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Abstract: With the availability of computational resources, geographical information systems, and
remote sensing data, urban growth modeling has become a viable tool for predicting urbanization
of cities and towns, regions, and nations around the world. This information allows policy makers,
urban planners, environmental and civil organizations to make investments, design infrastructure,
extend public utility networks, plan housing solutions, and mitigate adverse environmental impacts.
Despite its importance, urban growth models often discard the spatiotemporal uncertainties in their
prediction estimates. In this paper, we analyzed the uncertainty in the urban land predictions by
comparing the outcomes of two different growth models, one based on a widely applied cellular
automata model known as the SLEUTH CA and the other one based on a previously published
machine learning framework. We selected these two models because they are complementary, the
first is based on human knowledge and pre-defined and understandable policies while the second
is more data-driven and might be less influenced by any a priori knowledge or bias. To test our
methodology, we chose the cities of Jiaxing and Lishui in China because they are representative of new
town planning policies and have different characteristics in terms of land extension, geographical
conditions, growth rates, and economic drivers. We focused on the spatiotemporal uncertainty,
understood as the inherent doubt in the predictions of where and when will a piece of land become
urban, using the concepts of certainty area in space and certainty area in time. The proposed analyses
in this paper aim to contribute to better urban planning exercises, and they can be extended to other
cities worldwide.

Keywords: urban growth; urbanization processes; spatiotemporal uncertainty; urban planning tools;
urban science; SLEUTH CA; machine learning

1. Introduction

Recent statistics from the United Nations show that humans are now urban species
with more people living in cities than in rural areas [1,2]. In China, rapid urbanization
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has completely reshaped cities and towns. After more than thirty years of continuous
growth, China has entered into a relatively stable period of urbanization [3,4]. Now, smaller
cities and towns -those with fewer than 5 million people- are gaining more attention and
attracting new opportunities as regional planning policies are redistributing resources
away from larger cities [5]. Today’s planning policy in China aims for a balanced network
of cities, where the small cities and towns in the coastal region become key components
of regional urban networks, releasing the pressure, congestion, and pollution of larger
cities such as Shanghai, Beijing, and Guangzhou. Overall, small cities face greater growth
uncertainties than large cities, making it harder for city planners and other stakeholders
to anticipate their future patterns of urbanization. Here, by urban growth uncertainty, we
refer to the difficulty in predicting the exact type, location, occurrence time, and devel-
opment stages of future urbanization [6]. However, in this paper, we focus exclusively
on the spatiotemporal urban growth uncertainty, which is associated with where and
when a piece of land becomes urban. The spatial uncertainty in urban growth predictions
under different scenarios increases as there is more available land for urban expansion.
Similarly, the temporal uncertainty increases when we predict further ahead in the future
because of the inevitable integration process of noise in the input variables, and changes
that always happen in politics, economics, environment, and social contexts, just to name
a few. Despite the challenges, we argue that by including spatiotemporal uncertainties
in urban growth predictions, stakeholders such as policy makers and urban planners can
be better equipped to comprehend the urbanization process, recommend a better course
of action, and help policy makers to prioritize public interventions. The spatiotemporal
uncertainty analysis of urban growth has been addressed in the forecast of population [7],
magnitude of urban sprawl and expansion, economic growth [8], and the impact on en-
vironment sustainability [6]. In this paper, we analyze the spatiotemporal uncertainty
of future urbanization processes by exploring the agreements and disagreements of two
urban growth models, which have distinct variable selection processes, growth algorithms,
simulation mechanisms, and performance indicators. In this regard, the literature from
different disciplines that focuses on growth models is extensive [9–18], it is worth mention-
ing the urban-oriented growth models have been applied to predict urban futures since
the 1970s [19]. In most models, proper calibration and training using historical data are
necessary to capture the trajectory and trend of urban growth [20]. Early urban growth
models suffered from insufficient computational power and applied brute-force algorithms.
The emergence of new modelling schemes, higher resolution data, and better computing
capabilities enabled the progress of urban growth modelling. Recognizing that urban
growth is a dynamic process with high uncertainty, [21] adopted the outcomes of plan-
ning policy to the model, [5] incorporated growth-constrain rules into the urban growth
models, and [22] created multiple scenarios to simulate zone-specific land-use plans. To
perform the spatiotemporal uncertainty analysis in this paper, we use a cellular automata
(CA) model known as SLEUTH CA [20], and a Machine Learning (ML) framework that
was introduced recently in [23]. The SLEUTH CA model is discrete in time, space, and
state [24] and has been successfully applied worldwide to simulate land-use change [25].
The SLEUTH model considers slope of terrains, land use types, excluded areas for urban
growth, urbanized areas, and transportation road networks. Data entry is in the form
of a pixelated mapped depiction, where pixels again correspond to cells in the Cellular
Automata scheme. Generally, the calibration process included a coarse calibration, a fine
calibration, and a final calibration. In turn, the ML framework models the urban growth
and provides predictions of three variables corresponding to the spatially distributed
population, binary urban footprint (i.e.,: spatial distribution of urban and non-urban areas),
and urban footprint in color (i.e.,: the visual appearance of the territory in RGB color). The
ML framework models the population distribution as a spatiotemporal dynamic system
using a multiple-input single-output regression, furthermore, it obtains the binary urban
footprint from the population distribution through a binary classifier and then adds a
temporal correction for existing urban regions. In the last step, the ML framework esti-
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mates the urban footprint in color from its previous value, as well as from past and current
values of the binary urban footprint using a semantic inpainting algorithm. We selected
the SLEUTH CA model and the ML framework because they are complimentary, the first is
based on human knowledge and pre-defined and understandable policies while the second
is purely data-driven and might be less influenced by any a priori bias. Table 1 provides a
comparison of the main characteristics of these two models.

Table 1. Comparison between the SLEUTH CA model and the ML-based urban growth framework. SAD stands for sum of
absolute differences. SSD stands for sum of squared differences. ZNCC stands for zero-mean normalized cross-correlation.
FP rate stands for false-positive rate. IoU stands for intersection over union.

Characteristics SLEUTH CA ML Framework

Does it expect the input variables in raster format? Yes Yes

Does it encode human intuition or human rules? Yes No

Does it require manual tuning or calibration? Yes No

Is it model driven or data driven? Model (and data) driven Data driven

Can it include additional independent variables
with ease? Yes with additional rules Yes

What does the output depend on? Output depends only on
previous state(s)

Output depends on previous state(s)
and inputs

Does it support future deterministic urban
interventions?

