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Abstract: Tree species surveys are crucial to forest resource management and can provide references
for forest protection policy making. The traditional tree species survey in the field is labor-intensive
and time-consuming, supporting the practical significance of remote sensing. The availability of
high-resolution satellite remote sensing data enable individual tree species (ITS) recognition at low
cost. In this study, the potential of the combination of such images and a convolutional neural
network (CNN) to recognize ITS was explored. Firstly, individual tree crowns were delineated
from a high-spatial resolution WorldView-3 (WV3) image and manually labeled as different tree
species. Next, a dataset of the image subsets of the labeled individual tree crowns was built, and
several CNN models were trained based on the dataset for ITS recognition. The models were then
applied to the WV3 image. The results show that the distribution maps of six ITS offered an overall
accuracy of 82.7% and a kappa coefficient of 0.79 based on the modified GoogLeNet, which used the
multi-scale convolution kernel to extract features of the tree crown samples and was modified for
small-scale samples. The ITS recognition method proposed in this study, with multi-scale individual
tree crown delineation, avoids artificial tree crown delineation. Compared with the random forest
(RF) and support vector machine (SVM) approaches, this method can automatically extract features
and outperform RF and SVM in the classification of six tree species.

Keywords: high-resolution remote sensing imagery; individual tree species recognition; individual
tree crown delineation; convolutional neural network

1. Introduction

Forests are among the most important terrestrial ecosystems and are essential for
human development [1]. Well-managed forests provide renewable resources, protect
biodiversity, maintain a stable energy cycle, and prevent soil degradation and erosion [2].
Precise tree species surveys are crucial to forest inventory and management because they
provide managers with a better understanding of forest species composition, changes
in forest species, quantity of forest resources, and references for the formulation and
adjustment of forestry policies [3]. However, traditional survey methods are inefficient and
their associated labor costs are high. Remote sensing-based methods are efficient when
mapping forest types in areas with rough terrain or that are difficult to reach, and can
significantly improve survey efficiency and reduce labor costs [4].

Many remote sensing-based forest classification studies have considered multi-scale
remote sensing data sources. Early developments used medium-spatial resolution satellite
remote sensing data, such as Landsat Thematic Mapper imagery, for regional-scale forest
classification [5,6]. However, because the spatial resolution of Landsat data is relatively low,
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individual trees cannot be precisely mapped. Spaceborne hyperspectral data have rarely
been used for individual tree species classification. Most applications of hyperspectral
data to date have been airborne [7–9]. The high spatial resolution of airborne data meets
the requirements for determining the locations of trees [10–13]; however, data acquisi-
tion costs are normally high and data processing is complex [14,15]. With the launch of
IKONOS, QuickBird, GeoEye, and WorldView satellites, high-resolution optical images
can be readily obtained and meet the requirements for locating individual trees. Using
such high-resolution images to precisely classify tree species saves time and costs in tree
distribution mapping.

Traditional classification methods, such as random forest (RF) and support vector
machine (SVM), have been widely used to classify tree species [16–19]. These approaches
generally require the artificial design and extraction of classification features, such as
spectra, texture, and vegetation indices, in addition to linear transformations [20,21]. The
classification accuracy depends largely on the rationality of the artificial feature design
and selection, which is highly subjective; therefore, extensive professional knowledge
is necessary.

The designed artificial features limit the information that can be used by the classi-
fier [22]. New classification technologies are necessary to improve classification efficiency
and accuracy. As a promising classification technology, convolutional neural networks
(CNNs) perform well in image classification tasks [23,24]. A CNN method does not require
feature engineering, and its multi-layer structure can fully use the information in the data
to automatically extract abstract and higher-level features for classification. As a result,
CNN methods tend to result in accurate classifications.

In recent years, CNNs have shown satisfactory results when applied to tree species
classification [25]. CNNs have been applied to classify three-dimensional point clouds
of trees [26,27], airborne hyperspectral data [28,29], and high-resolution data combined
with LiDAR data [30]. These studies were almost all based on airborne imaging systems
and multiple data sources, which are characterized by high data acquisition costs and
complex data processing, preventing their wide application. To date, CNNs have rarely
been applied to recognize individual tree species (ITS) from a single satellite data source.
A method is needed for using satellite data to classify ITS for mapping forest tree species
with a low data acquisition cost.

In this study, we explored the combination of high-resolution satellite remote sensing
imagery and CNNs to recognize ITS. A CNN-based multi-scale ITS recognition (CMSIR)
method was developed to improve the automation and accuracy of ITS mapping. In the
CMSIR method, a tree crown delineation approach is used to quickly build an individual
tree crown training dataset, and several popular CNN models are employed to auto-
matically extract classification features and recognize ITS from a high-resolution satellite
image. The multi-scale characteristic of different tree species was considered in tree crown
delineation and ITS recognition.

