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Abstract: On 2 May 2014, a large-scale landslide in Abe Barek, Badakhshan, Afghanistan, produced
extensive damage to the buildings and killed hundreds of people. Evaluations of the extent and the
volume of the displaced materials are vital for post-disaster management activities. In this study, we
present the applicability of a nonlinear geometric correction technique for decreasing the undesired
registration errors between pre- and post-event digital elevation models (DEMs) generated from
high-resolution stereo pair satellite imagery, identifying landslide affected areas, and quantifying the
landslide volume from DEMs of difference (DoD) analysis. The nonlinear mapping method consists
of shifting vector generation in subareas of the DEMs, consensus operations, and interpolation of
the shifting vectors. The quality assessment confirmed that the method outperformed the simple
DoD technique by eliminating a large-scale of geometric errors in an unaffected area. We estimated
the volume of the landslide as 1.05 × 106 m3 from the DoD corrected by the nonlinear method, and
discussed the relationship between the area and volume compared to those of the previous studies.

Keywords: landslide; volume; digital elevation model; geometric correction; stereo satellite imagery

1. Introduction

Landslides induced by heavy rainfalls and earthquakes are among the most com-
mon geohazard phenomena that frequently occur in mountainous regions, which consti-
tute one of the major hazards responsible for the interruption and severe destruction of
transport-related structures, industrial and hydropower plants, as well as cause the loss
of lives worldwide. Recent studies show that the number of locations, activities, severi-
ties, frequencies of landslides, and the social and economic impacts increase with time in
many regions [1–4].

With mountains dominating the landscapes, Afghanistan is considered a country
prone to several geomorphological hazards such as earthquakes, landslides, flooding,
drought, avalanches, and man-made disasters. Safety and economic problems made
Afghanistan among the countries with only a few researches on landslides. Therefore,
the exact location and number of landslides prone areas have not been specified across
the country yet, but as per records of the United Nations Office for the Coordination of
Humanitarian Affairs [5], of all-natural disasters reported in Afghanistan between 2012 and
2020, landslides constitute 6.8% of total natural hazard incidents which account for 30.3%
of all geohazards related deaths. Of all the recorded landslides in the country between
2012 to 2020 [5], 41.8% occurred in Badakhshan Province. Surprisingly, Badakhshan’s
landslide events comprise 16.3% of all the country’s natural disaster incidents, which
account for 53.6% of all the recorded landslide related deaths in Afghanistan. As reported
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by [6], Badakhshan province is a high priority province due to its greater susceptibility to
the landslide.

Badakhshan province’s high susceptibility to landslides led us to study one of the
landslides’ affected areas using remote sensing. The attention spotlight is on the Abe
Barek landslide incident, which occurred on 2 May 2014, in Badakhshan, Afghanistan.
It brought great international attention due to its large dimensions and catastrophic damage.
In accordance with the United Nations Institute for Training and Research [7,8], the number
of death tolls ranged from 300 to more than 2700. Based on an initial comparison of high-
resolution WorldView-2 satellite imagery of the pre-and post-event, a total of 87 structures
were buried by the mass of soil [7]. Moreover, after investigating and comparing different
areal images, they concluded that the previous mass movements occurred and were
highly likely to happen again in the same area [7,8]. Zhang et al. [8] conducted landslide
susceptibility assessments in the Abe Barek landslide affected area using a low-resolution of
90 m SRTM elevation data and digital elevation model (DEM) derivatives with a significant
limitation of lacking landslide inventory data. Aside from [8], there has not been any other
research to investigate the Abe Barek landslide area. Therefore, the volume of the landslide
has remained unknown to date.

Estimating the volume of displaced materials in a landslide is a crucial index for
understanding the significance of the event and planning post-disaster activities. A dif-
ference of elevation between pre-and post-event DEMs (DEMs of difference: DoD) has
been used to identify the location of the affected areas and quantify the displaced soil vol-
ume [9–12]. Among various remote sensing data sources, the light detection and ranging
(LiDAR) technique can produce a reliable estimate of morphological change [13]. However,
LiDAR observations have been rarely conducted in remote areas such as the Abe Barek
area. The satellite image-based approach is more feasible to assess the natural disasters in
such remote areas. DEM can be created from a stereo analysis of multiple satellite images
with different off-nadir angles. In the case that a set of high-resolution stereo pair satellite
images is available before and after the disaster, the DoD analysis can be performed by
developing pre-and post-event DEMs.

In order to quantify landslide volumes from DoD, the geometries of the obtained
DEMs need to be registered accurately. However, the DEMs errors of height values are
found in many cases, even when the data is geometrically registered. Previous studies
revealed that the uncertainty, including registration-noise or locational errors in multi-
temporal DEMs, would cause the miscalculation of soil volumes [14,15]. These errors arise
from many factors such as the quality of original data, interpolation algorithm, projection
method during the DEM creation process, etc. [16]. The horizontal misregistration between
DEMs would be one of the major causes of the uncertainty in the DoD analysis.

