spatial distribution of vegetation will be amplified and the feedback
of vegetation spatial distribution will also become larger in a humid environment [48].
Sufficient water conditions are necessary for the growth of desert vegetation. However,
different hydrothermal conditions also create varied vegetation growth habits. In recent
years, much glacial melt water caused by climate warming has provided sufficient water
conditions for the growth of vegetation in the QLMs [49,50].

In the past few decades, vegetation NDVI change had had a good correlation with
precipitation and evapotranspiration [51]. Vegetation cover change has a significant corre-
lation with surface temperature [52]. A previous study showed that the explanatory power
of precipitation on the spatial distribution of vegetation increased under specific altitude
conditions [46]. The explanatory powers of temperature and precipitation on the spatial
distribution of vegetation in the west of the study area were stronger than those in the east,
and the interactive interpretation is large (Figure 10). Furthermore, the spatial explanatory
power of altitude to vegetation may be related to the regional scope. On the one hand,
the vegetation degradation area of the QLMs is related to the reduction of precipitation
in the region. In low-altitude areas, human activities such as overgrazing and farmland
reclamation cause land desertification and lead to vegetation degradation [53].

The correlations of vegetation NDVI to temperature and precipitation in the QLMs
were significantly different (Figures 11 and 12). On a 3-year time scale, the increase in
temperature and precipitation promoted vegetation growth in the Qinghai Lake basin.
The short-term temperature increase was conducive to the increase of vegetation in the
Shule River and Beidahe River basins in the northwest. In the long term, the increase in
temperature and precipitation was conducive to the study of the growth of vegetation in
the east. The increase in temperature hindered the increase in vegetation in the central
part, and the increase in precipitation was not conducive to the growth of vegetation
in some western areas. These may be due to the increase in temperature and surface
evapotranspiration and the decrease in available water for vegetation growth [47]. In the
short term, the increase in temperature was not conducive to the growth of vegetation in the
western arid area, which is consistent with the driving force detection results of the main
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controlling factors in the study area. In the long-term series, the correlation analysis results
in the western part of the study area showed a negative correlation between precipitation
and vegetation. This contradicts the driving force detection results of the main controlling
factors of precipitation in the spatial distribution of vegetation in the western part of the
study area.

By studying and analysing the relevant data on vegetation and precipitation in recent
decades, we found a 1-year difference in the significant cycle of vegetation and precipitation,
which is consistent with the lag problem of vegetation response to precipitation change.
Therefore, we inferred that the lag in precipitation and vegetation may be the main reason
for the negative correlation between precipitation and vegetation in the west [16,54]. In
summary, in the long-term trend and on the short-term scale, precipitation was the main
driving force for vegetation growth in the north and southwest of the QLMs. Short-term
temperature changes had a great impact on vegetation in the east. On the 5-year time scale,
the vegetation changes in most areas of the study area were mainly driven by temperature
and precipitation, and the interaction between the vegetation dynamics will lead to the
potential feedback of the vegetation climate system.

5.3. Limitations and Future Perspectives

This study provides an in-depth study of the characteristics and driving factors of
the vegetation change in the QLMs based on multiple time scales. However, satellite data
are often affected by the uncertainty of noise and system errors, and these uncertainties
are often not fully quantified with precision to circumvent. Although the multi-sensor
NDVI dataset has been widely used in local and global modelling and analysis, many
previous studies have shown considerable deviations in NDVI records between different
sensors. The accuracy of NDVI time series data is limited. Thus, we propose introducing
higher-precision and longer time series data in studies and analyses to improve the overall
quality of results in future research. The analysis of the impact of human activities, the
main research data from the existing literature, failed to combine the specific characteristics
of human activity data in the quantitative research on vegetation change in the QLMs.
We propose studying the driving forces of vegetation change in greater depth in future
studies by combining information from data related to anthropogenic activities, such as
population, economy, and land cover change.