2. Materials and Methodologies
2.1. Study Area

The study area (Figure 1) is located in the Olympic Forest Park (116◦22′29′′E–116◦23′43′′E,
40◦0′30′′–40◦1′11′′N), Chaoyang District, Beijing, China. The total area of the park is
approximate 100 ha and the vegetation coverage rate is 95.6% [31,32]. The forests inside
were manually planted and arranged in rows, clusters, and groups with a large number of
single tree species. The study area was suitable for constructing a standard sample dataset
due to the similarity of trees within specific zones, including tree height, size, and species.
Shrubs were planted on the periphery of the arbor forest to act as a natural fence to separate
roads from trees. Artificial buildings are sparsely distributed in the forest, and occupy a
small portion of the area and have little impact on the forest.
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are an example of the marked zones. On the first day, we entered each marked zone and 
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we found that the points were almost all located in the marked zones. Therefore, the GPS 
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was continued over the next several days to obtain more samples. In addition, understory 
trees in forests cannot be observed via remote sensing images and therefore were not sam-
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Figure 1. Location of the research area.

2.2. Data
2.2.1. Field Investigation Data

A field investigation of tree species in the study area was carried out in October 2018,
for several days. Trees in the study area were manually planted in a monoculture scheme;
thus, many zones in the study area had consistent tree species. The boundaries of zones
with consistent tree species were marked on images. The orange boundaries in Figure 2
are an example of the marked zones. On the first day, we entered each marked zone and
located 3–5 GPS points with a Trimble® Geo7X global positioning system (GPS) handheld
device (Trimble Inc., Sunnyvale, CA, USA). The points in Figure 2 show the located GPS
points in the marked zones. The position accuracy was improved by taking the mean
value of the measured real-time position 10 times. Simultaneously, the tree species of each
marked zone was identified by expert experience and recorded together with the located
GPS points. After the first day’s investigation, GPS points were overlaid on the image, and
we found that the points were almost all located in the marked zones. Therefore, the GPS
was accurate enough to locate the marked zones. The dominant tree species in the study
area were determined based on the first day’s investigation result, and the investigation
was continued over the next several days to obtain more samples. In addition, understory
trees in forests cannot be observed via remote sensing images and therefore were not
sampled. All of the samples were distributed as shown in Figure 3; the dominant tree
species included 175 ash (Fraxinus chinensis Roxb.), 132 poplar (Populus tomentosa), 128
cypress (Sabina chinensis), 127 pagoda (Sophora japonica), 127 willow (Salix babylonica L.),
and 110 pine (Pinus L.). The field investigation data supported the manual labeling of tree
crowns and the interpretation of tree species.

2.2.2. Remote Sensing Data and Pre-Processing

A cloud-free subset of a high-resolution WorldView-3 (WV3) Beijing scene acquired on
4 September 2014 was used in this study. The acquisition date of the image was within the
fully developed season, which provides good conditions for the classification of tree species.

The dataset consisted of four 3145 × 3145 multispectral bands with 1.6 m spatial resolu-
tion, including blue (0.450–0.510 µm), green (0.510–0.580 µm), red (0.630–0.690 µm), and near-
infrared (NIR; 0.770–0.895 µm) bands, and a corresponding 12,580 × 12,580 panchromatic
band (0.450–0.800 µm) with 0.4 m spatial resolution. Although the WV3 sensor provides
16 multispectral bands, the image collected over the study area only had four standard
bands. A digital elevation model (DEM) was used to orthorectify the panchromatic and
multispectral images, which were fused using the Gram–Schmidt method in the ENVI 5.3
(L3Harris Geospatial, Broomfield, CO, USA) package to obtain a four-band fused multi-



Remote Sens. 2021, 13, 479 4 of 20

spectral image with a cell size of 0.4 m. The pre-processed image showed good overall
geometric precision with less than 1 pixel offset compared with the control points in the
field investigation.

Figure 2. Example of marked investigation zones and located global positioning system (GPS) points.

Figure 3. Locations of tree species samples (red dots) identified during the field investigation. Training
sample collection regions (blue rectangles) and the test sample collection region (yellow rectangle).

2.3. Methodologies

As shown in Figure 4, the flowchart of the CMSIR method proposed in this study
includes seven steps: (1) data pre-processing; (2) individual tree crown (ITC) delineation
using the crown slices from imagery (CSI) tree crown delineation algorithm [33]; (3) tree
species labeling based on field investigation; (4) ITS training dataset construction; (5) RF,
SVM, and CNN model configuration and training; (6) ITS recognition using RF, SVM, and
CNN; and (7) accuracy assessment with field investigation data.
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Figure 4. The technical flowchart of the convolutional neural network (CNN)-based multi-scale
individual tree species (ITS) recognition (CMSIR) method. RF, random forest; SVM, support vec-
tor machine.

2.3.1. Training Dataset

The training samples were collected from five typical regions in the study area (blue
rectangles in Figure 3). These five regions were selected because they included patches
of consistent tree species, so it was easy to label tree species. The test sample collection
region (yellow rectangle in Figure 3) was used to construct the test dataset to evaluate the
performance of the trained models and generate the tree species classification maps. The
test region included all tree species in the training dataset and few non-vegetation features
and no grassland, so interference was reduced. In addition, we separated the training data
from test data to ensure independence of the training and testing samples.