Various researches have given special attention to the development of advanced
registration techniques not only for aerial images [17–19] but also for multi-temporal
DEMs [14,20,21]. Jaboyedoff et al. [13] addressed the use of ground control points (GCPs)
to refine the generic sensor’s orientations. The collection of GCPs is time-consuming in
an urgent time of disaster. Chen et al. [14] proposed a mass balance model to accurately
correct two DEMs and quantify the landslide’s accumulated volume. However, the mass
balance calculation would be difficult in affected areas where collapsed soils flowed into
buildings and the downstream rivers. Hirakawa [20] also proposed an optimization-based
method to automatically correct the geometrical errors in multi-temporal LiDAR-derived
DEMs by assuming unique linear errors throughout the area of concern. It would be
difficult to correct the geometries of the DEMs when substantial nonlinear distortions are
found in the area of interest. Those previous studies indicate that misregistration caused by
nonlinear distortions in multi-temporal DEMs still remains an open problem. Miura [21]
presented a nonlinear mapping technique for reducing horizontal locational errors between
LiDAR-derived DEMs and estimating the displaced volumes of debris flows. However,
the applicability of the technique for a landslide in satellite image-derived DEMs, and the
parameter selections in the technique were not fully discussed in the previous study [21].
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In this paper, we followed the proposed methodology [21] to present the nonlinear
mapping technique’s applicability in reducing the registration-noise of the multi-temporal
DEMs to estimate the volume of the Abe Barek landslide. We analyzed a set of high-
resolution DEMs generated from stereo pair satellite images. The nonlinear mapping
technique was applied for reducing the nonlinear distortions in the DEMs. Unlike the pre-
vious work [21], here in this study, particular attention was given to illustrate the efficacy
of the method using both statistical approaches and profile cross-sections. The volume
of the landslide was estimated from the DoD corrected by the nonlinear technique. The
aspects of this study are summarized as the following:

1. Applicability of nonlinear mapping technique on minimizing geometric errors.
2. Validation of nonlinear mapping technique by the comparison of several descriptive

and graphical parameters.
3. Landslide detection and volume estimation by using the corrected DoD.
4. Validation and comparison of the obtained volume of the displaced material with

previous studies.

2. The Landslide in Abe Barek, Afghanistan

On 2 May 2014, a very large-scale landslide occurred in Abe Barek (Figure 1), Argo
District, Badakhshan Province, Afghanistan. It was the worst landslide in 2014, killing
300 to more than 2700 people [8]. According to the locals, two landslides occurred within
a concise space of time. The villagers may lack the specialized knowledge, training, and
necessary equipment to perform triage and started the search and rescue operations for
assistance to the first trapped victims shortly after the first incident [22]. Tragically, many
volunteer rescuers become secondary victims themselves [23]. Considering the remoteness
of the landslide area, rough road conditions, insufficient capacity for fast and well-timed
transfer of machinery, and the necessary equipment, the government quickly concluded
that retrieving the buried bodies is unattainable. Hence, the site was declared a mass
grave [24]. Figure 2a, taken in [25] and outlined with a yellow color, shows the landslide’s
downward movement direction in a sufficiently inclined surface rupture over a consider-
able distance and buried the settlements along its pathway. Moreover, Figure 2a,b clearly
illustrates previous landslides’ boundaries in the same position with red lines.
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Figure 1. Location of the study area. (a) Afghanistan, study area, and borders with neighboring countries, (b) Badakhshan
province, (c) Argo district, and Abe Barek village.
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Figure 2. Collapsed area. (a) Front view of the Abe Barek landslide area, the yellow outlines indicate
the boundary line on the current landslide, the red outlines represent the boundary of old landslides,
and the photograph was taken on 5 May 2014 by [25]. (b) Top view of the landslide area shows how
steep the slope is, the red outlines reflect the boundaries of the old landslides, the photograph was
taken on 5 May 2014 by [25].

The study area with a latitude of 37◦1′ 18′′ N and a longitude of 70◦22′01′′ E is situated
21 km away from Faizabad, the capital of Badakhshan province. Badakhshan is one of the
34 provinces of Afghanistan, located in the northeastern part of the country along the Pamir
and Hindu Kush Mountains. Some of its mountains lay between 3000–7000 m above sea level
and are covered with snow and glaciers throughout the year. Badakhshan is one of the most
remote, least developed, and disaster-prone regions, which borders Tajikistan to the north,
Pakistan to the south, and China to the easternmost (Figure 1a). The presence of two active
plate boundaries [26], namely “North Afghan Platform and Transgressional Plate boundary”,
and the passing of three major active faults through the province [27], namely the Central
Badakhshan Fault, Darvaz Fault, and Henjvan Fault, making it the highest seismic prone
region in the country and is arguably one the most vulnerable regions to all kinds of natural
disasters. With this regard, most of the researchers relate the majority of the landslide hazards
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to earthquakes. Argo district (Figure 1c), of which Abe Barek is one of its villages, with 10% of
the whole province population, is the most populous district in Badakhshan [28]. According
to the previous study [8], 30.2% of the entire land in Badakhshan province is covered by a
slope gradient of 20–30◦, and in the area where the landslide occurred, 78% of its land is
made up of a slope gradient of 20 to 40◦. This might be considered as one of the reasons
why this area is prone to landslides. The Abe Barek landslide area brutally buried houses
and killed large numbers of people, which can be categorized as the most life-threatening [8]
natural disasters after two incidents of the 1998 earthquakes [27,29] occurred in this area.
To date, Shroder [30,31] has determined 34 large loess landslides that are commonly triggered
by saturation and liquefaction in this area.