Not in the standard
implementation Yes

Does it use population distribution as the main
urban-growth driver? No. Require manual input Yes

Does the prediction change every time the model is
run? Yes No

What is the key performance indicator of model
fitness?

Shape index that measures the
spatial fit between the model’s
growth

For population distribution: SAD, SSD,
RMSE, Pearson’s correlation coefficient.
For binary urban footprint: FP rate,
error rate, ZNCC, accuracy, F1 score,
and the IoU, which is also known as
the Jaccard index

Does it require expert knowledge to calibrate or
train the model? Yes No

Does the model estimate get better with more
training data?

Yes or no. Depending on the
time and space dimension of
data

Yes

Is it widely used in the literature? Yes Not yet, it is very recent

To test our methodology, we pick two small cities in China with divergent geographical
conditions, known as Jiaxing and Lishui. These cities are located in Zhejiang Province,
where the policy on “the in-depth stage of transformation and development of small cities
(TDSC)” announced during the eleventh five-year plan (2006–2010) gravitated towards
small cities and towns with strong economic infrastructure [26,27]. Jiaxing is located
in an alluvial plain and Lishui in a riverine valley. The alluvial plain at the estuary of
the Qiantang River provides Jiaxing relatively less constrain for urban growth while the
riverine valley of Daxi Brook leaves very limited land for Lishui’s future urbanization.
According to the 2017 household registration [28] data, Jiaxing with 3.56 million people
and Lishui with 2.69 million people ranked 156 and 202 out of the over 300 prefecture-
level cities in the country in terms of population size, respectively. As mentioned earlier,
small cities like Jiaxing and Lishui forfeited their growth opportunity to large cities in
the early stage of China’s rapid urbanization. Nowadays, they are gaining momentum to
rapid urban growth represented by land expansion, increasing migrant population, and
economic growth. To analyze the urbanization uncertainty in these cities, we compute
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annual predictions from 2016 to 2040 and quantify the spatial and temporal disagreement
of the binary urban footprint estimates.

The rest of this paper is organized as follows. Section 2 describes the materials and
methods for acquiring and pre-processing the data for Jiaxing and Lishui, as well as the
procedure for calibrating the SLEUTH CA model and for training and validating the ML
framework. Section 3 presents the results of the urban growth predictions in these two cities
as well as some key graphs and metrics to quantify their spatial and temporal differences
and hence the uncertainty. Section 4 includes a brief discussion of the obtained results
in the context of China and more general in terms of urban planning. Finally, Section 5
presents the conclusions of this paper, its limitations, and future work.

2. Materials and Methods

In Section 2.1 we describe the input data for the SLEUTH CA model and the ML
framework. As each approach requires different variables and assumptions, we go through
the pre-processing and calibration of the SLEUTH CA model in Section 2.2, and the
data processing, training, validation, and testing of the ML urban growth framework
in Section 2.3. Finally, we introduce the proposed analyses to quantify the spatial and
temporal uncertainty based on the urban-growth prediction disagreements in Section 2.4.

2.1. Input Data for Urban Growth Modeling

To perform the spatial and temporal uncertainty analyses of urban growth predictions,
we selected two small cities, Jiaxing and Lishui. In both cases, we focused on the central ur-
ban districts of the prefecture-level cities. Jiaxing is a small city located in northern Zhejiang
Province and its built-up area holds two urban districts with 1,201,800 inhabitants [29].
Jiaxing is known as the hometown of silk, it has a strong industrial base of textiles, and a
state-level export processing zone for IT, electronics, and other high-tech industries. Impor-
tantly, Jiaxing is on the route of a busy high-speed Shanghai-Hangzhou passenger railway
corridor. In contrast, Lishui is located in southern Zhejiang Province with one urban district
of 351,000 inhabitants. In general, both cities have very different geographical conditions
as Jiaxing is close to large cities such as Hangzhou, whereas Lishui is far away from the
large urban centers and from the coastal line. Figure 1 shows the locations of Jiaxing and
Lishui in the Zhejiang Province in China, as well as their visual appearance captured from
satellite imagery.

Figure 1. Location and images of the cities of Jiaxing and Lishui in the Zhejiang Province in China.

After selecting the two cities, the next step was to extract the available historical
variables to feed the two urban growth models. Table 2 summarizes this process, describing
the name of each variable, its source, digital format, original spatial resolution, temporal
availability, and the model that uses it. In this paper, both models use the binary urban
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footprint, land use, terrain slope, and water bodies. The latter are used as exclusion areas
for urbanization. Only the SLEUTH model uses the hillshade, and road map. In turn, the
ML framework uses the remaining variables, including population distribution, maximum
population capacity, official population projections, and potential of roads. In this paper,
the potential V of an arbitrary variable vi is computed through Equation (1). In this equation,
x and y are spatial coordinate indices, t is a discrete variable representing the time in years,
and xp and yp represent the spatial indices where the potential is computed. Equation (1) was
inspired by the electric potential used in Physics, but it was adapted to the urban context
to avoid singularities that could occur otherwise when x = xp and y = yp. Similarly to its
counterpart in Physics, our definition adds up the potential contributions from all pixels
in the space, providing large “potential values” for points in space located close to others
where the input variable has positive values. Notice that in our convention, road pixels
have values of one, while non-road pixels have values of zero.

V
[
vi
(

xp, yp, t
)]

= ∑
∀x 6=xp

∑
∀y 6=yp

 vi(x, y, t)√(
x− xp

)2
+
(
y− yp

)2

 (1)

As it was impossible to get all the required input variables in Table 2 over a common
period, we collected them for various years between 1990 and 2019 based on their temporal
availability. Then, as a first pre-processing stage, we converted all the variables to rasters,
ensuring that they shared the same coordinate reference system and geographic extent for
each city, as well as a spatial resolution of 100 m×100 m. We had to select a shared spatial
resolution because both urban growth models require their input variables defined over
the same spatial lattice. By looking at the variables, we saw that some of them like Landsat
images had a 30 m×30 m resolution, while others like the spatial population distribution
could have up to 250 m×250 m. So, we decided to use an intermediate 100 m×100 m
resolution, which is very convenient as it allows us to explain the “pixel” to policymakers
as representing a hectare of land. To get this intermediate and shared spatial resolution,
we applied a content-aware spatial resampling on the variables. However, this process
does not improve the worst spatial resolution nor its accuracy. It is worth highlighting
that the spatial resampling process affects the ML framework more than the SLEUTH
CA as the latter does not use the coarse spatial-population-distribution variable. After
this stage, Jiaxing’s variables had 451 rows × 442 columns, and Lishui’s rasters had
704 rows × 518 columns. The resulting rasters were stored as .gif images for the SLEUTH
CA model and geo-referenced .tif rasters (GeoTIFF) for the ML framework.
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Table 2. Variables that we used for the modeling the urban-growth. GHSL = Global Human Settlement Layer; LULCC = Land-Uses and Land-Cover Changes; IGSNRR = China’s Institute
of Geographic Sciences and Natural Resources Research; SRTM = Shuttle Radar Topography Mission; DEM = Digital Elevation Map; OSM = Open Street Map.