A training dataset with labeled trees was needed to train classification models, so a
process was designed to quickly create an ITC training dataset. First, segmentation maps
obtained from the CSI tree crown delineation algorithm were overlaid on the image. Second,
tree species were labeled based on the field investigation data and manual interpretation.
We judged the quality of the delineation during manual labeling: tree crowns without
clearly visible appearances were discarded, and only the well-delineated tree crowns were
labeled. Thus, the error caused by the CSI delineation was reduced. Third, the minimum
outer cut rectangle of each labeled tree was taken to obtain the ITC slice images. Finally, the
sliced images with the same labels were grouped into the same category. Figure 5 shows
the training dataset construction process.

CSI Tree Crown Delineation Algorithm

To avoid manual delineation of tree crowns, the CSI tree crown delineation algo-
rithm [33] was used to extract ITCs. This algorithm was developed for multi-scale ITC
delineation from high-resolution optical imagery, and can effectively reduce image over-
segmentation and provide fine tree crown maps. It consists of 5 steps: (1) The three-
dimensional (3D) radiometric shape of a tree crown is considered as a half-ellipsoid. The
half-ellipsoid can be horizontally sliced into a series of slices from top to bottom, and the
slices represent multiple tree crown levels of different scales. The morphological opening
operations are used to measure dominant sizes of tree crowns. (2) Multiple Gaussian filters
are used to generate multi-scale representations of the forest image from the multiple tree
crown levels obtained in step 1. (3) The watershed segmentation method [34] is used on the
multi-scale representations of the forest image obtained in step 2 to generate multi-scale
segmentation maps. The multi-scale segmentation maps represent the target forest’s multi-
scale tree crown sizes. (4) The boundaries of segments generated in step 3 are adjusted
using the filtered image at a coarse scale based on the original image at the dominant size.
(5) The multi-scale segmentation maps obtained in step 4 are integrated to generate the final
tree crown map. In this study, the method of visual evaluation was adopted. Adjusting
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the parameters in the algorithm, the match between the delineation lines and the real tree
crowns was visually assessed to obtain the most accurate delineation map [35].

Figure 5. Schematic diagram of the training dataset construction. (a) Image of training sample
collection region, (b) crown slices from imagery (CSI) algorithm-generated individual tree crown
(ITC) map, (c) tree species labeled, (d) ITC slice images, (e) ITC training dataset.

Data Augmentation

Increasing the number of sample images can improve the generalization ability of
the model. Due to the limited number of available field samples, data augmentation was
used to increase the number of sample images. Data augmentation applies transformations
on labeled images to increase the number of samples. Commonly used transformations
include rotation, translation, random scaling, cropping, and flipping. Because the scale
of each sample image was small, random scaling and clipping methods were not applied.
Each labeled image was rotated by 90◦, 180◦, and 270◦, and was flipped horizontally and
vertically. After data augmentation, the number of samples increased by a factor of five.
The number of training samples for each species is shown in Table 1, and the total number
of training samples after augmentation was 14,976. Each image had the four R, G, B, and
NIR channels.

Features Extraction

Feature extraction was performed with RF and SVM methods to classify tree crowns.
Spectra, texture, and shape features were considered for extraction; they are described
in Table 2. Texture and shape features were considered in this study because crowns of
different tree species have various structures, shapes, and canopy densities [28,30].
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Table 1. The statistics of the training samples.

Tree Species Number of Training
Samples

Number of Training
Samples After Data

Augmentation
Image

Pine 324 1944

Cypress 227 1362

Poplar 430 2580

Ash 491 2946

Pagoda 486 2916

Willow 538 3228

Total 2496 14,976

Table 2. Features used in this study.

Group Feature Name Description

Spectra Mean The average value of all pixels contained in the object in band n
Variance The variance value of all pixels contained in the object in band n

Maximum The maximum value of all pixels contained in the object in band n
Minimum The minimum value of all pixels contained in the object in band n

Texture Angular second moment (ASM) Measures the number of repeated pairs
Contrast Measures the local contrast
Entropy Measures the randomness of a gray-level distribution

Correlation Measures the correlation between pairs of pixels

Shapes Width Width of an object
Height Height of an object

Compactness Indicates compactness of an object
Boundary length The sum of pixels of an object boundary.

2.3.2. CNN Model Configuration

CNN models were used to classify tree species in this study. CNN models were
inspired by biological neural perception mechanisms, with the relationships between
layers being similar to those used by the human vision system [36]. When processing multi-
dimensional images, CNN models can automatically extract features that are beneficial
to image interpretation and processing. CNN models have been widely used in image
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classification tasks [37], and have become a popular research topic in the field of recognition
and classification [38,39]. A common CNN model is comprised of an input layer, stacks of
convolution and pooling layers, a fully connected layer, and an output layer [40]. Inspired
by the effects of CNN models on visual image classification, we considered several CNN
models that have demonstrated excellent performance in image classification in recent
years. ImageNet Large Scale Vision Recognition Challenge (ILSVRC) is a worldwide
influential platform used to evaluate computer vision and artificial intelligence algorithms.
Since 2010, several CNN-based deep learning models have won the image classification
challenge, significantly contributing to the development of CNN models. We selected some
models that won the ILSVRC to classify ITC images: AlexNet, GoogLeNet, and ResNet.
Other winning network models are not listed because their structures are too complex to
handle small-scale images.