Knowing the cause of the landslides is extremely important. However, as mentioned,
not so many studies have been conducted in the area of interest to figure out the main
reason. The only research conducted in the study area is the susceptibility assessment
in the Abe Barek [8]. Landslide factors such as topography, climate (rain), geology and
seismicity of the area, land cover and land use, and previous earthquakes were reviewed
deeply. Eventually, they identified the following factors as a leading cause of the incident:

• Weakening of the rock-based silt-covered area due to the repeated seismic events.
• Slope instability further intensifies due to the remaining too loose materials from the

previous landslides at the same position.
• Slope instability due to the increased infiltration of rainwater into the loose soil.
• The presence of sensitive material which is very prone to landslides.
• Increasing the soil water content from the rapid melting of deep snow and spring

rains up to 200 mm.
• Land use and irrigation activities.

Finally, it can be concluded that the cause of the landslide is not one. Rather, a set of
triggering factors (e.g., complex geology, the presence of landslide-prone material [30,31],
previous earthquake records, and close distance to the fault line’s intersection [29], summer
rains, and melting snow) or a combination of any of such mentioned factors possibly lead
to this unfortunate situation.

3. Material

In this study, stereo pair high-resolution satellite images were gathered to generate pre-
and post-event DEMs. The pan-sharpened GeoEye-1 images with the spatial resolution of
0.5 m observed in June 2012 were analyzed to create the pre-event DEM. The panchromatic
IKONOS-2 images with the spatial resolution of 0.8 m observed 2 months after the event in
2014 were analyzed to create the post-event DEM. Table 1 shows the characteristics of the
satellite images used in this study and their observation conditions. Since the pre-event
images were observed on the same day with different off-nadir angles, the pair images’
quality can be judged as very good. On the other hand, since the time interval of the
observations of the post-event images is 8 days, and land cover changes were slightly
observed between the images, we judged the pair quality of the post-event images as good.

Figure 3 shows the flowchart for the DEM generations from the acquired satellite
images. The DEMs and orthorectified images were generated by a dense stereo matching
technique using a commercial software (Agisoft Metashape Professional Ver. 1.6.3) [32].
The technique consists of a photo alignment, generation of the three-dimensional dense
point cloud, and building of the mesh. Approximately 168 thousand tie points and
34 million-point clouds were extracted in the pair of the pre-event images, indicating
that the mean cloud density is 1.4 points per square meter. On the other hand, approxi-
mately five thousand tie points and 16 million-point clouds were extracted in the pair of
the post-event images, demonstrating that the mean cloud density is 0.5 points per square
meter. The images’ geographic locations were coordinated using rational polynomial coef-
ficient (RPC) files. The RPC files were provided by the supplier as a standard positioning
assistance dataset, including polynomial equations to relate geographic locations (latitude,
longitude, and height) with locations in the image (row and column).
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Table 1. Distinguished features of the satellite imagery used in this study and their observation conditions.

Pre-Event Post-Event

Image ID 105041000005F800 10504100000CBE100 106001000932AC00 1060010009356D00

Date 13 June 2012 13 June 2012 7 July 2014 15 July 2014
Satellite GeoEye-1 GeoEye-1 IKONOS-2 IKONOS-2

Band Pan-sharpened Pan-sharpened Panchromatic Panchromatic
Spatial resolution (m) 0.5 0.5 0.8 0.8

Off-nadir (deg.) 18.4 29.6 24.1 9.6
Satellite azimuth (deg.) N63.1E N36.8E N220.1E N169.4E

Sun elevation (deg.) 68.7 68.6 70.0 67.8
Sun azimuth (deg.) N124.2E N124.0E N132.4E N129.0E

Cloud cover (%) 1.0 5.0 3.0 0.1

Overlapped area (km2) 24.5 30.5

Pair quality Very good Good
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Figure 3. Flowchart for the data acquisition and digital elevation model (DEM) generations.

Figure 4a,b illustrates the pre- and post-event DEMs created from the images, re-
spectively and Figure 4c,d shows the hillshade effects on the DEMs. Unexpected small
concavities and convexities were found in the post-event DEMs (Figure 4d), probably
due to the lower density of the point clouds. Figure 4e,f shows the pre- and post-event
orthorectified images, respectively. Figure 4g,h illustrates the close-up of the generated
point clouds in a rectangular area shown in Figure 4e,f. From the close-up image, the con-
centration of the cloud points in the pre-event DEM is substantially higher than that of the
post-event DEM. The pre-event data spatial resolutions were 1.0 m, whereas the post-event
data spatial resolutions were 1.5 m due to the different spatial resolutions of the original
images. Since the spatial resolution and the pair quality of the pre-event data are higher,
the post-event DEM and orthorectified image were resampled to a 1.0 m resolution by the
cubic convolution technique for the following change detection operation in order to obtain
a detailed morphological change.

The derived DEMs were georeferenced in GIS during the stereo matching operations
based on the RPC files. Then, they were applied to the DoD technique by subtracting
the pre-event image from the post-event image. The DoD (post-pre) obtained from the
pixel-based change detection is shown in Figure 5. Although the DEMs were geometrically
corrected by the RPC files, significant noises or errors in height values were found even in
unaffected areas. These false detections would probably arise from the locational errors
(e.g., horizontal errors) in the DEMs, indicating that two DEM images were not perfectly
matched. Therefore, a further geometric correction would be necessary to accurately
enhance the DEM’s matching and accurately extract the geomorphological change. Here,
in this study, a nonlinear mapping technique would be utilized to diminish the DEM’s
locational errors generated in DoD.
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Figure 4. Data used in this study. (a) Generated 1 m-resolution pre-event DEM from the GeoEye-1
Satellite in June 2012; (b,c) pre-and post-event hillshades effects to the DEMs overlay with colors
showing clear details of the study area; (d) generated 1 m-resolution post-event DEM from the
IKONOS-1 Satellite in July 2014; (e) pre-event orthorectified multispectral image derived from
GeoEye-1 images (0.5 m-resolution); (f) post-event orthorectified panchromatic image derived from
IKONOS-1 images (0.8 m-resolution); close-up view of the generated point clouds of pre-event data
(g) and post-event data (h) presents the rectangular area shown in (e,f).
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using the pre-and post-event DEMs.