Variable Name Data Source Format
Digital

Resolution
Original

Availability
Temporal

SLEUTH CA
Used by

ML Framework
Used by

Binary urban
footprint Obtained from [30] Raster 30 m × 30 m 1990–2015 Yes Yes

Land use Obtained from IGSNRR [31]
through LULCC classifications Raster 100 m × 100 m 1990, 2000,

2010

Yes (Recoded using
Anderson Level I
classification—see

Appendix B)

Yes (residential and
industrial uses)

Terrain slope Derived from DEM in SRTM [32] Raster 90 m × 90 m 2015 Yes Yes

Hillshade Derived from DEM in SRTM [32] Raster 90 m × 90 m 2015 Yes No

Water bodies Obtained from IGSNRR [31]
through LULCC classifications Raster 100 m × 100 m 1990, 2000,

2010 Yes Yes

Roads OSM [33] Vector - 2018–2019 Yes No

Potential of
Roads

Derived from OSM [33] through
Equation (1) Raster 100 m × 100 m 2018–2019 No Yes

Population
distribution GHSL pop [34] Raster 250 m × 250 m 1990, 2000,

2015 No Yes

Maximum
population
capacity

Derived from population
distribution and binary urban
footprint

Raster 100 m × 100 m 2015 No Yes

Official
population
projections

China Statistical
Yearbooks [28,29] Tabular Administrative units

for Lishui
1991–2018

for Jiaxing
1978–2018

No Yes
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2.2. Sleuth CA Urban Growth Model

To perform the urban growth modelling using the SLEUTH CA model, we prepro-
cessed the following layers mentioned in Table 2: slope, exclusion, urban, roads and
hillshade. We extracted the binary water class for the years 1990, 2000, and 2010 from the
land-use layers by merging four sub-classes viz.; lake, reservoir/pit, river and canal. We
added the binary water layers and normalized the values of the resulting layer between 0
and 100. This new layer was considered as the exclusion layer, where pixels with a value
of 100 represent impossible growth and lower values suggest undesirable growth. We
converted the pixels with a value of 100 in the exclusion layer, to zero in the hillshade layer,
representing perennial water body. We also converted all the GeoTIFF layers that had a
resolution of 100 m × 100 m to images in GIF format using the software QGIS 3.4.12 LTR.

The SLEUTH model controls the growth using five factors viz.; diffusion, spread,
breed, slope, and road gravity. The objective of the SLEUTH model is to obtain a set of coef-
ficients that best replicate the actual growth given the current input data. This is achieved in
three calibration steps and the additional coefficient derivation step. We initiated the coarse
calibration with the default coefficient values (i.e.,: 0–100 with a step of 25) for all the five
factors. At each calibration stage, we evaluated the performance of the coefficient values
using the Optimum SLEUTH Metric (OSM) to sort the ‘control_stats.log’ file produced
by the SLEUTH model, and to narrow down the range of the coefficients at each calibration
step [35]. The OSM is a product of metrics known as compare, population, edges, clusters,
slope, X-mean, and Y-mean. For succeeding calibration stages, we considered the top three
rows sorted in descending order by the OSM product. We used different coefficient ranges
and Monte Carlo (MC) iterations for both Jiaxing and Lishui at all calibration stages, please
refer to Appendix A: Table A1 for more details about this process.

To derive the coefficients after the final calibration, we used the coefficient values from
the top row of the table sorted in descending order by the OSM product. The SLEUTH
CA software has the ability to self-adjust and modify the coefficients, and therefore, as a
final step, we used the coefficient values for the year 2015 included in the ‘avg.log’ file
for future urban growth predictions.

2.3. ML-Based Urban Growth Framework

The input variables that we used for modeling the urban growth in Jiaxing and Lishui
with the ML framework were: population distribution, binary urban footprint, water bodies
(used as protected areas), terrain slope, potential of roads, residential land, industrial land,
and maximum population capacity. We started from a dataset that had information only for
a few years. We processed the dataset following the steps that are described in [23] with a
few exceptions. For instance, time series with the total official population projections were
extended until 2040 using a logistic regression; the yearly binary urban footprints were
obtained directly from [30] for the period between 1990 (despite it was available since 1985)
and 2015, rather than getting them by applying a binary (urban vs. non-urban) classifier to
Landsat images; and finally, as the maximum population capacity was not available, we
approximated it with the spatially distributed population of 2015, and then we adjusted
it to take into account the protected areas and to leave some capacity for the population
to grow. In this regard, we computed the per-pixel maximum in the protected areas with
a value of zero to reflect the fact that some people might actually live in some protected
areas (particularly in developing countries). Then we took the previous intermediate result
and in the non-protected areas, computed the per-pixel maximum with the average urban
population of the same year, a process that ensures some capacity for the population to
grow. After this pre-processing stage, we assembled a complete dataset that had yearly
estimates for all the variables between 1990 and 2015. Afterwards, we split the dataset, and
used the data from years 1990 to 2005 for training, 2006 to 2010 for model selection, and 2011
to 2015 for testing, which roughly corresponds to a 60%, 20%, 20% data split, respectively.

For the spatiotemporal regression of the population distribution, we used a spatial
neighborhood of p× q = 3 × 3 pixels (i.e.,: 300 m×300 m) and explored two consecutive
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temporal lags corresponding to φ = {1, 2} years for all variables. We configured an
autotuning program [23] to explore linear regressions, Bayesian regressions, and Ridge
regressions. For the latter models, the autotuning searched through different values for
the regularization parameter, namely λ = {0.1, 0.3, 0.5, 0.7, 0.9}. The autotuning was set to
use five iterations for each city. After training and validating the model, we computed the
performance on the test set. As we expected to see the most notable differences between
the urban predictions of the two models after two or three decades, we computed yearly
urban growth predictions from 2016 to 2040.