AlexNet

AlexNet [23] was the first breakthrough CNN architecture and won the 2012 ILSVRC.
AlexNet firstly applies rectified linear units (ReLU) as the activation function to successfully
accelerate model convergence. The dropout function is used to prevent overfitting, and the
addition of a local response normalization (LRN) layer increases its generalization ability.
AlexNet has been widely used due to its relatively simple network structure and shallow
depth. The AlexNet model was originally used to classify the 224 × 224 × 3 ImageNet
dataset. For the dataset in this study, the convolution kernel and the output of the network
are both large, so the scale of the network needs to be reduced.

We modified AlexNet as follows: First, the input layer was altered from 227 × 227 × 3
to 15 × 15 × 4. Secondly, the first convolution layer was reduced from 11 × 11 to 5 × 5 to
prevent underfitting problems caused by an excessively large local receptive field. Next, all
of the strides of the pooling layers were decreased from 2 × 2 to 1 × 1 to avoid a feature
map that was too small. Then, the number of convolution filters was decreased by 6 to 7,
and the output of the fully connected layer was reduced from 4096 to 140 or 70 to prevent
overfitting. The modified AlexNet model structure is shown in Table 3.

Table 3. Modified AlexNet model structure. ReLU, rectified linear units.

Layer Input Size Output Size Parameter

Conv1 15 × 15 × 4 8 × 8 × 16 kernel 5 × 5, filter 16, stride 2
Max pooling1 8 × 8 × 16 6 × 6 × 16 pool size 3 × 3, stride 1

Conv2 6 × 6 × 16 6 × 6 × 48 kernel 5 × 5, filter 48, stride 1
Max pooling2 6 × 6 × 48 4 × 4 × 48 pool size 3 × 3, stride 1

Conv4 4 × 4 × 48 4 × 4 × 54 kernel 3 × 3, filter 54, stride 1
Conv5 4 × 4 × 54 4 × 4 × 54 kernel 3 × 3, filter 54, stride 1
Conv6 4 × 4 × 54 4 × 4 × 36 kernel 3 × 3, filter 36, stride 1

Max pooling3 4 × 4 × 36 2 × 2 × 36 pool size 3 × 3, stride 1
Fully connected1 2 × 2 × 36 140 ReLU, dropout 0.5
Fully connected2 140 70 ReLU, dropout 0.5

Output 70 6 Softmax

GoogLeNet

GoogLeNet [41] was established by Szegedy’s team, who won the title of ILSVRC
classification task champion in 2014. The original GoogLeNet model was used to classify
the ImageNet image set at 224 × 224 × 3. Thus, it was necessary to modify the network to
adapt to the small-scale samples in this study.

The modified GoogLeNet consisted of one input layer, one convolutional layer, eight
inception modules, two downsample modules, one pooling layer, and the classification
layer (Table 4). The fully connected layer was replaced by the global average pooling layer
to greatly reduce the number of parameters. Therefore, there were far fewer training param-
eters for the modified GoogLeNet, and the memory allocation was significantly reduced.
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Table 4. Modified GoogLeNet model structure.

Layer Name Input Size Output Size Parameter

Convolutional 15 × 15 × 4 15 × 15 × 96 kernel 3 × 3, filter 96, stride 1
Inception module 1a 15 × 15 × 96 15 × 15 × 64 I: filter 32, II: filter 32
Inception module 1b 15 × 15 × 64 15 × 15 × 80 I: filter 32, II: filter 48

Downsampling module1 15 × 15 × 80 7 × 7 × 160 III: filter 80, IV: maxpooling
Inception module 2a 7 × 7 × 160 7 × 7 × 160 I: filter 112, II: filter 48
Inception module 2b 7 × 7 × 160 7 × 7 × 160 I: filter 96, II: filter 64
Inception module 2c 7 × 7 × 160 7 × 7 × 160 I: filter 80, II: filter 80
Inception module 2d 7 × 7 × 160 7 × 7 × 144 I: filter 48, II: filter 96

Downsampling module2 7 × 7 × 144 3 × 3 × 240 III: filter 96, IV: maxpooling
Inception module 3a 3 × 3 × 240 3 × 3 × 336 I: filter 176, II: filter 160
Inception module 3b 3 × 3 × 336 3 × 3 × 336 I: filter 176, II: filter 160

Average Pooling 3 × 3 × 336 1 × 1 × 336 pool size 3 × 3
Fully connected 1 × 1 × 336 336 dropout 0.5