4. Methodology

The nonlinear mapping method was briefly introduced in the previous work [21].
Section 4.1 explains the method in detail, the experiments for selecting the parameters
are presented in Section 4.2, and the quality assessment by the selected parameters are
discussed in Section 4.3.

4.1. Nonlinear Mapping Method

An adaptive nonlinear mapping method was introduced by Kosugi et al. [33] and
Nakamura et al. [34] to superpose a pair of aerial or satellite images accurately and detect
pixel-by-pixel changes automatically. The method can geometrically correct the images
even if rotational gaps and local skews are obtained in the images. The method was applied
not only to aerial images but also to LiDAR-derived DEMs by one of the authors for
quantifying volumes of debris flows [21]. Hence, we applied this technique to the obtained
DEMs in this study.

The flowchart of the nonlinear mapping technique for pre-and post-event DEMs is
presented in Figure 6. This method consists of four operations: Shifting vector generation in
subareas, consensus operations for shifting vectors, interpolation of consented shifting vec-
tors, and the repetition of three previous operations until a satisfactory outcome has been
achieved. In this analysis, the pre-and post-event DEMs are defined as the controller (refer-
ence) data and follower data, respectively. First, both DEMs are divided into subareas with
the window size of NW-by-NW pixels (Figure 7). The segmented subarea (NW × NW pixels)
in the follower data looks for the best-matched segment in the given segment’s neighbor-
hood (NS pixels for left, right, upward, and downward) in the corresponding controller
data by adopting the smallest elevations’ difference using the following formula:

s(ic, jc) =
1

NW
2

√√√√ (NW−1)/2

∑
j=−(NW−1)/2

(NW−1)/2

∑
i=−(NW−1)/2

{d1(ic + i, jc + j)− d2(ic + i + dx, jc + j + dy)}2 (1)
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Figure 7. The schematic diagram for nonlinear mapping operations presents the segmentation of both
pre–and post–event DEMs, the matching segments process, generating shifting vectors, and correcting
false generated shifting vectors using the consensus operation, the figure is modified from [21].

The elevations’ difference (s-value) is calculated in each subarea. Here, d1 and d2
are the elevations in the pre-and post-event DEMs, respectively, and ic and jc indicate
the subarea’s central location in x- and y-directions, respectively. The shifting vectors are
determined from dx and dy in pixels when the minimum s-value is obtained within the
given search area in NW-by-NW pixels. It would be difficult to search for the appropriate
shifting vectors in landslide-affected areas due to the fact that the ground movement
significantly changes the topography after the event. Since the false shifting vectors would
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be generated in such changed areas, the shifting vectors need to be corrected considering
the vectors in the altered areas’ vicinities.

The consensus operation will be performed to correct the overestimated shifting
vectors or false generated shifting vectors. The first scalars of the shifting vectors are
calculated using Equation (2) in all the subareas.

d =
√

dx2 + dy2 (2)

Figure 8a shows the schematic diagram for the histogram of the vectors and threshold
selection to two classes. The threshold value of the vectors (dth) is determined by maximizing the
ratio of inter-class variance (σB) to the total variance (σT) calculated Equations (3) to (5) [34,35].

dth = d s.t. max
d

(
σB

2(d)
σT2(d)

)
(3)

σB
2 =

n1(m1 −m0)
2 + n2(m2 −m0)

2

m1 + m2
(4)

σT
2 = σ1

2 + σ2
2 (5)
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Figure 8. Schematic diagrams of (a) the histogram of shifting vectors and thresholding (b) present how the direction of
generated shifting vector (red arrow) is corrected in the same way as the neighboring arrows using the consensus operation,
modified from [21].

Here, m0, m1, and m2 indicate the mean value of d for all the vectors, the mean value in
class 1, and the mean value in class 2, respectively. Additionally, n1 and n2 are the number
of vectors in classes 1 and 2, respectively. In a similar manner, σ1 and σ2 represent the
variances of the vectors in classes 1 and 2, respectively. When the d-value in a subarea
is larger than dth, the vectors are classified to class 2. In that case, the shifting vectors
are corrected by giving median values of dx and dy obtained within the neighborhood
subareas (NC-by-NC subareas), as shown in Figure 8. The shifting vectors are provided
to all the pixels from the subareas’ vectors by the bilinear interpolation technique. These
operations are repeated by the given number of iteration (n). Finally, the controller data is
geometrically corrected based on the shifting vector in each pixel. Figure 9 illustrates the
comparison of the schematic plan and profile before and after the nonlinear mapping-based
geometric correction. Four parameters, NW, NS, NC, and n, are required to perform the
nonlinear mapping technique.
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Figure 9. Schematic plan and profile denotes a comparison of DEMs before and after the nonlinear
mapping-based geometric correction.

4.2. Evaluation and Applicability of the Method

We applied the nonlinear mapping method to the pre-and post-event DEMs. For that,
the algorithm needs a combination of entry parameters. These key input parameters are
NW (window size or size of subarea), NS (search area), NC (consensus area), n (number of
iterations). The selection of the parameters in the method was discussed in a selected testing
zone with different combination values of these parameters. In this study, a set of scenarios
were examined with different values of NW, NS, NC, and n. In the following subsections,
we performed statistical and shifting vector assessments. Based on the quality assessment
result, the best possible combination of parameters (NW, NS, NC, and n) was selected.

