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Abstract: Hydrometeor classification remains a challenge in winter precipitation cloud systems. To
address this issue, 42 snowfall events were investigated based on a multi-platform radar observation
system (i.e., X-band dual-polarization radar, Ka-band millimeter wave cloud radar, microwave
radiometer, airborne equipment, etc.) in the mountainous region of northern China from 2016
to 2020. A fuzzy logic classification method is proposed to identify the particle phases, and the
retrieval result was further verified with ground-based radar observation. Moreover, the hydrometeor
characteristics were compared with the numerical simulations to clarify the reliability of the proposed
hydrometeor classification approach. The results demonstrate that the X-/Ka- band radars are
capable of identifying hydrometeor phases in winter precipitation in accordance with both ground
observations and numerical simulations. Three particle categories, including snow, graupel and the
mixture of snow and graupel are also detected in the winter precipitation cloud system, and there are
three vertical layers identified from top to bottom, including the ice crystal layer, snow-graupel mixed
layer and snowflake layer. Overall, this study has the potential for improving the understanding of
microphysical processes such as freezing, deposition and aggregation of ice crystal particles in the
winter precipitation cloud system.

Keywords: dual-polarization radar; millimeter wave cloud radar; winter precipitation cloud system;
hydrometeor classification; aircraft observation

1. Introduction

The identification of hydrometeor particles in winter precipitation is critical for un-
derstanding microphysical processes in the cloud-precipitation system. The associated
origins are generally agreed upon as dendritic ice crystal growth zones [1–3], plate crystal
growth [4], ice particle density and shape modulations caused by riming and crystal aggre-
gation [5], hydrometeor melting [6], and near-surface refreezing of either rain or freezing
rain into sleet [7]. A weather radar, especially a dual-polarization radar, presents potential
in the classification of hydrometeor particles [8]. Straka et al. [9] and Holler et al. [10]
applied the empirical Boolean decision logic approach to classify hydrometeors with the
consideration of differential reflectivity (ZDR), linear depolarization ratio (LDR) and the
height of melting layer in hailstorm. With the update of Weather Surveillance Radar-1988
Doppler (WSR-88D), the fuzzy logic method is widely used for hydrometeor identifica-
tion [11–16]. However, Kurdzo et al. [17] reported a limitation of using the fuzzy logic
algorithm in the recognition of non-meteorological echoes (e.g., biological and ground
clutter). It is also known that the existing hydrometeor classification methods fail to rec-
ognize the refreezing issue in winter precipitation [18]. According to the microphysical
theory, and previous observational studies, Thompson et al. [19] proved that a fuzzy logic
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classification method, based on polarimetric variables, can identify the discrimination of
the area, consisting of wet snow, aggregates, plates, dendrites or other small ice crystals.
The evaluation of hydrometeor classification retrievals seems to be improved at shorter
wavelengths (e.g., X-band). However, it has yet to be fully addressed.

Reinking et al. [20] concluded that measurements of depolarization with a Ka-band
dual-polarization radar provide effective estimates of hydrometeor identity to separately
distinguish drizzle, pristine crystals of various growth habits, graupel, and aggregates in
winter storm clouds. Shupe [21] proposed an algorithm for identifying the hydrometeor
phases and shapes based on the joint observation of an 8 mm cloud radar, laser radar
and microwave radiometer. In addition, Khain et al. [22] suggested that the reflectivity
threshold of mixed-phase cloud with ice crystals and supercooled liquid water is −30 dBZ,
and the Doppler power spectrum of millimeter wave cloud radar (MMCR) is bimodal with
a wide spectrum. However, the cloud with a single particle (e.g., ice crystal or supercooled
liquid water) has a narrow spectrum [23]. Thus, spectral width is used to examine the
mixed-phase cloud. Based on reflectivity (Z) and LDR, Liu et al. [24] determined the liquid
water area in the cloud. Chen et al. [25] investigated the area with supercooled liquid
water in the winter precipitation system and pointed out that the area of supercooled
droplets in the cloud can be determined by the Z, LDR and radial velocity (V). Based on
the Doppler spectrum from the cloud radar, Li et al. [26–28] constructed an algorithm to
identify supercooled cloud droplets, ice crystals and snowflakes. Furthermore, a snowfall
case was investigated by identifying the spectrum peaks of the global spectrum, and
spectrum moment parameters such as Z, V and spectral width (Sw) for different particle
categories were also provided [29]. Generally, most hydrometeor classification results are
based on a reasonable inference, but lack sufficient clarification with regard to the cloud
particle property in the observed precipitation system.