Output 336 6 Softmax

In the inception module, the output of the previous layer is passed to two parallel
paths, called path I and path II. The two paths contain a convolution layer, a normalization
layer, and an activation layer. The convolutional layer filter size in path I is 1 and 3 in
path II. The inception module learns the 1 × 1 and 3 × 3 filters (which are computed in
parallel) and concatenates the resulting feature maps along the channel dimensions. In
general, this process allows the network to learn local features with small convolutions
and abstract features with large convolutions. Table 5 lists the structure of the inception
module 1a, which has 32 filters in the convolution layer and uses batch normalization in the
normalization layer and ReLU in the activation layer. The other inception modules differ
only in the number of filters. In the downsampling module, the output of the previous
layer is passed into two parallel paths: path III and path IV. Path III is composed of a
convolution layer, a normalization layer, and an activation layer, where the convolution
layer filter size is 3, the stride is 2, and the downsampling module1 has 80 filters. Path
III uses batch normalization in the normalization layer and ReLU in the activation layer.
Path IV is a maxpooling layer with a pooling size of 3 × 3 and a stride of 2. Table 6 shows
the structure of the downsampling module 1. The only difference in the downsampling
module 2 is that it has 96 filters in the convolution layer. The output feature maps of paths
III and IV are concatenated along the channel dimensions.

Table 5. Inception module 1a structure.

Path I Path II

conv_1: kernel 1 × 1, filter 32, stride 1 conv_2: kernel 3 × 3, filter 32, stride 1
Batch normalization Batch normalization

ReLU ReLU
Concatenation

Table 6. Downsampling module1 structure.

Path III Path IV

conv: kernel 3 × 3, filter 80, stride 2
Maxpooling size 3 × 3, stride 2Batch normalization

ReLU
Concatenation

ResNet

ResNet [42] was proposed to solve the problem of gradient disappearance after in-
creasing the network depth and won first place at the 2015 ILSVRC. This model divides
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the output of the neurons into H(x) and F(x) in a certain layer and establishes a shortcut
between convolution layers to form a residual unit (Figure 6). H(x) is the expected output
after the input x passes through the convolution layers. The residual F(x) is the difference
between the expected output H(x) and the input x, so F(x) = H(x) − x. The shortcut passes
the input information to the subsequent layer to protect the integrity of the information and
converts the learning object into residuals. The network only needs to learn the residuals
F(x) rather than the complete output, and does not increase the network parameters or
the computational complexity, but can greatly reduce the difficulty of network optimiza-
tion and simplify the learning objectives. ResNet maintains training accuracy when the
network depth is increased. Because our training image size was generally smaller than
20 × 20 pixels, the feature map would shrink after pooling. ResNet has only two pooling
layers but has a deep network structure, making it suitable as a feature extractor for small
images. The structures of the 18-, 34-, and 50-layer ResNet models are shown in Table 7. We
changed the parameters of conv1 to make the network suitable for small sample training,
and the other structures are consistent with those in He [42].

Figure 6. Building residual block. F(x), residual; x, input.

Table 7. ResNet model structures.

Layer Name 18-Layer 34-Layer 50-Layer

Conv1 kernel 5 × 5, filter 32, stride 2

Max pooling Pool size 3 × 3, stride 2

Conv2_x
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv3_x
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv4_x
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256

1× 1, 1024

× 6

Conv5_x
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

Average pooling Pool size 2 × 2, stride 1

Output Softmax
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2.3.3. Model Training

The training dataset was split randomly into training (75%) and validation (25%)
samples. Each image was resized to 15 × 15 to ensure all of the sizes of images input
into network were the same. The batch size was set to 60, which was the total number of
training images used to train the model at each update. The deep learning platform was
based on Tensorflow1.6 and Keras2.1.

A maximum of 500 epochs was set and an early stopping approach was used to avoid
overfitting. The loss was calculated based on the validation samples after the operation
of each epoch. If the loss did not decrease after 10 epochs, the training was stopped and
the weights that provided the best validation accuracy were saved. Models in the actual
training process usually converged within 150 epochs. The initial learning rate was set
to 10−4. The learning rate decay was set to ensure that the network could automatically
reduce the learning rate based on the loss situation. The learning rate would decay when
the loss was not reduced after the operation of five epochs. The learning rate factor for
each reduction was 5 × 10−3, with a lower limit of the learning rate of 5 × 10−6.

Several models were trained by adjusting the parameters during the training process.
The CNN model that had the highest validation accuracy was saved for later testing.

To verify the classification performance of CNN, two machine learning classifiers
were tested for comparison: RF and SVM. These are widely used to classify tree species
because they can accurately handle high-dimensional data [30]. RF is an ensemble learning
algorithm that trains a classifier composed of multiple decision trees through a bagging
strategy [43]. The training samples of each decision tree are obtained by random sampling,
and the classification result is the majority classification result of all decision trees. During
the test, we found that when the number of trees exceeded 500, the accuracy did not
increase significantly. To save computing time, the number of trees was set to 500. SVM
creates a model that is based on a user-defined kernel function and transforms the data
into classes. Then, an optimal hyperplane that maximizes the margin distance between
classes can be found [44]. The radial basis function was used as the kernel function, with a
grid search method [45] to determine optimal classifier parameters in the study.