2.4. Uncertainty Analysis of Urban Growth

After calibrating the SLEUTH CA model and training the ML framework, we created
a few graphs that simplify the analysis of the spatiotemporal uncertainty in the urban
growth predictions for Jiaxing and Lishui. These graphs include:

1. The yearly urbanization from 2015 to 2040, where 2015 is the last historical year, and
the data from 2016 to 2040 corresponds to predictions.

2. An instantaneous spatial difference between the models for each decade, i.e.,: 2020,
2030, and 2040.

3. The cumulative spatial agreement and disagreement of predicted urban areas from
2016 to 2040 removing the common urban areas that already existed in 2015 to ease
the visual inspection.

4. A histogram with the “signed” differences in predicted urbanization times between
the models to reveal if one of the models tends to predict urbanization earlier than
the other.

5. A histogram with the “unsigned” differences in predicted urbanization times be-
tween the models to understand how long does it take them to reach an agreement
within the simulation horizon.

6. A time series showing the evolution of the spatial agreement of the urban predictions
of both models over time excluding the existing urban areas of 2015. In this case,
we propose an agreement index S through Equations (2) and (3), where the sum
occurs over all pixels, t0 is the reference year (which in our case is equal to 2015
because it is the last historical year), the sub-index i = 1 refers to the predictions
from the SLEUTH CA model, while i = 2 corresponds to the predictions from the
ML urban growth framework, and BUF is an acronym for the binary urban footprint.
In our convention, a value of one in BUF indicates an urban area, whereas a value
of zero indicates a non-urban area. The proposed agreement index can be seen as
a special variant of the intersection over union (IoU) that blocks de-urbanization
effects and prevents over estimating the spatial agreement, as it is relative to the
last known and common urbanization state for both models. Notice that when de-
urbanization is prohibited from the forecasts of both models, Equation (3) reduces
to Equation (4). Also notice that S varies from zero to one as the two predicted
binary urban footprints move away from a total spatial disagreement to a perfect
spatial agreement.

S(t) =
∑
x

∑
y
[I1(x, y, t)

⋂
I2(x, y, t)]

∑
x

∑
y
[I1(x, y, t)

⋃
I2(x, y, t)]

(2)

Ii(x, y, t) =

 t⋃
j=t0

BUFi(x, y, j)

− BUF(x, y, t0); if there can be de-urbanization. (3)

Ii(x, y, t) = BUFi(x, y, t)− BUF(x, y, t0); if there is no de-urbanization. (4)
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7. A time series of two frequently used indices in the literature. The first index is
known as the zero-mean normalized cross-correlation (ZNCC), see Equations (5)
and (6), where Ex,y[.] is the expected-value operator computed as the arithmetic
mean across all the spatial coordinates. The ZNCC can change from −1 to 1, and
the closer it gets to 1, the better the spatial agreement.

ZNCC(t) =
∑
x

∑
y

{[
BUF1(x, y, t)− BUF1(t)

][
BUF2(x, y, t)− BUF2(t)

]}
√√√√{∑

x
∑
y

[
BUF1(x, y, t)− BUF1(t)

]2}{
∑
x

∑
y

[
BUF2(x, y, t)− BUF2(t)

]2} (5)

BUFi(t) = Ex,y[BUFi(x, y, t)] (6)

The second index is known as the sum of absolute differences (SAD), and we
computed it using Equation (7). The SAD is greater than or equal to zero, and the
closer to zero the better the spatial agreement.

SAD(t) = ∑
x

∑
y
|BUF1(x, y, t)− BUF2(x, y, t)| (7)

Notice that both indices assess the “instantaneous” level of spatial agreement be-
tween the urbanization predictions of both models over time, as they are computed
directly over the yearly predictions, i.e.,: without discarding de-urbanization effects
nor the urban areas that existed in 2015.

3. Results
3.1. Sleuth CA

We implemented the SLEUTH CA model in Cygwin 64 terminal on Intel Xeon(R)
E-2246G (3.60 GHz and 6 cores), 64 GB RAM, Windows 10 Pro OS machine. The coefficients
that we obtained for predicting urban extent for Jiaxing and Lishui are summarized in
Table 3. These coefficients can vary from 0 to 100, where a higher number signifies greater
influence. For example, the Slope coefficient for Lishui, which is situated in a valley, is
significantly larger than Jiaxing, which is situated on a flat terrain. This shows that the
Slope variable had a greater influence in case of Lishui, as compared to Jiaxing. However,
this influence does not follow a linear trend, for instance, an increase of the slope coefficient
from 1 to 68 could dramatically change the urban growth rate but a decrease from 27 to 17
may only have a limited impact on the outcome.

We found that the convergence of coefficient values, and hence the model train-
ing, was slower in case of Lishui. This can be observed in the top three rows of the
‘control_stats.log’ file sorted in descending order using the OSM metric. For example
the diffusion, slope & road gravity coefficient ranges were the same after coarse and fine
calibration stages, which should ideally have narrowed after each calibration stage, see
Appendix A: Table A2. In addition, we found that the OSM metric values were higher in
Jiaxing than in Lishui, please refer to Appendix A: Table A1 for details of the coefficient
ranges used at each step of calibration, coefficient derivation, and prediction. Accord-
ing to the predictions from the SLEUTH CA model, the urban area will grow from from
862.97 km2 in 2020 to 1552.73 km2 in 2040 for Jiaxing, and from 128.06 km2 in 2020 to
173.40 km2 in 2040 for Lishui.
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Table 3. Coefficients of the SLEUTH CA models for Jiaxing and Lishui.

Prediction Coefficient Value for Jiaxing Value for Lishui

Diffusion 100 32
Breed 15 67

Spread 27 17
Slope 1 68

Road Gravity 74 96

3.2. ML-Based Urban Growth Framework

We implemented the ML framework in Python 3.x in Ubuntu 18.04.4 LTS using a
laptop with an Intel(R) Core(TM) i5-9300H CPU @2.40 GHz that had 4 cores and 8 sub-
processes, 8 GB of RAM, and 64 GB of SWAP memory on hard disk. The overall training,
model selection, testing, and simulation (i.e.,: computing the predictions from 2016 to 2040)
of the ML framework for both cities took about 7 h. The detailed processing times for each
city and stage are summarized in Table 4.