4.2.1. Statistical Assessment

As shown by the dotted rectangle in Figure 10, the nonlinear mapping technique was
applied repeatedly with different scenarios for the selected test area. For instance, in every
process of the analysis, the pre-event DEM subareas were given a different search area
(pixel value) and consensus value to automatically search and match with the best possible
corresponding reference point in the post-event DEM. Typical parameters illustrated in
Table 2 were selected for the accuracy assessment. It is convenient to use descriptive
statistics (mean and standard deviation) to evaluate different categories and identify the
differences among other scenarios. If the geometric correction is successfully performed
to the data, the DoDs mean value would be zero or close to zero in the unaffected areas.
As shown in Table 2, different window sizes (e.g., NW = 5, 7, 9 . . . 31) and search areas
of NS × NS (3 × 3, 5 × 5, 7 × 7 . . . 31 × 31) pixels are evaluated through a repetitive
iteration procedure. Finally, in this study, the window size (NW = 5 pixels) and search area
(NS = 9 × 9) highlighted in Table 2 with bold text were chosen based on the lowest mean
and standard deviations of DoD maps.
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Table 2. Means and the standard deviations of the DoDs for different parameters in the test area. Bold texts indicate the
chosen parameters, which have the lowest mean and standard deviation.

No.
Size of

Subarea
(NW)

Search
Area

(NS, Pixel)

Consensus
Area
(NC)

No. of
Iterations

(n)

Mean
Value

(m)

Standard
Deviation

(m)
Sum of Square Remarks

1 0 0 0 0 1.278 3.337 2.00 × 107 Uncorrected
2 5 5 3 3 0.475 1.467 3.87 × 106 Corrected
3 5 7 3 3 0.221 1.254 2.83 × 106 Corrected
4 5 9 3 3 0.152 1.152 2.39 × 106 Corrected
5 7 5 3 3 0.862 2.197 8.68 × 106 Corrected
6 7 7 3 3 0.492 1.592 4.56 × 106 Corrected
7 7 9 3 3 0.166 1.308 3.08 × 106 Corrected
8 9 5 3 3 0.500 1.672 5.03 × 106 Corrected
9 9 7 3 3 0.247 1.468 3.87 × 106 Corrected

10 9 9 3 3 0.187 1.436 3.71 × 106 Corrected

4.2.2. Shifting Vectors Assessment

Figure 11a–i illustrate the generated shifting vectors for the scenario numbers 2–10
of Table 2. The selected test area of the pre-event DEM based on the entry-parameters
described above looked for the best matching segment in the vicinity of the corresponding
reference point in the chosen test area of the post-event DEM. As shown in Figure 11,
shifting vectors were generated if the best matching point is not the same as the reference
point. During the operation analysis, more than nine profiles of shifting vectors have been
generated. Here, in Figure 11, nine of them have been shown. A moderate vector movement
that brings reasonable smoothness in the DEMs quality and considerably removes the
locational errors in the unaffected area compared to another set of shifting vectors would
be chosen from all the generated shifting vectors. After the comparison, in Figure 11, we
selected the shifting vector with label c. which corresponds to the parametric combination
(NW = 5, NS = 9, NC = 3, n = 3). Since the shifting of the vectors in the selected parameters
is smaller than the other shifting vectors (e.g., scenario number five to ten in Table 2 shown
by Figure 11d–i), the corrected DEM eliminated the locational errors in the unaffected area
significantly compared to the other shifting vector-related DEMs. Moreover, the selected
shifting vector had the smallest mean, deviation, and sum of squares, as discussed and
shown in Table 2.

4.3. Quality Assessment

The histogram is a very handy way of graphically displaying the information con-
tained in a single band of remotely sensed images [36]. In remote sensing, scientists
usually examine histograms for each band to determine the quality of satellite images.
The histogram presents the information by which one can figure out the quality of image
data. In most cases, scientists show the before and after histogram graphs to compare
the effectiveness of their image enhancement methods [37]. Hence, we compared the
distribution of the difference of elevations in the corrected DEM with the uncorrected DEM
using histograms.

As shown in Figure 12, the uncorrected DoDs histogram (red line) generated a nega-
tively skewed distribution shape histogram indicating the poor quality of the data or the
presence of additional noise in data. However, the corrected DEM histogram (blue line)
produces a symmetrical frequency distribution. The values are distributed around a cen-
tral value, and the pixel numbers decline away from this central point. The distribution
graph completely changed to a bell-shaped and is called a normal distribution. It can be
concluded that the data quality in DoD after applying the nonlinear mapping method dra-
matically increased. Meanwhile, the incorrectly detected errors have drastically decreased
after conducting the nonlinear mapping method and choosing the parametric combination.
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5. Results

In this chapter, we evaluated the profile cross-sections using the corrected DEMs,
including the landslide area to validate the nonlinear mapping method in Section 5.1, and
presented the estimation of the soil volume through a comparison of the volume estimated
from the uncorrected DEMs in Section 5.2.