2.3.4. Accuracy Assessment

The test image in Figure 7 was used to assess the generalization error of the models.
The test image was cropped by the yellow rectangle in Figure 3, and was completely
independent of training samples. The separation of testing from training data is important
to evaluate the classification results. Each tree crown in the test image was extracted
using the CSI tree crown delineation algorithm, and the minimum outer cut rectangle
of each crown was extracted as a test sample. The test samples were predicted with the
CNN models as described in Section 2.3.2. Simultaneously, RF and SVM were used for
comparison. The label and location of each test sample were combined to generate tree
species classification maps by assigning the predicted labels to the delineated tree crowns.
The test points were based on the field investigation and were used as true values to
calculate the following indexes: (a) confusion matrices; (b) producer accuracy (PA); (c) user
accuracy (UA); (d) average accuracy (AA); (e) overall accuracy (OA); (f) kappa coefficient.
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Figure 7. The test image used for the accuracy assessment.

3. Results

Table 8 shows confusion matrices and statistical measures of RF, SVM, AlexNet,
GoogLeNet, and ResNet for ITS classification. Table 9 shows the classification accura-
cies and kappa coefficients for six species based on different models. For CNN models,
GoogLeNet achieved the best OA (82.7%) with the highest kappa coefficient (0.79), and
was the only model that achieved an OA over 80%. It was followed by ResNet-18 (74.8%),
ResNet-50 (71.7%), ResNet-34 (70.9%), and AlexNet, which achieved the lowest OA (52.0%)
and kappa coefficient (0.41). GoogLeNet achieved the highest OA for each tree species,
with almost all exceeding 80%. AlexNet misclassified almost all pines as poplars, and its
classification accuracy for cypress (58.3%), pagoda (45.1%), and willow (34.9%) was about
30% lower than those of GoogLeNet and ResNet. All ResNet misclassified many ashes
into willows; its classification accuracy for ash was significantly lower (20%) than that of
GoogLeNet. ResNet-18 outperformed ResNet-34 and ResNet-50 of OA by 3.9% and 3.1%,
respectively (74.8% > 70.9% > 71.7%).

Compared with RF and SVM, the OA of GoogLeNet (82.7%) was significantly higher
than that of RF (44.1%) and SVM (48.8%); even AlexNet had higher OA (52.0%) than RF
(44.1%) and SVM (48.8%). Likewise, CNN models all achieved higher kappa coefficients
than RF (0.32) and SVM (0.40). RF classified almost all pines as cypresses, making pines
almost invisible in the classification map. The classification accuracy of RF for pine, cypress,
poplar, and ash ranged from 20% to 30%, which is much lower than that of GoogLeNet. The
classification accuracies of RF for pagoda and willow were only about 20%. SVM classified
almost all willows as pagodas, making willows almost invisible in the classification map.
The classification accuracy of SVM for pine, poplar, ash, and pagoda ranged from 20% to
30%, much lower than that achieved by GoogLeNet.
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Table 8. Confusion matrix and statistical measures of RF, SVM, AlexNet, GoogLeNet, and ResNet
for individual tree species classification. PA, producer accuracy; UA, user accuracy; AA, average
accuracy; OA, overall accuracy.

RF

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 2 0 0 0 0 0
Cypress 12 13 4 0 2 0
Poplar 1 1 14 0 4 1

Ash 0 0 0 18 0 13
Pagoda 0 1 4 4 4 10
Willow 0 0 0 6 8 5
PA (%) 13.3 86.7 63.6 64.3 22.2 17.2
UA (%) 100.0 41.9 66.7 58.1 17.4 26.3
AA (%) 56.7 64.3 65.2 61.2 19.8 21.8
OA (%) 44.1 Kappa 0.32

SVM

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 9 1 5 0 2 1
Cypress 1 14 0 0 0 0
Poplar 5 0 14 0 1 0

Ash 0 0 0 11 0 2
Pagoda 0 0 3 17 14 26
Willow 0 0 0 0 1 0
PA (%) 60.0 93.3 63.6 39.3 77.8 0.0
UA (%) 50.0 93.3 70.0 84.6 23.3 0.0
AA (%) 55.0 93.3 66.8 62.0 50.6 0.0
OA (%) 48.8 Kappa 0.40

AlexNet

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 0 0 0 0 0 0
Cypress 3 7 0 0 0 0
Poplar 10 7 20 0 4 0

Ash 0 0 0 26 2 21
Pagoda 1 0 2 0 5 0
Willow 1 1 0 2 7 8
PA (%) 0.0 46.7 90.9 92.9 27.8 27.6
UA (%) 0.0 70.0 48.8 53.1 62.5 42.1
AA (%) 0.0 58.3 69.9 73.0 45.1 34.9
OA (%) 52.0 Kappa 0.41

GoogLeNet

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 13 2 1 0 0 0
Cypress 0 13 0 0 0 0
Poplar 0 0 17 0 0 2

Ash 0 0 0 22 1 3
Pagoda 1 0 4 0 16 0
Willow 1 0 0 6 1 24
PA (%) 86.7 86.7 77.3 78.6 88.9 82.8
UA (%) 81.3 100.0 89.5 84.6 76.2 75.0
AA (%) 84.0 93.3 83.4 81.6 82.5 78.9
OA (%) 82.7 Kappa 0.79



Remote Sens. 2021, 13, 479 14 of 20

Table 8. Cont.