Table 4. Time spent by the ML framework to processing the cities of Jiaxing and Lishui.

Task Time for Jiaxing Time for Lishui

Pre-processing 6.31 min 11.74 min
Training 98.29 min 176.15 min

Model selection 6.60 min 7.20 min
Test 4.77 min 5.77 min

Simulation 58.79 min 62.46 min
Total 174.76 min 263.32 min

As part of the processing, the autotuning program found that the best models had a
consecutive temporal lag φ = 2 years. Likewise, it found that the best model for predict-
ing the population distribution of Jiaxing was a Bayesian Ridge regression with default
parameters, while for Lishui the best model was a Ridge regression with a regularization
parameter of λ = 0.9 and a tolerance of tol = 10−3. In terms of losses relative to the
ground truth, the average sum of absolute differences (SAD) for the binary urban footprint
estimations in the datasets of training, model selection, and testing were 48,174 ; 40,753.33 ;
and 38,635.66 pixels for Jiaxing, and 7082.71 ; 6801.33 ; and 7516.66 pixels for Lishui, re-
spectively. All the additional metrics that we computed for the ML-based urban growth
framework for both cities are available in the Appendix B. According to the predictions
from the ML framework for Jiaxing, the urban area will grow from 1043.84 km2 in 2020
to 1078.13 km2 in 2040. Likewise for Lishui, the urban area will grow very little from
155.33 km2 to 155.39 km2 in the same period.

3.3. Uncertainty Analysis of Urban Growth

To understand the yearly predicted urbanization process of Jiaxing and Lishui accord-
ing to the SLEUTH CA and ML growth models from 2015 to 2040, the reader is referred to
Figures 2 and 3. These figures have been color-coded. Black areas correspond to non-urban
land and orange areas, independent of the saturation, represent urban land. The saturation
in the orange color of these figures reflects the predicted year of urbanization, i.e.,: the
lighter the color the later the urbanization occurs.

Figures 4 and 5 show the historical binary urban footprint in 2015 and the predictions
from the SLEUTH CA model (identified as M1) and the ML framework (identified as M2)
every ten years between 2020 and 2040 for Jiaxing and Lishui, respectively. In these figures,
for the first two columns we use a white color to represent urban land and a black color
to represent non-urban land. For the third column, we use the white and black colors to
show the corresponding urban and non-urban agreements, respectively. To highlight the
spatial disagreements between the urban growth predictions for a given year in the third
column, we use red and blue colors. The red color is used when the SLEUTH CA model
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predicts non-urban land but the ML model predicts urban land, and the blue color is used
when the SLEUTH CA model predicts urban land but the ML model predicts non-urban
land instead.

a) Jiaxing's urbanization process
 predictions from SLEUTH CA model

b) Jiaxing's urbanization process
 predictions from ML model

2015 2020 2025 2030 2035 2040
Predicted year of urbanization by each urban growth model.

Note: Black pixels correspond to land areas where the model did not predict urbanization.

Figure 2. Yearly predicted urbanization by the SLEUTH CA and ML models for Jiaxing.

a) Lishui's urbanization process
 predictions from SLEUTH CA model

b) Lishui's urbanization process
 predictions from ML model

2015 2020 2025 2030 2035 2040
Predicted year of urbanization by each urban growth model.

Note: Black pixels correspond to land areas where the model did not predict urbanization.

Figure 3. Yearly predicted urbanization by the SLEUTH CA and ML models for Lishui.
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Figure 4. Yearly binary urban footprint predictions and spatial disagreements between the SLEUTH CA and ML mod-
els for Jiaxing.
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Figure 5. Yearly binary urban footprint predictions and spatial disagreements between the SLEUTH CA and ML models
for Lishui.
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Figure 6 shows for Jiaxing, the cumulative effect of the areas that changed from non-
urban to urban in 2040 relative to 2015, as predicted by the SLEUTH CA model in the first
column and by the ML framework in the second column. A black color in the first and
second columns of these figures, represents an area that didn’t change its category over
time, i.e.,: that remained either as urban or as non-urban. The third column shows the
spatial agreements between both models in the transition from the non-urban to urban in
yellow, and their disagreements in magenta (i.e.,: when only one of the models predicted
the non-urban to urban transition). Again, a black color in the third column represents areas
that did not change their state over time in any of the two models. Figure 7 presents the
same set of results for Lishui. Notice that in both of these figures, we used the cumulative
transitions from non-urban to urban over time instead of just subtracting the urbanization
of 2015 from 2040, to prevent artifacts due to de-urbanization processes.
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Figure 6. New urban areas in 2040 relative to 2015 predicted by the SLEUTH CA and ML models for Jiaxing.
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Figure 7. New urban areas in 2040 relative to 2015 predicted by the SLEUTH CA and ML models for Lishui.

Figures 8 and 9 present the histogram of the time difference (with sign) in the year in
which the SLEUTH CA model and the ML framework predict the urbanization for Jiaxing
and Lishui.
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Note:
If difference<0, then SLEUTH CA model predicts urbanization earlier than ML model.
If difference=0, then SLEUTH CA model predicts urbanization at the same time than ML model.
If difference>0, then SLEUTH CA model predicts urbanization later than ML model.

Jiaxing's histogram of the time difference in predicting urbanization between the two models
(i.e.: urbanization time from SLEUTH CA model - urbanization time from ML model)

Figure 8. Histogram of the time difference in predicting urbanization between the two models for Jiaxing.
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Note:
If difference<0, then SLEUTH CA model predicts urbanization earlier than ML model.
If difference=0, then SLEUTH CA model predicts urbanization at the same time than ML model.
If difference>0, then SLEUTH CA model predicts urbanization later than ML model.

Lishui's histogram of the time difference in predicting urbanization between the two models
(i.e.: urbanization time from SLEUTH CA model - urbanization time from ML model)

Figure 9. Histogram of the time difference in predicting urbanization between the two models for Lishui.

Figures 10 and 11 present the histogram of the absolute value of the time difference
in the year in which the SLEUTH CA model and the ML framework predict the urban-
ization for Jiaxing and Lishui, respectively. Therefore, in these figures, the sign of the
difference disappears.
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Note:
If |difference|=0, then the two models predict urbanization at the same time.
If |difference|>0, then it reflects the time taken by two models to agree on the urbanization predictions.