6. Conclusions

Herein, we studied the spatial and temporal variations and cyclical characteristics
of vegetation in the QLMs on the basis of MODIS NDVI data from 2000 to 2019 and
GIMMS NDVI data from 1982 to 2006 of the QLMs. From these data, we combined various
meteorological data, DEM, LST, and ET, and the linear trend method, EEMD, Geodetector,
and correlation analysis to examine the main drivers of vegetation change and analyse
the effects of temperature and precipitation on vegetation. The main conclusions are as
follows:

(1) The overall vegetation in the QLMs showed an increasing trend. The vegetation
in the QLMs showed high northeast and low southwest distributions in 2000–2019,
with slight decreases in the east and central parts and a significant increase in the
northwest. The vegetation in the entire study area had 3- and 5-year cycles of change
and a long-term increasing trend. On the short time scales, the vegetations in the
central and eastern parts of the study area were influenced more by non-climatic
factors such as human activities, whereas in long-term trends, the vegetation was
mainly influenced by climatic factors.

(2) The q values of the Geodetector results were ranked as follows: SUNT > WIND >
TEMP > DEM > LST > ET > PRE > HUMD. SUNT and WIND had the strongest ex-
planatory power for the spatial variation of vegetation in the QLMs. The explanatory
powers of TEMP and PRE for the spatial variation of vegetation were greater and
increased under certain elevation conditions, respectively. The explanatory powers of



Remote Sens. 2021, 13, 5046 19 of 21

TEMP and PRE on the spatial variation of vegetation in the western part of the study
area were greater than those in the eastern part, and the explanatory power of the
interaction was greater.

(3) Precipitation was the main driver of vegetation growth in the northern and south-
western regions of the QLMs on both the short and long time scales. The increases in
temperature and precipitation contributed to the vegetation growth in the Qinghai
Lake basin on the 3-year time scale. Short-term temperature increases contributed
to the increase in vegetation in the northwestern area of the QLMs. By contrast, a
long-term trend of combined increases in temperature and precipitation favoured the
growth of vegetation in the eastern part of the study area.

Author Contributions: Conceptualization, L.Z. and H.Y.; methodology, Y.H.; software, L.Q.; valida-
tion, L.Z., H.Y. and Y.H.; formal analysis, L.Q.; data curation, G.P.; writing—original draft preparation,
L.Z.; writing—review and editing, Y.H.; visualization, S.C.; funding acquisition, L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Scientific Foundation of China (Grants Nos.
42161063), LZJTU EP, No201806, Natural Science Foundation of Gansu Province (20JR10RA249),
Youth Science and Technology Foundation of Gansu Province (20JR10RA272), and Tianyou innovation
team of Lanzhou Jiaotong University (TY202001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, X.; Li, X.B.; Wang, H.; Yu, F.; Yu, H.J.; Yang, H. Impact of climate change on temperate grassland in northern China. J. Beijing

Norm. Univ. Nat. Sci. 2006, 42, 623–818.
2. Song, Y.; Jin, L.; Wang, H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by

Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [CrossRef]
3. Deng, X.Y.; Yao, J.Q.; Liu, Z.H. Spatiotemporal dynamic change of vegetation coverage in central Asia based on GIMMS NDVI.

Arid Zone Res. 2017, 1, 10–19.
4. Chen, J.H.; Jia, W.X.; Zhao, Z.; Zhang, Y.S.; Liu, Y.R. Research on temporal and spatial variation characteristic of vegetation cover

of Qilian Mountains from 1982 to 2006. Adv. Earth Sci. 2015, 30, 834–845.
5. Duo, A.; Zhao, W.J.; Gong, Z.N.; Zhang, M.; Fan, Y.B. Temporal analysis of climate change and its relationship with vegetation

cover on the north China plain from 1981 to 2013. Acta Ecol. Sin. 2017, 37, 576–592.
6. Xie, B.N. Vegetation Dynamics and Climate Change on the Loess Plateau, China: 1982–2014; Northwest A & F University: Xianyang,

China, 2016.
7. Chao, Y.S. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003.
8. Pu, S.L.; Fang, J.Y. Seasonal differences in response of land vegetation activities to climate change in China from 1982 to 1999.