5.1. Comparison of Cross-Sections of DEMs in the Affected and Unaffected Mountain Areas

We compared the profile cross-sections between the corrected DEMs and uncorrected
DEMs to confirm the nonlinear technique’s quality. Figure 13a shows the DoD obtained
from the uncorrected DEM. We selected two cross-section lines in the affected and unaf-
fected areas, as illustrated by the A-A’ and B-B’ lines in Figure 13b,c, respectively. It was
observed from the profile cross-sections that significant gaps between the pre-and post-
event elevations are prominent throughout the cross-sections in the uncorrected DEMs.
Figure 14a illustrates the DoD obtained from the corrected DEMs in this study, and the
cross-sections in the A-A’ and B-B’ lines are shown in Figure 14b,c, respectively. We con-
firmed that the locational errors (e.g., horizontal gaps) were significantly decreased, and
the post-event line matches very well with the pre-event topographies.

1 
 

 
Figure 13. (a) Uncorrected DoD with the A-A’ and B-B’ cross-section lines. (b) Profile cross-section line (A-A’) passing
through the affected area. (c) Profile cross-section line (B-B’) passing through the unaffected area.

We also evaluated the model performance in decreasing the locational errors using
the quantitative value of the root means square error (RMSE) to confirm the degree of the
matching in both corrected and uncorrected data in the unaffected area (Figures 13c and 14c).
This indicator has been frequently used to evaluate the prediction error quantitatively [38].
The RMSE of the corrected profile cross-section was obtained at 0.81 m, whereas the RMSE
for the uncorrected profile cross-section was obtained at 3.81 m, which is more than four
times larger than that of the corrected one. It suggests that the horizontal locational errors
are the leading cause of the change detection errors not only in the unaffected areas but also
in the affected areas. The employed geometric correction model of the current study can be
utilized for accurately extracting the geomorphological changes.
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5.2. Volume Estimation

Before quantifying the volume of the displaced soil, the boundary line of erosion
and deposition areas of the landslide need to be delineated. Figure 15a shows the DoD
map (post-pre) obtained from the corrected DEMs with the landslide area delineated by
the combination of the satellite images, the ground photos shown in Figure 2, and the
cross-sections shown in Figure 15b. The colors in the DoD map in Figure 15a illustrate the
distribution of displaced soil depths in the Abe Barek landslide disaster area. The DoD
map consists of positive and negative pixel values. The negative values indicate soil
erosion, which is filled in red to orange color pixels, and the pixel values range from
(−37 m < DoD < 0 m). On the other hand, the positive pixel values correspond to the
deposition of the displaced soil as shown in the blue to green pixel colors, and the pixel
values vary from (0 m < DoD < +41 m).

Referring to the cross-sections drawn in Figure 15b, the landslide moved in a compli-
cated fashion in the erosion-affected sections. The post-event elevations were significantly
decreased in the southern areas such as lines C-C’, D-D’, E-E’, F-F’, and G-G’, whereas
the elevations were increased after the landslide in the northern areas such as lines I-I’,
J-J’, and K-K’, as shown in Figure 15b. Judging from the cross-sections in Figure 15b,
we can claim that in the upper slope section line C-C’ to the line G-G’ the erosion occurred,
in which the eroded mass of the material is thought to move as a rigid block with a signifi-
cant depth. By contrast, from the cross-section H-H’ onward, which is the ending boundary
of the erosion-affected area, the displaced material′s movements became more complicated.
In other words, the mass of the material that was moving almost in a rigid block turned
into many sub-slide surfaces at the lower reach of G-G’, and each block in a separated
fashion, choosing its direction to reach a remarkable distance.

From section I-I’ onward, the post-event elevation increases as the movement con-
tinues with a distance towards the northern direction. It means that the landslide started
depositing from I-I’ on to the stopping points in the deposition zone. Finally, the landslide
material that accumulated along the purple boundary polygon filled with a green color
in Figure 15a caused the severe building damage. The redline polygon and dotted purple
line polygon in Figure 15a shows the erosion area (upstream) and the deposition area
(downstream) of the displaced materials, respectively.



Remote Sens. 2021, 13, 446 16 of 22

1 
 

 

 
Figure 15. (a) DoD map obtained from the corrected DEMs presents the delineation of the landslide
affected area and cross-section lines. (b) Cross-section profiles present the pre-and post-event surface
difference throughout the landslide area.
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The volume of the displaced material was estimated using the corrected DoD map
by aggregating the positive and negative pixel values separately in their boundaries and
multiplying them to the corresponding area boundaries. As an example, in Figure 16,
we present the elevation change along the cross-section line A-A’. It indicates the elevation
difference between the pre- and post-event DEMs along the mentioned cross-section line
shown in Figure 15. The positive values indicate the deposition of the material, whereas
negative values indicate erosion of the materials. The maximum erosion depth along the
cross-section line was obtained at 37.7 m, while on the contrary, the maximum deposition
depth throughout the A-A’ was estimated at around 12.7 m. The total erosion and deposition
soil volumes in the upstream and downstream are summarized in Table 3. As highlighted
in Table 3, the total volume of the eroded and accumulated soil in the landslide area
by applying the nonlinear method was estimated at 1.05 × 106 m3 and 5.73 × 105 m3,
respectively. The total erosion volume was nearly twice larger than the total deposition
volume. This would be due to the fact that the soil in the downstream zone was dragged
into buildings and parts of them flowed into the river.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 23 
 

 

 

Figure 16. Elevation difference along the cross-section line A-A’ obtained from (pre-post) DEMs. 