Jiaxing's histogram of the absolute value of the time difference in predicting urbanization between the two models
(i.e.: |urbanization time from SLEUTH CA model - urbanization time from ML model|)

Figure 10. Histogram of the absolute value of the time difference in predicting urbanization between the two models
for Jiaxing.
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Note:
If |difference|=0, then the two models predict urbanization at the same time.
If |difference|>0, then it reflects the time taken by two models to agree on the urbanization predictions.

Lishui's histogram of the absolute value of the time difference in predicting urbanization between the two models
(i.e.: |urbanization time from SLEUTH CA model - urbanization time from ML model|)

Figure 11. Histogram of the absolute value of the time difference in predicting urbanization between the two models
for Lishui.

Figures 12 and 13 show the urban agreement ratio in the cumulative urbanization
relative to 2015 over time from both models for Jiaxing and Lishui, respectively.

Figures 14 and 15 show the time series of ZNCC and SAD indices to asses the the
spatial similarity between the urbanization predictions of both models for Jiaxing and
Lishui, respectively.
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Jiaxing's instantaneous urban agreement ratio in temporally cumulative
urbanization relative to year 2015 from both models over time

Figure 12. Instantaneous urban agreement ratio in temporally cumulative urbanization relative to
2015 from both models over time for Jiaxing.
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Lishui's instantaneous urban agreement ratio in temporally cumulative
urbanization relative to year 2015 from both models over time

Figure 13. Instantaneous urban agreement ratio in temporally cumulative urbanization relative to
2015 from both models over time for Lishui.
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Figure 14. Spatial comparison between urbanization predictions of both models using the ZNCC
and SAD metrics over time for Jiaxing.
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Lishui's spatial comparison between urbanization predictions
of both models using the ZNCC and SAD metrics over time

Figure 15. Spatial comparison between urbanization predictions of both models using the ZNCC
and SAD metrics over time for Lishui.

4. Discussion

Calibrating the SLEUTH CA model required a certain level of human intervention,
and intensive computational power. Its execution took over 2 days 10 h 16 min for Jiaxing,
and 4 days 9 h 6 min for Lishui, while the predictions required 2 min for each city. The
significantly larger amount of time required to train the model for Lishui can be attributed to
slower convergence rate and the larger size of the input layers. Even though the coefficients
range converged slowly, we had to reduce the step size for the coefficients in succeeding
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iterations. Doing so substantially increased the number of runs and hence the training time.
In contrast, the ML urban growth framework was highly automated and took about 7 h in
a standard laptop. The exact computing time in the ML framework depends on the size
of the geographic extent that contains the city to analyze, the number of input variables,
and more importantly, on the number of spatial windows, temporal lags, machine learning
models, and hyper-parameters to explore.

Visual inspection of Figures 2 and 3, as well as Figures 4 and 5, reveals that there
are significant variations between the simulation results of the two models. In the long
term, the SLEUTH CA model predicts larger urban areas than the ML framework in both
cities. However, the ML framework predicts most of the new urbanization in the next
decade or so, whereas the SLEUTH CA model predicts most of its growth till the last
decades of analysis. The urbanization predictions by each model in both cities are slightly
different. In Jiaxing, the SLEUTH CA model predicts a more compact growth, while the ML
framework predicts a more scattered growth that manages to maintain the city structure.
In Lishui, both urban growth predictions are fairly fragmented, but overall, the ML model
predicts most of such growth in the periphery whereas the SLEUTH CA predicts that it
will happen near the urban center.

To simplify the uncertainty analysis, we define “certain areas in space” as those regions
where both models predicted the same results (urban or non-urban) but not necessarily at
the exact same time. This is represented in yellow in Figures 6 and 7 for both cities in the
year 2040. Similarly, we define “certain areas in time”as a subset of the previous cases when
both models predict the same results at the same time. By looking at Figures 12 and 13, we
find that the agreement between the two models is far better in Jiaxing than in Lishui, and
yet, it never surpasses thirty percent. We should highlight that certain areas in time can
help to prioritize areas by policy makers to layout infrastructure that need long lead times,
which are often required to better position small cities. Moreover, the certain areas in space
and time can also be applied to promote the development of retail and commercial clusters,
provision of kindergartens and elementary schools, and other urban amenities in order to
avoid bedroom community and ghost town type of urban growth in China.

By analyzing the histograms of the signed time difference in the prediction of urban-
ization between the two models displayed in Figures 8 and 9, we see that the heights of the
histogram for negative differences are mostly lower than the heights of the histogram for
the corresponding positive differences. However, the histogram shape in the case of Jiaxing
is not as asymmetric with respect to zero as it is in Lishui. A positive temporal difference in
the signed histogram, means that the SLEUTH CA model predicts urbanization later than
the ML framework. In both cities, the histograms of signed differences show at least three
well-defined peaks. The peak at zero indicates how many pixels are predicted to be urban
at the same time for both models. The peak at ≤−25 reflects that the SLEUTH CA model
predicts as urban land some areas that are never predicted as such by the ML framework
in the simulation horizon. Conversely, the peak at ≥25 years represents some areas that
are predicted as urban land by the ML framework that are never predicted as urban by
the SLEUTH CA in the simulation horizon. If the prediction models were very similar, the
histograms of signed differences would resemble a normal distribution centered around
zero with a very small standard deviation. Looking at Figures 10 and 11, we see that in
Jiaxing, the models reach some agreement about urbanization predictions progressively but
it takes a while as the histogram is spread between zero and twenty four years. However,
in Lishui the agreement pattern has a strong transition, which could be understood as a
temporal lag between the models’ predictions that only starts to improve after eight years.
The instantaneous urban agreement ratio in temporally cumulative urbanization relative
to 2015 depicted in Figures 12 and 13 shows a slow improvement over time in both cities.
This behavior was somewhat expected because of the fixed geographic extent used for the
predictions. The explanation is as follows, during the earlier years there is plenty of space
to urbanize, but as time advances, the available land becomes scarcer, and one of the urban
growth models will predict as urban land some areas that had been predicted in the past as
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urban by the second model. Interestingly, in Jiaxing, this metric grows much faster than in
Lishui. The main reason for the differences in these two cities is that in Jiaxing both urban
growth models predict lots of new urban areas, but in Lishui there is an unbalance, as the
SLEUTH CA predicts much more urbanization than the ML framework.