Acta Geogr. Sin. 2003, 58, 119–125.
9. Cao, M.; Woodward, F.L. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 1998, 393,

249–252. [CrossRef]
10. Liu, M.X.; Zhao, R.D.; Shao, P. Temporal and spatial variation of vegetation coverage and its driving forces in the Loess Plateau

from 2001 to 2015. Arid Land Geogr. 2018, 41, 99–108.
11. Zhang, L.J.; Zhang, B.Y.; Li, W.L.; Li, X.X.; Sun, L.; Jiang, L.J.; Liu, X.X. Spatiotemporal changes and drivers of global land

vegetation oxygen production between 2001 and 2010. Ecol. Indic. Integr. Monit. Assess. Manag. 2018, 90, 426–437. [CrossRef]
12. Pan, N.Q.; Feng, X.M.; Fu, B.J.; Wang, S.; Pan, S.F. Increasing global vegetation browning hidden in overall vegetation greening:

Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [CrossRef]
13. Li, X.F.; Zhu, X.F.; Li, S.S.; Liu, Y.X.; Pan, Y.Z. Changes in Growing Season Vegetation and Their Associated Driving Forces in

China during 2001–2012. Remote Sens. 2015, 7, 15517–15535. [CrossRef]
14. Li, J.; Liu, H.B.; Li, C.Y.; Li, L. Changes of green-up day of vegetation season based on GIMMS 3g NDVI in northern China in

recent 30 years. Sci. Geogr. Sin. 2017, 37, 143–152.
15. Dai, S.P.; Zhang, B.; Wang, H.J.; Wang, Y.M.; Li, D.; Wang, X.M. Analysis on the spatio-temporal variation of grassland cover

using SPOT NDVI in Qilian Mountains. Prog. Geogr. 2010, 29, 1075–1080.

http://doi.org/10.3390/rs10010095
http://doi.org/10.1038/30460
http://doi.org/10.1016/j.ecolind.2018.03.041
http://doi.org/10.1016/j.rse.2018.05.018
http://doi.org/10.3390/rs71115517


Remote Sens. 2021, 13, 5046 20 of 21

16. Wu, Z.L.; Jia, W.X.; Zhao, Z.; Zhang, S.Y.; Liu, Y.R.; Chen, J.H. Spatial-temporal variations of vegetation and its correlation with
climatic factors in Qilian Mountains from 2000 to 2012. Arid Land Geogr. 2015, 38, 1241–1252.

17. Xu, X.; Liu, H.; Lin, Z.; Jiao, F.; Gong, H. Relationship of Abrupt Vegetation Change to Climate Change and Ecological Engineering
with Multi-Timescale Analysis in the Karst Region, Southwest China. Remote Sens. 2019, 11, 1564. [CrossRef]

18. Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in Vegetation
Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283.
[CrossRef]

19. Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation
of a model tree ensemble approach using a biosphere model. Biogeosciences 2009, 6, 2001–2013. [CrossRef]

20. Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in
Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [CrossRef]

21. Wang, W.H.; He, Y.; Zhang, L.F.; Chen, Y.D.; Tang, Y.W.; Qiu, L.S.; Zhang, X.X. Ground deformation monitoring and driving force
analysis of the main city area in Lanzhou based on PS-InSAR and GeoDetector. J. Lanzhou Univ. Nat. Sci. Ed. 2021, 57, 382–388.

22. He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio-temporal patterns and driving force of ecosystem service value in the main
urban area of guangzhou. Sci. Rep. 2021, 11, 3027. [CrossRef]

23. Liu, Y.R.; Jia, W.X.; Huang, M.; Li, Y.Y.; Wu, Z.L.; Zhang, S.Y.; Li, Y.F. Response of vegetation net primary productivity to climate
in the Qilian Mountains since recent 51 years. Acta Bot. Boreal. Occident. Sin. 2015, 35, 0601–0607.

24. Zhao, S.M.; Cheng, W.M.; Zhou, C.H.; Chen, X.; Chen, J. Simulation of decadal alpine permafrost distributions in the Qilian
Mountains over past 50 years by using Logistic Regression Model. Cold Reg. Sci. Technol. 2012, 73, 32–40. [CrossRef]

25. Dong, L. The Freezing Level Height and Its Impact Variation of Water Resource in Qilian Mountains during 1979–2012; Northwest
Normal University: Lanzhou, China, 2015.