For a particle diameter of less than 200 µm, MMCR offers more details in winter pre-
cipitation compared with the dual-polarization radar. However, for larger cloud particles,
a dual-polarization radar, especially X-band (herein XPOL), provides better detection in
particle shape and spatial orientation as radar signals are dominated by the largest parti-
cles in the sampling volume. To this end, relevant information about the distribution of
sizes, orientations, shapes, and diversity of hydrometeors within a particular radar sample
volume can be derived from differential reflectivity (ZDR), correlation coefficient (ρHV),
and the specific differential phase (KDP) [8,9]. Both ZDR and KDP are positive (negative)
for horizontally (vertically) aligned hydrometeors and have a value of zero for spherical
particles, including those that effectively appear spherical to a radar because of excessive
canting or tumbling. For a given oblate particle, both KDP and ZDR increase with ice
or liquid water content, though only KDP is inversely proportional to radar wavelength.
Z also provides an indication of hydrometeor size and concentration. For graupel and
snow, there is a difference in spatial arrangement, however, it is difficult to effectively
classify them from Z, V, Sw and LDR using a single MMCR. If XPOL provides ZDR and the
correlation coefficient (ρHV), it is easier to distinguish. It means the combination of XPOL
and MMCR has the potential of providing more information for particles with different
sizes, spatial orientations and phases.

Since it is difficult to classify and verify the phases of various hydrometeor particles
in winter precipitation cloud, especially on the radar beam level [18,19], a jointly multi-
platform radar observation network, including ground-based equipment (e.g., XPOL,
MMCR, microwave radiometer, etc.) and airborne sensors, was designed in this study.
Based on the multi-platform radar observation network, we investigated the hydrometeor
characteristics of 42 snowfall cases in a mountainous region of northern China from 2016
to 2020. The phases of hydrometeor particles and corresponding detection ranges of radar
variables were comprehensively investigated. In addition, a fuzzy-logic hydrometeor
classification algorithm was established based on the variables of, XPOL, MMCR and
auxiliary temperature information.
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The remainder of this study is organized as follows: Section 2 introduces the data and
Section 3 describes the details of the identification algorithm. Comparisons of hydrometeor
classification results are demonstrated in Sections 4 and 5, based on a multi-platform
radar observation system and numerical simulation. Conclusions and the discussion are
provided in Section 6.

2. Data

The details of the multi-platform radar observation system are summarized in Table 1.
Bejing time, i.e., UTC+8, is used in this study.

Table 1. Details of multi-platform radar observation system in this study.

Instruments Observed Parameters Spatial and/or Temporal
Resolution Data Usage

MMCR Z, V, Sw, LDR 30 m, 0.5 s All the parameters are used
for hydrometeor classification

XPOL Z, ZDR, KDP, ρHV V, Sw

PPI: 150 m, 5 min
RHI vertical resolution of
100 m (over the MMCR),

1 min

ZDR, KDP and ρHV are used
for hydrometeor classification

Microwave radiometer

Total water vapor volume,
total liquid water volume, and

profiles of temperature,
humidity, water vapor, and

liquid water

1 min

Temperature and total liquid
water volume are used for

hydrometeor classification as
the auxiliary parameters

Snow particle imager (SPI)
Shape and variation

characteristics of surface
precipitation particles

30 min
Ground measured particles

used for hydrometeor
classification

Airborne equipment
3V-CPI

Particle images within the
range of 10–1280 µm

2D-S: 9–11 µm
CPI: 2.3 µm

Hydrometeor classification
verification

Airborne equipment
HVPS-3

Larger particle images within
the range of 150–19,200 µm 150 µm Hydrometeor classification