Figures 14 and 15 show that both models have a better agreement in Lishui than in
Jiaxing. At first glance, this conclusion seems to contradict our previous analysis, but it
does not. It just reflects the fact that both the ZNCC and the SAD metrics are too influenced
by the existing urban areas that were already in place for the last historical year in the
data, 2015 in our case. Both metrics perform better (i.e.,: a ZNCC closer to one and a
SAD value closer to zero) in larger areas of analysis experiencing little urban growth over
time like Lishui than in smaller areas of analysis with fast-paced urbanization like Jiaxing.
With these considerations in mind, we think that the agreement index S, modeled through
Equations (2) and (3), is a stronger metric than the ZNCC for assessing the similarity of the
predictions between two urban growth models.

Unlike the SLEUTH CA model that only focuses on the existing and the past conditions
of urbanization, the ML framework also considers and predicts the spatially distributed
population growth, and therefore, if the predicted population can be allocated within the
existing urban fabric, the ML framework does not promote new urban areas. Similarly, if
the population growth inside a non-urban area is slow, it can take a while before it marks
the land as urban. After analyzing both cities, the current predictions for Jiaxing might
help policymakers to prioritize their agendas for urban interventions, however, in the
case of Lishui, it is clear that further studies are required to reduce the uncertainty before
committing to long-term infrastructure plans.

Under the TDSC policy, small cities are gaining the upper hand for rapid growth.
Forecasting the uncertainty of their growth patterns in space and time are critical for policy
makings. For Jiaxing, the uncertainty lies in the type of urban growth. For example, a more
sporadic pattern can induce sprawl, while a more concentrated and compact pattern can
create land use right and equality issues. For Lishui, the uncertainty is hinged upon
the rate of growth. The essence of the growth speed is determined by the balance of
economic growth competition and environmental preservation. As the TDSC policies are
going beyond the boundary of Zhejiang Province, hundreds of small cities in China will
need to consider the spatiotemporal urban growth uncertainty in their long-term planning.
Consequently, the space and time uncertainty modeling framework could provide empirical
evidence for the transformation of urban networks in China. Beyond the Chinese context,
the uncertainty framework can also be tailored to reflect context-specific urban growth
conditions around the globe.

5. Conclusions

In this paper, we analyzed the spatiotemporal uncertainty in urban growth through
a comparison of the agreements and disagreements in the predictions of two models, a
SLEUTH CA that works with rules and encodes human intuition, and a machine learning
framework that is purely data-driven. The proposed methodology was tested in the
Chinese cities of Jiaxing and Lishui as case studies. We chose these two cities because
they have different conditions and are part of the group of smaller cities in China that are
expected to grow in the upcoming decades under the new TDSC policies. We focused
on the spatiotemporal uncertainty, understood as the inherent doubt in the predictions of
where and when will a piece of land become urban in the territory. This is important for
urban planning policy making because it can help to localize and prioritize investments
for public infrastructure and facilities. The resulting uncertainty measures can shed some
light on the required effort and urgency of urban interventions, as they depend on the
spatial extent and available time to complete the works. The main benefit of our analyses
is that it can be applied worldwide at low cost, as most of the required variables are in
suitable digital formats, and consolidated in public repositories for free, except commonly
for the land-use land-cover change data. The proposed methodology for understanding the
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spatiotemporal uncertainty can use other pairs of growth models. However, we argue that
in any scenario, it is desirable to select urban growth models from different families and
not just different instances of the same family of models to provide a stronger assessment.
So far, one of the limitations of the prediction models that we used is that they are ill-
equipped to anticipate the effects of rare or black swan events (i.e.,: a sudden change in
the urbanization rate due to pandemics, strong migration waves, change of administrative
boundaries, economic recession, etc.). There are three main reasons. Firstly, if a similar
event never occurred or was not included in the input dataset, the models have no way of
knowing which features to look at for their prediction [4]. Secondly, the associated effects
of rare events can manifest themselves at different temporal delays in the variables of
interest [36], which makes assembling a representative dataset even harder. Thirdly, the
explored predictive models are based on simplified ideal forms, which ignore the incredible
complexity of reality. However, and despite the models’ limitations in forecasting rare
events, their estimations may still have some constant properties useful for extrapolation
and forecast [37]. Therefore, we recommend either re-calibrating or re-training the models
with new data once a year or so and then update the urban estimates, independent of
the urban growth model pair to use. In this way, interested users can extend the validity
of urban predictions and their uncertainties. As future work, we want to investigate an
extension of the proposed spatiotemporal analysis within regional urban networks. We also
want to fuse the predictions of different urban growth models, considering their relative
strengths and weaknesses, for improving the overall urbanization forecast accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

GHSL Global human settlement layer
BUF Binary urban footprint
POP Population distribution
LULCC Land-uses and land-cover changes
DEM Digital elevation map
SAD Sum of absolute differences

https://github.com/Rise-group/urban_growth_uncertainty_China_with_SLEUTH_CA_and_ML_models
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SSD Sum of square differences
MSE Mean squared error
RMSE Root mean square error
FP False positive
ZNCC Zero-mean normalized cross correlation
IoU Intersection over union
KDE Kernel density estimation
PDF Probability density function
CA Cellular automaton
ML Machine learning

Appendix A. Auxiliary Tables for SLEUTH CA Model Calibration

Table A1. Coefficient values [start, stop, step] of parameters at each step of the SLEUTH CA model.

Stage Monte Carlo Iteration Diffusion Breed Spread Slope Road Gravity

Lishui: size of each image layer 704 rows × 518 columns.

Coarse 5 [0, 100, 25] [0, 100, 25] [0, 100, 25] [0, 100, 25] [0, 100, 25]
Fine 8 [25, 100, 15] [1, 100, 10] [13, 38, 5] [75, 100, 5] [50, 100, 10]
Final 10 [25, 100, 5] [41, 61, 2] [11, 15, 1] [75, 100, 2] [50, 100, 5]

Derive coeff. 150 [25, 25, 1] [53, 53, 1] [13, 13, 1] [77, 77, 1] [95, 95, 1]
Predict 200 32 67 17 68 96

Jiaxing: size of each image layer 451 rows × 442 columns.