26. Zhang, F.G.; Zeng, B.; Yang, T.B. Spatiotemporal distribution changes in alphine desert belt in Qilian Mountains under climate
changes in past 30 years. Chin. J. Plant Ecol. 2019, 43, 305. [CrossRef]

27. Yu, M.; Cao, G.C.; Cao, S.K.; Zhang, H.; Yuan, J. Analysis of precipitation variation characteristics in the southern slope of Qilian
Mountains in recent 30 years. Res. Soil Water Conserv. 2019, 26, 245–252.

28. Jin, B.W.; Kang, E.S.; Song, K.C. Eco-hydrological function of mountain vegetation in the Hei River Basin, northwest China. J.
Glaciol. Geocryol. 2003, 25, 580–584.

29. Wang, Q.; Zhang, B.; Dai, S.P. Analysis of the vegetation cover change and its relationship with factors in the Three-North Shelter
Forest Program. China Environ. Sci. 2012, 32, 1302–1308.

30. Bi, C. Dynamics of Vegetation and Phenology and Their Response to Climate Change Based on Multisource Data in the Arid and Semiarid
Region, China; Beijing Forestry University: Beijing, China, 2015.

31. Zeng, B. Vegetation Responses to Climate Change on the Tibetan Plateau 1982–2003; Lanzhou University: Lanzhou, China, 2008.
32. Felix, N.; Hao, G.; Anming, B. Understanding the Spatial Temporal Vegetation Dynamics in Rwanda. Remote Sens. 2016, 8, 129.
33. Zhang, L.F.; Yan, H.W.; Yang, S.W.; Zhu, J.W.; Qiu, L.S. Variations of vegetation coverage and its response to terrain in Heihe

River Basin. Remote Sens. Inf. 2018, 33, 46–52.
34. Li, E.S.; Zhou, X.M.; Zhang, B.M. Study on the image noises elimination based on the wavelet transform and gauss function. Mar.

Geod. Cartogr. 2008, 28, 41–44.
35. Jia, J.H.; Liu, H.Y.; Lin, Z.S. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses

to climate change. Acta Ecol. Sin. 2018, 39, 5058–5069.
36. Tang, L.; Zhao, Z.M.; Tang, P. A new method for detection “greening” or “browning” change trend in vegetation from NDVI

sequences. Remote Sens. Land Resour. 2019, 31, 89–95.
37. Tao, Y.; Liu, C.; Liu, C.; Zhao, X.W.; Hu, H.J. Empirical Wavelet Transform Method for GNSS Coordinate Series Denoising. J.

Geovis. Spat. Anal. 2021, 5, 9. [CrossRef]
38. Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
39. He, Y.; Yan, H.W.; Ma, L.; Zhang, L.F.; Qiu, L.S.; Yang, S.W. Spatiotemporal dynamics analysis of vegetation in Ningxia of China

using MODIS imagery. Front. Earth Sci. 2020, 14, 221–235. [CrossRef]
40. Pei, Z.L.; Yang, Q.K.; Wang, C.M.; Pang, G.W.; Yang, L.H. Spatial distribution of vegetation coverage and its affecting factors in

the upper reaches of the Yellow River. Arid Zone Res. 2019, 3, 546–555.
41. Liu, H.Y.; Zhang, M.Y.; Lin, Z.S.; Xu, X.J. Spatial heterogeneity of the relationship between vegetation dynamics and climate

change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 2018, 256, 10–21. [CrossRef]
42. Yao, Z.Y.; Zhao, C.Y.; Yang, K.S.; Liu, W.C.; Li, Y.; You, J.D.; Xiao, J.H. Alpine grassland degradation in the Qilian Mountains,

China-a case study in Damaying grassland. Catena 2016, 137, 494–500. [CrossRef]
43. Chen, Y.; Xu, D.X.; Guo, N. Analysis on the vegetation change in Qilian Mountains since recent 22 years. Arid Zone Res. 2008, 6,

22–27.
44. Zhang, Y.; Xu, G.; Li, P.; Li, Z.; Wang, Y.; Wang, B.; Jia, L.; Cheng, Y.; Zhang, J.; Zhuang, S.; et al. Vegetation Change and