ResNet-18

Classified as Pine Cypress Poplar Ash Pagoda Tree Willow

Pine 13 3 1 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 16 0 0 1

Ash 0 0 0 16 4 4
Pagoda 0 0 5 0 14 0
Willow 2 0 0 12 0 24
PA (%) 86.7 80.0 72.7 57.1 77.8 82.8
UA (%) 76.5 100.0 94.1 66.7 73.7 63.2
AA (%) 81.6 90.0 83.4 61.9 75.7 73.0
OA (%) 74.8 Kappa 0.69

ResNet-34

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 13 3 2 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 15 0 1 2

Ash 0 0 0 13 2 4
Pagoda 1 0 5 0 14 0
Willow 1 0 0 15 1 23
PA (%) 86.7 80.0 68.2 46.4 77.8 79.3
UA (%) 72.2 100.0 83.3 68.4 70.0 57.5
AA (%) 79.5 90.0 75.8 57.4 73.9 68.4
OA (%) 70.9 Kappa 0.65

ResNet-50

Classified as Pine Cypress Poplar Ash Pagoda Willow

Pine 12 3 1 0 0 0
Cypress 0 12 0 0 0 0
Poplar 0 0 13 0 0 1

Ash 0 0 0 16 5 2
Pagoda 2 0 8 1 12 0
Willow 1 0 0 11 1 26
PA (%) 80.0 80.0 59.1 57.1 66.7 89.7
UA (%) 75.0 100.0 92.9 69.6 52.2 66.7
AA (%) 77.5 90.0 76.0 63.4 59.4 78.2
OA (%) 71.7 Kappa 0.65

Table 9. Classification accuracies for six tree species using RF, SVM, AlexNet, GoogLeNet, and
ResNet. All values except for kappa coefficient, are percentages.

Species RF SVM AlexNet GoogLeNet ResNet-18 ResNet-34 ResNet-50

Pine 56.7 55.0 0.0 84.0 81.6 79.5 77.5
Cypress 64.3 93.3 58.3 93.3 90.0 90.0 90.0
Poplar 65.2 66.8 69.9 83.4 83.4 75.8 76.0

Ash 61.2 62.0 73.0 81.6 61.9 57.4 63.4
Pagoda 19.8 50.6 45.1 82.5 75.7 73.9 59.4
Willow 21.8 0.0 34.9 78.9 73.0 68.4 78.2
Kappa 0.32 0.40 0.41 0.79 0.69 0.65 0.65

OA 44.1 48.8 52.0 82.7 74.8 70.9 71.7

Figure 8 shows the ITS maps predicted by RF, SVM, and CNN. RF misclassified almost
all pine as cypress. SVM did not separate willow from ash and pagoda. AlexNet classified
many pines as poplars or cypresses.
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Figure 8. (a) The test image. Individual tree species map obtained by (b) RF, (c) SVM, (d) AlexNet,
(e) GoogLeNet, (f) ResNet-18, (g) ResNet-34, and (h) ResNet-50.

The CSI tree crown delineation produced inevitable errors due to under- and over-
segmentation, which are common problems in tree crown delineations [35], especially
when only two-dimensional information is used. Some non-crown segments produced by
the under- and over-segmentation affected the classification map and reduced classification
accuracies. Some tree crowns were misclassified, especially on both sides of the road and
the edge of the image, because some non-crown pixels were included in test samples when
taking the minimum outer cut rectangles, which changed the classification features of the
test samples.

4. Discussion
4.1. Classification Results of Different CNN Models

GoogLeNet achieved the best classification accuracy, followed by ResNet. In addition,
AlexNet achieved the lowest accuracy. AlexNet is sequential, in which the output of the
previous layer is directly input into the next layer. In contrast, GoogLeNet and ResNet
have micro-architecture modules that enable networks to learn faster and more efficiently
with increasing depth. The micro-architectural building blocks are stacked together with
traditional layers, such as convolution and pool layers, to form the macro-architectures.
The results showed that the micro-architecture can improve the classification accuracy.
GoogLeNet achieved the highest classification accuracy (82.7%) and similar accuracies for
each tree species, which were all higher than 80%, because GoogLeNet uses multi-scale
convolution filters to extract features. Coniferous and deciduous tree crowns have different
sizes; multi-scale features can be extracted by multi-scale convolution filters in GoogLeNet.
The findings suggest that GoogLeNet, with a multi-scale feature extractor, is well-suited
for tree species classification. As a comparison, Hartling et al. [30] used WV2/3 and LiDAR
data and DenseNet to classify eight tree species; the maximum OA was 82.6%, which is
similar to the accuracy in this study. However, the accuracy of different tree species varied
greatly. Cypress and oak can be accurately classified with accuracy above 90%, but ash
classification accuracy is only 60%. The GoogLeNet used in our study can provide similar
accuracies, which were all higher than 80% for each tree species. Sothe et al. [28] used
hyperspectral and photogrammetric data for classifying fourteen tree species in a rain
forest; the forest environment was more complicated compared to our study area. The best
result was achieved by the CNN with an OA of 84.4%, which outperformed SVM and RF.
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Fricker et al. [29] used high-spatial resolution airborne hyperspectral imagery to identify
tree species in a mixed-conifer forest and the OA reached 87% for the hyperspectral CNN
model. However, the study area in Fricker et al. [29] was located in the Southern Sierra
Nevada Mountains, CA, USA, so the distribution of trees across an elevation gradient could
be analyzed and dead trees were recognized as an individual category. Our study area was
located in a park with flat terrain, where trees were manually planted and taken care of by
gardeners. In addition, compared with natural forests with abundant and disorganized
species, the distribution of trees in our study had a certain pattern that was easy to classify.
Thus, higher accuracies would be expected in the manually planted forest.