verification

Airborne equipment
AIMMS-20

Temperature, humidity, air
pressure, horizontal and

vertical wind speed
1 s

Hydrometeor classification
verification and temperature

parameter correction

The details of the multi-platform radar observation system are presented in Figure 1.
Figure 1a shows the topographic map around the Yanjiaping (YJP) observation station
(115.73◦ E, 40.52◦ N, 1344 m), located 6 km southwest of Haituo mountain. The station was
built in 2014 and equipped with XPOL, MMCR, microwave radiometer, automatic weather
station, snow particle imager (SPI), weighing gauges, present weather sensor (OTT) and
2D-video-distrometer (2DVD). Figure 1b,c shows the XPOL radar located 24 km southeast
of YJP station. Figure 1d shows the Kingair aircraft measurement platform. With the
continuous range-height-indicator (RHI) scanning, XPOL takes the location of MMCR in
the YJP observation station as the scanning angle. A complete RHI scanning cycle requires
1 min. The time-height-indicator (THI) mode was used for MMCR, to obtain vertical
macro- and micro-characteristics of the winter precipitation cloud system. Additionally, the
vertical in situ measurement was performed with the Kingair aircraft across the observation
range of MMCR, which helps obtain the hydrometeor particle images and meteorological
elements within the ground radar’s observation range.
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Figure 1. Information of the multi-platform radar observation system: (a) Topographic map around the YJP station and 
aircraft track projection, (b) Photo of surface observation network, (c) XPOL radar and (d) Kingair aircraft. The Chinese in 
the figure is the company name. 

3. Methods 
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The RHI and THI modes were used in XPOL and MMCR, respectively. With the tem-
poral resolution of 1 frame per minute, the vertical resolution of XPOL was 100 m. The 
MMCR features the temporal resolution of 16 frames per second and its vertical resolution 
is 30 m. In order to create spatially temporally consistent datasets for the XPOL and 
MMCR radars, the spatiotemporal resolution of 𝑍, 𝑍஽ோ, 𝐾஽௉ and 𝜌ு௏ in XPOL was in-
terpolated to match the MMCR data. Firstly, the height difference of the two radars were 
corrected with the geographic information of XPOL and MMCR to match the same area 
observed, and then the spatial resolution of XPOL data in the vertical direction was inter-
polated to be the same as MMCR, after which the XPOL data were unified to match the 
temporal resolution of MMCR. 

  

Figure 1. Information of the multi-platform radar observation system: (a) Topographic map around the YJP station and
aircraft track projection, (b) Photo of surface observation network, (c) XPOL radar and (d) Kingair aircraft. The Chinese in
the figure is the company name.

3. Methods
3.1. Data Processing Method for X- and Ka-Band Radars

The RHI and THI modes were used in XPOL and MMCR, respectively. With the
temporal resolution of 1 frame per minute, the vertical resolution of XPOL was 100 m. The
MMCR features the temporal resolution of 16 frames per second and its vertical resolution
is 30 m. In order to create spatially temporally consistent datasets for the XPOL and MMCR
radars, the spatiotemporal resolution of Z, ZDR, KDP and ρHV in XPOL was interpolated to
match the MMCR data. Firstly, the height difference of the two radars were corrected with
the geographic information of XPOL and MMCR to match the same area observed, and
then the spatial resolution of XPOL data in the vertical direction was interpolated to be the
same as MMCR, after which the XPOL data were unified to match the temporal resolution
of MMCR.
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3.2. Attenuation Correction Method for the MMCR Reflectivity

Due to the importance of Z in the hydrometeor classification algorithm, attenuation
correction of Z (MMCR) is required. A reverse correction method is proposed based on the
relationship between Z and surface snowfall, i.e., S (Equations (1) and (2)). Additionally,
the correction of path attenuation was performed using Equation (3). Because attenuation
in dry snow measurement could be ignored, Z from XPOL was close to observation.