In addition to that, the volumes of the displaced materials were also estimated for 

the uncorrected DEMs and summarized in Table 3. The total erosion volume of 1.61 × 106 

m3 was approximately 53% larger than the one estimated from the corrected DEMs. The 

total deposition volume in the uncorrected DEM is 54% larger than that of the adjusted 

DEMs. The percentage increase between the corrected and uncorrected DoDs in the ero-

sion and deposition zones was also summarized in Table 3. From the percentage increase, 

clearly, one can appreciate that the estimated parameters (volumes and depths) in the un-

corrected DoD were significantly more extensive than that of the correct one. This implies 

that applying the proposed method considerably decreases the estimated volume of the 

soil. Furthermore, it reveals that the direct use of DoD without correcting the errors, leads 

to the overestimation of the landslide volume. 

Table 3. Summarized erosion and deposition volumes for the corrected and uncorrected DoD. 

 
Corrected A Uncorrected B ( 
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Erosion 

$$$$$$m3 

Deposition  
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Erosion$$
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Deposition 
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Upstream −1.03 × 106 4.78 × 104 1.08 × 106 −1.56 × 106 8.74 × 104 1.61 × 106 51 57 
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Table 3. Summarized erosion and deposition volumes for the corrected and uncorrected DoD.

Corrected A Uncorrected B ( B−A
A )%

Erosion
m3

Deposition
m3

Total
m3

Erosion
m3

Deposition
m3

Total
m3

Erosion
%

Deposition
%

Upstream −1.03 × 106 4.78 × 104 1.08 × 106 −1.56 × 106 8.74 × 104 1.61 × 106 51 57
Downstream −1.58 × 104 5.25 × 105 5.41 × 106 −4.26 × 104 7.96 × 105 8.38 × 105 170 52

Total −1.05 × 106 5.73 × 105 −1.61 × 106 8.83 × 105 53 54
Area (m2) 1.22 × 105 1.23 × 105 1.22 × 105 1.23 × 105 - -

Ave. depth
(V/A), m -8.6 +4.6 −13.2 +7.2 53 57

In addition to that, the volumes of the displaced materials were also estimated for the
uncorrected DEMs and summarized in Table 3. The total erosion volume of 1.61 × 106 m3

was approximately 53% larger than the one estimated from the corrected DEMs. The total
deposition volume in the uncorrected DEM is 54% larger than that of the adjusted DEMs.
The percentage increase between the corrected and uncorrected DoDs in the erosion and
deposition zones was also summarized in Table 3. From the percentage increase, clearly,
one can appreciate that the estimated parameters (volumes and depths) in the uncorrected
DoD were significantly more extensive than that of the correct one. This implies that
applying the proposed method considerably decreases the estimated volume of the soil.
Furthermore, it reveals that the direct use of DoD without correcting the errors, leads to
the overestimation of the landslide volume.

Similarly, the average erosion and deposition depths defined as the volume divided
by the area were estimated by aggregating all the positive and negative pixel values within
the landslide boundary line. The average depths were also presented in Table 3 for both the
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corrected and uncorrected DoDs, respectively. The average erosion and deposition depths
for the corrected DoD were estimated at around 8.6 and 4.6 m, respectively. The average
deposition depth was considerably lower than that of the erosion in the DoDs. This is due
to the fact that parts of the deposited material were washed away to the downstream river,
as mentioned above.

6. Discussion

This chapter discusses the comparison of the estimated landslide volume with previ-
ous studies in Section 6.1, the advantages of the method in Section 6.2, and future works
in Section 6.3.

6.1. Comparison of the Obtained Landslide Volume with Previous Landslide Studies

In order to understand the scale of the Abe Barek landslide, a comparison was made
with the area-volume relationship or power-law relation derived from the previous stud-
ies [39–51] having a high confidence level at locations in different countries. The number of
sample data, the study areas’ limitations, and the obtained relationships were summarized
in Table 4. As reflected in Figure 17, the volume of the landslide appears to be slightly larger
relative to the ground surface area. It reflects that the landslide occurred in a relatively
small area with a significant loess thickness. Overall, Figure 17 indicates that the volume
estimated by our analysis shows a good agreement with the previous studies and is located
within correlation lines corresponding to the previous research.

Table 4. Empirical relationships linking the landslide area (AL) to the landslide volume (VL) obtained by various researchers.

No. Number of Data Maximum AL Minimum AL Equation Source

1 207 1.9 × 105 2.3 × 100 VL = 0.1479AL
1.368 [39]

2 29 2 × 102 2.1 × 100 VL = 0.234AL
1.11 [40]

3 53 6 × 107 2 × 105 VL = 0.242AL
1.250 [41]

4 30 5 × 102 3 × 101 VL = 0.0329AL
1.385 [42]

5 45 3.9 × 106 4 × 104 VL = 0.769AL
1.250 [43]

6 1019 1.6 × 104 5 × 101 VL = 1.826AL
0.898 [44]

7 615 5.2 × 104 2 × 102 VL = 1.0359AL
0.880 [45]

8 124 1/2 × 105 7 × 102 VL = 0.1549AL
1.0905 [46]

9 539 1 × 109 1 × 101 VL = 0.0844AL
1.4324 [47]

10 11 4 × 103 5 × 101 VL = 0.19AL
1.19 [48]

11 37 1.5 × 103 1.1 × 101 VL = 0.328AL
1.104 [49]

12 677 1 × 109 2 × 100 VL = 0.074AL
1.450 [50]

13 50 2.1 × 105 9.6 × 102 VL = 0.333AL
1.399 [51]

6.2. Advantages and Shortcoming of the Method

The advantages of the technique presented in this study are summarized as follows:
It can reduce geometric errors in the DoDs output almost automatically by providing
adequate parameters without collecting GCPs; it can be applied to the DEMs, even sig-
nificant morphological changes such as a large-scale landslide are observed in the data;
and consequently, it can provide a more accurate volume quantification of the displaced
material by landslides than a simple DoD analysis.
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On the contrary, one of the nonlinear mapping method’s main shortcomings is the
time spent in scenarios for choosing the ideal input parametric combinations. For choosing
such a parametric combination (NW, NS, NC, n), we need to compare each scenarios’ results
and choose them based on a thorough evaluation, which will take a relatively long time.
With the exception of that being said, the rest of the method is very fast.