4.2. Classification Results of Different Tree Species

The ResNet classification results showed that the classification accuracy of different
tree species varied widely. The classification accuracies of conifers (pine, cypress) and
poplar were above 80%, whereas the classification accuracies of ash, pagoda, and willow
were lower than 70%. The test image shows that the texture and shape of the pine, cypress,
and poplar are unique and show obvious differences. However, the differences among
ash, pagoda, and willow are not obvious. The unique crown shape of cypress creates clear
boundaries among trees. Furthermore, accurate segmentation of the crown means that
ITC images have large inter-class differences and small intra-class differences, which is
conducive to feature extraction and classification. Therefore, the classification accuracy
of cypress was highest, reaching 90%. Liu et al. [46] also concluded that the classification
accuracies of conifers, which have obvious crown structures, are higher. Differences in
the crowns among ash, pagoda, and willow are small; thus, the features extracted by the
network are similar, which results in the misclassification of ash, pagoda, and willow.
Liu et al. [46] concluded that if two species have similar crown structures, they are prone
to misclassification, a finding that is supported by the results of our study. Deciduous tree
crowns are dense and the gaps between crowns are small, which complicates delineat-
ing deciduous tree crowns. Inaccurate tree crown delineation would reduce differences
between tree species and reduce classification accuracy.

4.3. Comparison with Other Machine Learning Models

Spectra, texture, and shape features were extracted for tree species classification based
on machine learning methods such as RF and SVM; these features and classifiers have been
widely used in other research related to tree species classification [28,30,47]. The methods
based on RF or SVM require manual feature extraction, which is usually complicated and
requires researchers to design a large number of features based on professional knowledge
and experience. Conversely, the methods based on CNN use multi-layer neural networks
to abstract from low- to high-level features, avoiding manual feature extraction, thus simpli-
fying the process of feature extraction [22,48]. The results of this study also showed that the
CNN obtained higher OA than RF or SVM. The OA of GoogLeNet for six species reached
82.7%, whereas those of RF and SVM were 44.09% and 48.82%, respectively. GoogLeNet
significantly outperformed RF and SVM. Many studies compared the classification effects
of CNN, RF, and SVM. For example, Hartling [30] showed that DenseNet, RF, and SVM for
the classification of eight tree species had an OA of 82.6%, 51.8%, and 52%, respectively,
with CNN showing higher accuracy. Sothe et al. [28] used CNN to achieve 22% and 26%
higher OA than SVM and RF for hyperspectral data, respectively. The outstanding perfor-
mance of CNN is due to its ability to enhance the texture, shape, and spatial information in
images, and to use that information to detect generic structures in other images [49].

5. Conclusions

Based on practical application requirements, the CMSIR method focuses on two key
issues in ITS recognition: fast and accurate construction of a training sample dataset and ITS
classification methods. We proposed a method to construct ITC training samples suitable
for CNN models. This method combines a multi-scale ITC delineation method, manual
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labeling of tree species, and sample enhancement techniques to build a training sample
dataset. The CSI tree crown delineation algorithm was used to automatically describe tree
crowns, which avoided manual sketching.

A method for ITS classification was explored using different CNN methods and
high-resolution satellite remote sensing imagery. The data source was readily obtained
and was low in cost and wide in scope. The CNN used in this study avoids manual
feature extraction and its structures are relatively common, easy to build, and have a low
training difficulty and fast training speed. GoogLeNet, which achieved the highest OA,
can use multi-scale convolution filters to extract features in multi-scale tree crowns. The
classification accuracies for tree crowns in different scales were very high (greater than
80%). Compared with other commonly used machine learning models, such as RF and
SVM, the CNN models do not require manual feature extraction and achieve higher OA.

Our study area was located in a park, where trees were manually planted and pruned
regularly by gardeners. The distribution of trees had a certain pattern. The crowns of the
same trees were similar in size. There were intervals between the crowns, which made it
easier to delineate the crowns. Thus, we expected higher accuracies in the manually planted
forest. The CMSIR method could be improved in future research in the following ways:
(1) Natural forests have a larger number of tree species and the distribution of tree species
is more random. The tree crown delineation significantly influences the accuracy of the
subsequent classification. Researchers need to effectively delineate tree crowns, especially
in dense natural forests. (2) We used some classic CNN models, which were originally
used for the ILSVRC dataset. Compared with ILSVRC images, tree crown images have
smaller scales and multiple bands. Therefore, a network model suitable for small-scale and
multiband images should be constructed for ITS classification.
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