The Z-S equation is as follows:
Z = aSb (1)

where a and b are constant coefficients, the unit of Z(MMCR) is mm6·m−3, S represents
liquid-water-equivalent snowfall (unit: mm·h−1). The coefficients a and b are retrieved
according to the assumption that the aggregate snowflake aspect ratio was assumed to
be 0.6 and terminal fall velocities were calculated at a certain V-D relation [30]. Here, a
and b are assumed to be 56 and 1.2, respectively [30,31]. Equation (1) is thus simplified
as follows:

S = 0.0349·100.0833·Z (2)

where the units of Z and S are dBZ and mm·h−1, respectively. Battan [32] indicated that
under Rayleigh scattering, the attenuation of dry snow to Z is related to snowfall amount
and radar wavelength. The equation could be expressed as follows:

kDry−snow = 0.035S2λ−4 + 0.0022Sλ−1 (3)

where k is the attenuation rate (unit: dB·km−1), and λ stands for wavelength (unit: cm). In
Equation (3), the first and second terms describe the attenuation caused by volume scat-
tering and absorption, respectively [33]. The estimations are evaluated by mean standard
deviation (MSD) and ρ, and MSD is defined as follows.

MSD =


[

N

∑
i=1

(SG − SZ)
2

]1/2/ N

∑
i=1

SG

× 100% (4)

where SG (mm·h−1) is the snowfall measured by surface weighing gauges, and SZ (mm·h−1)
is the snowfall estimated by Z.

The snowfall comparison shown in Figure 2 implies that both hourly and accumulated
snowfall estimations performed well with the observation after attenuation correction on
29 November 2019 from 14:00 to 02:00 the next day. Thus, an 8 dBZ correction of the MMCR
echo was employed to compensate for systematic bias and attenuation.
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Due to the low level of snowfall and thin echo, the attenuation rate is 0.165 dB/km
with the maximum as 1.43 mm·h−1 from 17:48 to 18:48 on 29 November 2019, and the
attenuation along the whole path was less than 0.66 dBZ. Compared with XPOL reflectivity
in Figure 3c, both the value and spatiotemporal distribution of the echoes with the MMCR
reflectivity correction were found to be similar to the XPOL reflectivity. Additionally, the
time series of echoes from the two radars at different heights are shown in Figure 4. It
also shows a comparison between the XPOL and MMCR reflectivity at different heights
from 17:48 to 18:48 on 29 November 2019. MMCR reflectivity after attenuation correction
was consistent with XPOL reflectivity, especially at the heights of 1000 m, 1500 m and
2000 m. The MMCR reflectivity was found to be smaller below the height of 500 m, and the
corrected MMCR reflectivity is 2.5 dBZ lower than the mean XPOL reflectivity.
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3.3. Phase Classification Method

The fuzzy logic method was used to classify the hydrometeor particle phases in the
winter cloud precipitation system (Figure 5).
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Firstly, the phases of hydrometeor particles observed near the surface with the SPI
and the corresponding ranges of detection parameters from both XPOL and MMCR are
summarized. More details are provided in Section 3.4.

Secondly, the β function in Equation (5) was used as the membership function.

β(x, m, a, b) =
1

1 +
[ x−m

a
]2b (5)

where a represents the width of function, b represents the slope, m is the central point of
the function, and x is the variable input. Taking Z as input, the β function corresponding
to each category of hydrometeor particle was calculated, as shown in Figure 6. In both
steps, normalized parameter fields were evaluated in the fuzzy logic algorithm through
“membership functions”, which are the curves for each parameter that map each matrix
point to the “membership value” between 0 and 1.
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Thirdly, the inference was performed and compounded to obtain the total rules set:

Rsj = ∑8
i=1 Aj

i Psi−j (6)

where Aj
i represents the weight coefficient of No.i input to Psi−j, j stands for the particle

phase, and Psi−j is the fuzzy value, Aj
i is calculated according to radar data quality, charac-

teristics and the importance in hydrometeor-type classification. The weight coefficient for
each parameter is generally set according to two aspects: the meanings of the parameters
and the reliability of the parameters. Firstly, we set each parameter with an initial value of
0.5, and then increased or decreased the weight coefficient by 0.1 according to the meaning
and reliability of the parameters. Where Z and ρHV . Z represents the size and number
concentration of particles in the sampling volume, which has high reliability after the
attenuation correction and verification, while ρHV represents the particle uniformity. If
the particles are mainly the same in the sampling volume, the ρHV is larger, and many
categories of particles can be distinguished, so the weight coefficients of Z and ρHV both
increase by 0.1. Both LDR and ZDR are parameters that describe the shape of particles,
and they play a relatively small role in the classification of snow and ice crystals. The
weight coefficient will be reduced by 0.1. Furthermore, V is related to particle phase and
particle diameter, and Sw is related to particle type and motion consistency in the sampling
volume, and the weight coefficient will not change. KDP depends on the size of the raindrop
deformation, and is negligibly affected by snow, ice crystals, and grauple, so the weight
coefficient will be reduced by 0.2. A long period of surface observation data is beneficial
for the preliminary adjustment of the algorithm and the identification results in different
weight coefficients, verified from the surface observations. Finally, the Aj

i values of Z, LDR,
V, Sw, T, ZDR, KDP and ρHV are set as 0.6, 0.4, 0.5, 0.5, 0.6, 0.4, 0.3 and 0.6, respectively.

The phase for each particle (Rsj) is then transformed from the composite results.
Comparing the Rsj values, the index j corresponding to the maximum value is identified
as the hydrometeor type.
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3.4. Description of Hydrometeor Classification Parameters

In all of the 42 winter precipitation cases, snow was observed each time, graupel
was observed 13 times, and the mixture of snow and graupel was observed 20 times
(Table 2). The XPOL and MMCR parameter ranges corresponding to different phases of
hydrometeor particles are clarified based on both the parameter ranges in [1,9,21,34,35] and
the observed 42 snowfall cases. Due to limited reliable data, the ranges of radar parameters
corresponding to the phase of hydrometeor particles in the upper air layer are determined
from relevant studies [21,35]. If the graupel is observed on the ground (Figure 7), the
same method is used for the range of radar parameters (Table 3). It is also noted that the
precipitation case on 29 November 2019 was used to verify the proposed hydrometeor
classification method.

Table 2. 2016–2020 statistics based on observations of near-surface hydrometeor particles.

Year
Number of Cases

Winter
Precipitation Snow Graupel Mixture of Snow

and Graupel

2016 8 8 2 3
2017 5 5 2 2
2018 6 6 1 2
2019 15 15 5 8
2020 8 8 3 2
Total 42 42 13 20
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Table 3. Ranges of XPOL and MMCR parameters and auxiliary temperature feature from microwave radiometer under
different hydrometeor particle phases.

Hydrometeor MMCR XPOL Microwave
Radiometer

Z (dBZ) LDR (dB) V (m/s) Sw (m/s) ZDR (dB) KDP (◦/km) ρHV T (◦C)

Snow −5~15 −22~−16 −2.5~0.5 0~0.6 −4.8~0.8 −0.1~1.2 0.66~0.99 −40~0
Ice −40~0 −30~−18 −1.5~2 0~0.4 −2.25~1.5 0.09~1 0.4~0.9 −50~−10

Snow + Graupel −20~15 −23~−14 −4.5~1 0.1~1 −2.5~2.5 −0.2~1.6 0.6~0.98 −40~5
Mixed −25~10 −18~−11 −2~1 0.2~4 −0.8~1.5 0.1~1.2 0.6~0.9 −40~5
Liquid −20~−10 −30~−20 −1~1 0.1~1 0~0.5 −0.06~0.26 0.97~1 −20~50