Since we did not discuss the absolute geo coordinate accuracy by using GCPs, the
corrected DEM would still inevitably contain errors. A true error assessment can typically
be conducted with enough GCPs [9,10,15,38,52], which provides an actual error estimation.
However, the error estimation using GCP in an insecure place, located in a remote area with
high mountain and poor traffic accessibility, makes it nearly impossible to collect such data.
Although some studies conducted such an assessment using the LiDAR-derived DEM as
GCP [9,15], the LiDAR observation has never been conducted in this area. Martha et al. [10]
suggested that aligning images using RPCs alone is enough for volume estimation. How-
ever, in this study, we employed the nonlinear mapping technique to align the DEMs with
the maximum extent possible, to decrease the noise in the unchanged area, and to increase
the accuracy of the analysis to the extent feasible.

6.3. Future Studies

Although the nonlinear mapping method’s application significantly decreased the
noise in the DoDs output, it subsequently may increase the accuracy of the landslide volume
estimation result to a certain level. However, the error estimation has not been discussed in
this work with the actual GCPs. Once such data are collected, much additional work needs
to be done. For example, an error estimation of both depths and volume obtained from the
nonlinear mapping and real GCP can be compared in a similar procedure conducted by [9]
using the evaluation change analysis technique. The shortcoming addressed in the earlier
section may need further research to find a possible way of automatically selecting those
parameters to accomplish the analysis faster. A comparative study, together with other
techniques aimed at reducing undesired noises, can be applied to highlight the method’s
efficacy.

As final remarks, it should be emphasized that, in this study, we have mainly directed
our attention to decrease the extra accumulated noises in nonaffected areas of DoDs output
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and to illustrate the impact of the adopted nonlinear mapping technique in decreasing the
estimated landslide volume compared to the result coming from directly using DoD. The
approach applied in this study aims to estimate the volume of a large-scale landslide after
decreasing the accumulated noises in the DoDs output. In addition, it has the potential
to quantify the volume of the landslide in a critical disaster time with a relatively shorter
time, without using any extra actual GCPs.

7. Conclusions

This study presented utilizing the nonlinear mapping technique to detect and estimate
the volume of the landslide affected area using stereo pair high-resolution satellite imagery.
It is being stressed that the method can successfully be used in the image processing
analysis to conduct mapping tasks, diminishing the geometric errors accumulating in the
unchanged areas of the DoDs output, and finally, obtain the volume and average depth
of the displaced material in the disaster area to ease the crisis management support and
contribute very well to the more effective planning of the disaster relief and restoration.

The technique presented in this study was employed in a large-scale landslide that
occurred on 2 May 2014, in Abe Barek village, Badakhshan, Afghanistan. Using the DEMs
of the difference change detection technique, we generated the landslide affected area’s
DEMs from the pre-and post-event satellite stereo-pair images. Although the DEMs were
corrected using the RPC method, registration noises or locational errors were still spotted
in the nonaffected areas. We employed the nonlinear mapping technique to diminish the
aforesaid geometric inconsistencies or registration noises and enhance the accuracy of the
process analysis. The proposed method has been coded in such a way that, in the selected
testing zone with the given combinations of parameters, the post-event DEM (follower
data), superimposes on the pre-event DEM, and pixel by pixel, scanning neighboring
vicinities for the best possible matching points in the pre-event DEM (controller data).
In this study, nine scenarios were examined with different values of NW (window size
or size of the subarea), NS (search area), NC (consensus area), n (number of iterations).
As the quantitative and graphical comparison revealed, the locational gaps significantly
reduced, and a bell-shaped histogram, also known as a normal distribution, was obtained.
Moreover, statistical values, in particular, mean and standard deviations, decreased more
closer to zero and one, respectively. Additionally, the obtained RMSE values also verified
the nonlinear mapping’s applicability in decreasing the locational errors quantitatively.
The required input components (NW = 5, NS = 9, NC = 3, and n = 3) for processing the
method were chosen after a thorough comparison and observation of the assessments.

The total eroded soil volume in the landslide area after adopting the nonlinear map-
ping method was approximately estimated at about 1.05 × 106 m3, and the volume of the
deposited soil acquired 6.73 × 105 m3. The landslide’s estimated volume was compared
with the volumes obtained from the previous studies. The erosion volume of the soil
obtained in this study showed a good agreement with that achieved in the previous studies.
The average depth of erosion, mostly situated on the mountain’s hilly side, was 8.6 m.
On the contrary, the average depth of deposition, which typically situates in a flatted
area, was estimated at 4.6 m. This highlights that nonlinear mapping has a considerable
potential to reduce locational errors in mountainous regions. Therefore, it indicates a good
applicability of the nonlinear mapping technique. It suggests that the method can be used
efficiently on a routine basis and runs whenever a new landslide event has occurred if
high-resolution stereo-pair images of the area become available.
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