Coarse 5 [0, 100, 25] [0, 100, 25] [0, 100, 25] [0, 100, 25] [0, 100, 25]
Fine 8 [88, 100, 4] [13, 38, 5] [13, 38, 5] [25, 100, 15] [25, 100, 15]
Final 10 [92, 100, 1] [13, 38, 2] [18, 28, 2] [85, 100, 3] [25, 100, 5]

Derive coeff. 150 [98, 98, 1] [15, 15, 1] [26, 26, 1] [85, 85, 1] [65, 65, 1]
Predict 200 100 15 27 1 74

Table A2. Top three rows of the ‘control_stats.log’ file sorted by the OSM metric. Diff = Diffusion; Brd = Breed;
Sprd = Spread; Slp = Slope; RG = Road Gravity.

Lishui Jiaxing

OSM Diff Brd Sprd Slp RG OSM Diff Brd Sprd Slp RG

Coarse calibration, runs: 3125, time: 1 h 18 m. Coarse calibration, runs: 3125, time: 1 h 31 m.

0.593 25 1 25 75 50 0.71 100 25 25 100 25
0.581 25 100 25 100 100 0.711 100 25 25 100 50
0.577 100 50 25 100 75 0.639 100 25 25 25 100

Fine calibration, runs: 12,960, time: 7 h 37 m. Fine calibration, runs: 5184, time: 3 h 22 m.

0.751 25 41 13 75 100 0.844 100 13 28 85 25
0.748 25 61 13 80 90 0.829 100 13 28 100 70
0.741 100 51 13 100 50 0.824 92 38 18 85 100

Final calibration, runs: 125,840, time: 4 d 11 m. Final calibration, runs: 67,392, time: 2 d 9 h 52 m.

0.764 25 53 13 77 95 0.841 98 15 26 85 65
0.760 40 51 13 85 60 0.838 100 13 28 85 25
0.755 25 55 14 79 70 0.834 100 13 28 88 35

Appendix B. Additional Figures for the Ml-Based Urban Growth Framework

We used the historical records between 1990 and 2015 to understand the growth
dynamics in Jiaxing and Lishui through three metrics, the total urban population, the total
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urban area, and the urban density. We calculated them by counting the population inside
the binary urban footprint, summing the number of urban pixels in the binary urban
footprint and multiplying the result by the pixel size, and computing the ratio between the
two former values. The time series with these metrics are shown in Figures A1 and A2 for
Jiaxing and Lishui, respectively.
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Figure A1. Diagnostic graphs of the geographic area of Jiaxing. (Left) total urban population. (Center) total urban area. (Right)
urban density.
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Figure A2. Diagnostic graphs of the geographic area of Lishui. (Left) total urban population. (Center) total urban area. (Right)
urban density.

We estimated the probability density function of a population threshold after which
a non-urban pixel becomes urban for Jiaxing and Lishui. We include the results in
Figures A3 and A4.
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(Number of observations = 34021)
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Figure A3. Estimated probability density function of a population threshold after which a non-urban pixel becomes urban in Jiaxing.
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Figure A4. Estimated probability density function of a population threshold after which a non-urban pixel becomes urban in Lishui.

Following the procedure described in [23], we computed population threshold maps
that we used for determining when a non-urban pixel becomes urban for Jiaxing and Lishui.
We present the results in Figures A5 and A6.
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Figure A5. Selected population threshold after which a non-urban pixel becomes urban for Jiaxing.
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Figure A6. Selected population threshold after which a non-urban pixel becomes urban for Lishui.

For the years in the test set (2011–2015), we computed the urban growth framework
performance in terms of the errors in population distribution and binary urban footprint
estimations relative to the ground truth values for Jiaxing and Lishui. Figure A7 shows the
corresponding results. Notice that the data from 2011 and 2012 were used to predict 2013,
and similarly, the data from 2012 and 2013 were used to predict 2014, and the data from
2013 and 2014 were used to predict 2015.
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(a) Jiaxing.

Figure A7. Cont.
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(b) Lishui.

Figure A7. Framework performance in the geographic areas of interest. From left to right, the columns correspond to: (1) population
distribution error (i.e., real value minus predicted value); (2) histogram of the population distribution error; (3) binary urban footprint
error (i.e., real value minus predicted value); (4) histogram of the binary urban footprint error. POP = predicted population distributions;
BUF = binary urban footprints; ZNCC = zero-mean normalized cross-correlation; SAD = sum of absolute differences; SSD = sum of
squared differences.

Appendix C. Land Use Recoding for Jiaxing and Lishui

To use the SLEUTH CA model, the original land-use land-cover change (LULCC)
information from Jiaxing and Lishui was recoded using the Anderson Level I classification
system. The applied conversion is summarized in Table A3, where the new categories for
the LULCC after this recoding are given by:

1. Urban.
2. Agricultural.
3. Rangeland.
4. Forest Land.
5. Water.
6. Wetland.
7. Barren Land.
8. Tundra. This category was not available in Jiaxing nor Lishui.
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9. Perennial Snow or Ice. This category was not available in Jiaxing nor Lishui.

Table A3. Land use recoding for Jiaxing and Lishui.

Old Parent Class Old Class Pixel Value New Class Pixel Value

Grassland Grass 23 Rangeland 3
Herbaceous green space 24 Rangeland 3

Wetlands

Herbaceous wetlands 33 Wetland 6
Lake 34 Water 5
Reservoir/pit 35 Water 5
River 36 Water 5
Canal 37 Water 5

Arable land Paddy field 41 Agriculture 2
Dry land 42 Barren land 7

Artificial Surface

Residential 51 Urban 1
Industrial 52 Urban 1
Transportation 53 Urban 1
Mining farm 54 Urban 1

Other Bare rock 65 Barren land 7
Bare soil 66 Rangeland 3

Woodland

Evergreen broad-leaved forest 101 Forest land 4

Deciduous broad-leaved forest 102 Forest land 4
Evergreen coniferous forest 103 Forest land 4
Deciduous coniferous forest 104 Forest land 4
Coniferous and broad-leaved mixed forest 105 Forest land 4
Evergreen broad-leaved shrub forest 106 Forest land 4
Deciduous broad-leaved forest 107 Forest land 4
Evergreen coniferous forest 108 Forest land 4
Arbor 109 Rangeland 3
Bush field 110 Rangeland 3
Arbor green space 111 Rangeland 3
Shrubland 112 Rangeland 3
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