Graupel 2.5~16 −25~−13 −2.8~−1.2 0.1~0.5 −0.8~2.5 −0.2~1.6 0.91~0.96 −40~0
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Four polarization parameters (i.e., LDR, ZDR, KDP and ρHV) were used to classify
the hydrometeor phases. In addition, temperature was considered as a key parameter in
phase classification. The temperature profiles from microwave radiometer are consistent
with those from the L-band digital radiosonde during the 30 snowfall cases (Figure 8). The
average deviation is 3.2 ◦C and ρ is 0.98, which are consistent with the result of [36].
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4. Validation of Hydrometeor Classification at the Surface

Due to the scarcity of aircraft data, only the hydrometeor classification results near the
surface have been validated, and the identification results of upper-air particles are dis-
cussed. A multi-phase transformation precipitation process occurred from 20 to 21 Novem-
ber 2016. As shown in Figure 9a,c,e, there were around three layers in the vertical direction,
including the ice crystal layer, mixed snow-graupel layer and snowflake layer (or graupel
particle layer) from top to bottom. At 21:30 on 20 November 2016, the size of graupel
particles at the surface was between 1 and 3 mm. At 04:00 on 21 November 2016, a mixed
snow-graupel was observed, with the snowflake size of 2–4 mm. It was also consistent
with the MMCR phase-identification results at the same period (Figure 9a–d). For another
snowfall case on 21 February 2017, hexagonal platelets and six-branched snowflakes were
mainly observed, with the snowflake size at 4–6 mm. It also compared well with the
MMCR phase identification result (Figure 9e,f).

We found that the phase identification method based on single MMCR is generally
acceptable. The reason is that the diameter of precipitation particles near the surface is
relatively large, and it is not difficult to distinguish from MMCR. However, identification
becomes more difficult as the size and shape of upper-air particles are similar. Thus, it is
necessary to identify the upper-air particle phases with both XPOL and MMCR.
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5. Classification Results Based on X-/Ka-Band Radars and Verifications in
Multiple Ways

On 29 November 2019, a Yellow River cyclone process occurred and lead to a snowfall
storm. Under the steering of the vorticity advection and cold/warm advection at the
leading edge of the upper-level trough, the near-surface cyclone gradually strengthened
and moved eastward and northward. Meanwhile, a surface cyclone developed with an
eastward movement, and the main cloud system of the snowfall occurred on the cyclone’s
foreside. From 08:00 on 29 November to 08:00 of the next day, the average rainfall in Beijing
was 3.9 mm, the highest level was 13.7 mm, and the maximum snow depth reached 11 cm.
At around 08:00 on 30 November, the high-altitude trough gradually moved eastward, and
the mid-high levels in Beijing were controlled by the northwest-western airflow and the
snowfall process tended to the end. In this case, for both XPOL and MMCR, the surface
SPI and the aircraft are used for joint observation. Figure 10a–c show the ZDR, KDP and
ρHV from XPOL, respectively. Figure 10d–f show the patterns of Z, V and LDR from
MMCR, respectively. The identification by the single MMCR (Figure 11a) and combination
of the XPOL and MMCR (Figure 11b) indicate that three layers (i.e., ice crystal, mixed
snow-graupel, and snowflake) exist in the vertical direction from top to bottom.
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Figure 10. XPOL and MMCR parameters of the snowfall cloud system from 17:48 to 18:48 on 29 November 2019. (a–c): XPOL
(ZDR, KDP and ρHV), respectively, and (d–f): MMCR (Z, V and LDR), respectively.
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liquid water in this storm event, and Figure 8c shows abundant moisture. 

Figure 11. Phase classifications for hydrometeor particles from 17:48 to 18:48 on 29 November 2019 based on (a) MMCR
(18:37–18:42, the black line at the height of 2.2–2.5 km is the aircraft detection area) and (b) combination of XPOL and
MMCR (the red line: same as the black line in (a)).