Its Relationship with Climate Factors and Elevation on the Tibetan Plateau. Int. J. Environ. Res. Public Health 2019, 16, 4709.
[CrossRef]

45. Qiu, L.S.; Zhang, L.F.; He, Y.; Diao, Z.Y.; Chen, Y.D. Remote sensing monitoring on vegetation dynamic change in Qilian Mountain
from 2000 to 2017. Remote Sens. Inf. 2019, 34, 97–107.

http://doi.org/10.3390/rs11131564
http://doi.org/10.3390/rs6043263
http://doi.org/10.5194/bg-6-2001-2009
http://doi.org/10.3390/rs12040603
http://doi.org/10.1038/s41598-021-82497-6
http://doi.org/10.1016/j.coldregions.2011.12.006
http://doi.org/10.17521/cjpe.2018.0241
http://doi.org/10.1007/s41651-021-00078-7
http://doi.org/10.1007/s11707-019-0767-7
http://doi.org/10.1016/j.agrformet.2018.02.015
http://doi.org/10.1016/j.catena.2015.09.021
http://doi.org/10.3390/ijerph16234709


Remote Sens. 2021, 13, 5046 21 of 21

46. Geng, L.; Che, T.; Wang, X.; Wang, H. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian
Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [CrossRef]

47. Qiu, L.S. Study on Multiscale Variation Characteristics of Vegetation and Driving Forces in Qilian Mountains; Lanzhou Jiaotong
University: Lanzhou, China, 2020.

48. Niu, Z.G.; He, H.L.; Zhu, G.F.; Ren, X.L.; Zhang, L.; Zhang, K.; Yu, G.R.; Ge, R.; Li, P.; Zeng, N. An increasing trend in the ratio
of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For.
Meteorol. 2019, 279, 107701. [CrossRef]

49. Wang, J.F. Analysis on runoff variation in the Beida River Basin under the influence of climate change and human actives. J. Arid
Land Resour. Environ. 2019, 33, 88–93.

50. Cheng, Y.S.; Cheng, Z.J. Studies on relationship between runoff characteristics of Danghe River Basin and climate change in
recent 40 years. China Water Resour. 2015, 13, 60–63.

51. Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J.
Arid Environ. 2011, 75, 946–952. [CrossRef]

52. Wang, M.N.; Han, Z.; Zhang, Q.Y. Impact of land use and cover change in the semi-arid regions of China on the temperature in
the early 21st century. Clim. Environ. Res. 2016, 21, 65–77.

53. Jiang, Y.Y.; Du, W.T.; Huang, J.; Zhao, H.Z.; Wang, C.F. Analysis of vegetation changes in the Qilian Mountains during 2000–2015.
J. Glaciol. Geocryol. 2017, 39, 1130–1136.

54. Jia, W.X.; Chen, J.H. Variations of NDVI and its response to climate change in the growing season of vegetation in Qilian
Mountains from 1982 to 2014. Res. Soil Water Conserv. 2018, 25, 264–268.

http://doi.org/10.3390/rs11020103
http://doi.org/10.1016/j.agrformet.2019.107701
http://doi.org/10.1016/j.jaridenv.2011.05.007

	Introduction 
	Study Area and Data 
	Study Area 
	Data 

	Methods 
	Unary Linear Regression Trend Method 
	NDVI Data Fusion 
	Ensemble Empirical Mode Decomposition 
	Geodetector 
	Correlation Analysis 

	Results 
	Spatial and Temporal Characteristics of the Vegetation Changes in the QLMs 
	Vegetation Change Characteristics of the QLMs at Different Time Scales 
	Periodicity Analysis 
	Analysis of Vegetation Change at Multiple Time Scales 

	Drivers of Vegetation Change in the QLMs 
	Correlation Analysis of Vegetation with Temperature and Precipitation in the QLMs 

	Discussion 
	Characteristics of Vegetation Change in the QLMs 
	Analysis of the Driving Forces of Vegetation Change in the QLMs 
	Limitations and Future Perspectives 

	Conclusions 
	References