5.1. Comparison with the Surface Observation

From 17:48 to 18:48, hexagonal platelets and six-branched snowflakes were mainly
detected, which was consistent with the classification results of hydrometeor particles near
the surface in Figure 11. The images from 18:15 to 18:21 in Figure 12 show that surface
hydrometeor particles were mainly six-branched snowflakes, with few hexagonal platelets.
Additionally, the process of supercooled liquid-water riming on the snowflakes could be
identified (i.e., the red circle). The riming degree indicated a low level of supercooled liquid
water in the near-surface layer. Scattered mixed-phase areas, identified near the height of
2 km during 18:15–18:21 in Figure 11, imply that there was a small amount of liquid water
in this storm event, and Figure 8c shows abundant moisture.

5.2. Comparison with the Aircraft Observation

From 18:18 to 19:30 on 29 November 2019, the King Air aircraft carried out joint
detection with a radar in a spiral ascent for vertical detection over the cloud radar from
18:37 to 18:43. Due to air-traffic limitations, the effective detection range was 2263 m to
2563 m in the vertical direction. Figure 13 shows the flight path and vertical detection over
the MMCR. Figure 14 shows the particle images observed by the aircraft from 18:37:50 to
18:42:06. The results show that the snow cloud system mainly consists of graupel particles
(in the red circle), hexagonal platelets and six-branched snowflakes, with graupel particles
of 0.2–0.5 mm. There was an aggregation among the hexagonal platelets and six-branched
snowflakes in the upper air. Most of the snowflakes are larger than 1 mm. These results
are consistent with the category of snow-graupel in Figure 11b, although inconsistent with
the large range of graupel particles in Figure 11a. This indicates that the merged XPOL
and MMCR results in higher accuracy than MMCR alone in identifying the phases of
hydrometeor particles in the upper-air layer.
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Figure 14. Particle images observed by the aircraft (graupel particles are in the red circle) from 18:37:50 to 18:42:06.

5.3. Compare with the WRF Simulations

Since numerous cloud microphysical schemes have been developed in numerical
weather prediction models, the microphysical characteristics of the cloud system observed
by radar and that simulated by the model have, recently, been mutually verified [37–40].
Weather Research and Forecasting (WRF) version 3.7 is used to simulate the snowfall
process and to compare the phase identification by XPOL and MMCR. The application of
the numerical model is a useful supplement to identify hydrometeor classification results.

The initial field and lateral boundary conditions are provided by the forecast field
from the rapid-refresh multi-scale analysis and prediction system short term (RMAPS-ST).
RMAPS-ST is a WRF-based regional numerical weather prediction (NWP) system, devel-
oped by the Institute of Urban Meteorology of Beijing Meteorological Service (IUM/BMS).
It employs 9- and 3 km one-way nested domains, covering China and northern China.
The conventional data (radiosonde, surface and aircraft reports) received by the Global
Telecommunication System (GTS) includes data from automatic weather stations and radar
observations in RMAPS-ST [41]. In this paper, the simulation adopts single-layer nesting,
centered in Beijing with a horizontal resolution of 3 km and 300 × 300 grids. The model
physics include the Yonsei University (YSU) planetary boundary layer (PBL) scheme [42],
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the unified Noah land surface model [43], the Rapid Radiative Transfer Model (RRTM)
shortwave radiation [44], the New Goddard longwave radiation [45] and no cumulus
scheme was adapted. The simulation began at 08:00 on 29 November and ended at 08:00
on 30 November 2019, where the first 6 h were used as a spin-up period and the output
interval was 6 min. The cloud microphysics scheme adopted the Morrison scheme [46],
which includes the prediction of the specific water content of cloud water, ice crystals,
rain, snow, and graupel. The WRF mode and Morrison scheme are commonly used in the
snowfall simulations [38,47]. In addition, these settings are often used in the simulation of
convective systems and heavy precipitation events in China [48–51].

The evolutions of the MMCR observation and simulated radar echoes of the winter
precipitation cloud system at the YJP station are shown in Figure 15. The characteristics of
simulated radar echoes are similar to the MMCR observation. The height of radar echo is
generally below 4 km, with an intensity of between 10 dBZ and 20 dBZ. Additionally, two
snowfall events were clearly captured on the night of 29 November 2019, but the simulated
radar echo intensity was found to be 5 dBZ stronger than the MMCR result.
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The configuration and time-height evolution for the specific mass of snow, ice crystal
and graupel simulated at the YJP station are demonstrated in Figure 16. The snowfall
appears to have been below 3.5 km, and the maximum specific mass of snow was greater
than 0.16 g/kg. In addition, ice crystal particles occurred at the height of 2–5 km in
the middle and upper levels, with the maximum specific mass greater than 0.003 g/kg.
A seeder-feeder effect was found in the precipitation cloud system since fine configuration
was found between the large-value areas of ice crystal and snow in terms of time and
height at upper and lower levels. Moreover, the graupel content was found to be small,
due to limited supercooled cloud water. Overall, the locations of the simulated snowflakes,
ice crystals and graupel are consistent with the phases of hydrometeor particles between
XPOL and MMCR.
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6. Summary

In this study, the hydrometeor characteristics of winter precipitation in northern China
were investigated in 42 snowfall cases from 2016 to 2020, based on the multi-platform
radar observation system, including ground-based (XPOL, MMCR, microwave radiometer,
SPI, etc.) and airborne instruments. The particle-phase identification algorithm was
established using both XPOL and MMCR under the fuzzy logic framework. The simulated
hydrometeor results were verified with the ground-based radar observation network and
were also compared with WRF simulations. The primary findings are as follows:

(1) The MMCR reflectivity attenuation mainly derives from system deviation and snow
on the antenna, whereby the attenuation is up to 8 dBZ. The corrected MMCR reflec-
tivity is consistent with that in the XPOL, especially above the height of 1 km.

(2) The ranges of XPOL and MMCR parameters were classified into three categories of
particles (i.e., snow, graupel and mixture of snow and graupel). The hydrometeor
classification result, identified by the MMCR, is highly consistent with the ground
observations.

(3) Three vertical layers, i.e., ice crystal, mixed snow–graupel and snowflake, exist from
top to bottom in the winter precipitation cloud system. However, mixed-phases of
snow and graupel exist in the upper air. In addition, the riming processes of various
types of snowflakes were observed in the near-surface. This indicates that there was a
small amount of supercooled liquid water found in the bottom.

(4) The simulated snowfall echo is similar to the MMCR result in terms of the evolution,
echo intensity and echo top height. Moreover, the simulated position and specific
mass of snow, ice crystal and graupel compare well with the identification results
based on the combination of XPOL and MMCR.

As the microphysical process and phase variation of hydrometeor particles in the
winter precipitation cloud system are complex, several important issues need to be dis-
cussed for the proposed hydrometeor classification algorithm, which include methods by
which to set the weight coefficient of each parameter, how to best examine the accuracy of
results with different weight coefficients, the representativeness of many samples for each
category of hydrometeor particles, how to use more aircraft and ground observations to
improve the identification results, and where the largest uncertainties in the classification
exist, etc. If the identification results are significantly inconsistent with the observations,
decisions on whether the radar parameter ranges corresponding to where two particles
overlap with each other should be reconsidered. Afterwards, the size of the overlapped
range needs to be considered to review whether it is necessary for the parameter range to
be adjusted or the slope of β function to be adjusted. Furthermore, there are some clear
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uncertainties for the mixture of snow and graupel particles. For example, the proportion of
graupel is critical, where few graupel might be identified as snow, and more graupel might
be identified as graupel. Next, we will focus on the impact of the ratio of graupel on the
recognition result. More specifically, additional winter precipitation studies are required to
improve the proposed algorithm validation. Additionally, a more accurate identification of
hydrometeor particles, based on the radar observations, is needed so as to validate and
improve the precipitation cloud microphysical schemes.
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