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Abstract: The nascent graph representation learning has shown superiority for resolving graph
data. Compared to conventional convolutional neural networks, graph-based deep learning has
the advantages of illustrating class boundaries and modeling feature relationships. Faced with
hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral
data into irregular domains from regular grids. In this regard, we present a novel method that
performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First,
we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral
data cubes with unsupervised feature reduction. These feature cubes combined with localized
adjacent matrices were fed into the popular graph convolution network in a standard supervised
learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local
graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets
demonstrated that the presented method offers promising classification performance compared with
other popular competitors.

Keywords: hyperspectral image classification; graph representation learning; localized graph convo-
lutional filtering; graph convolutional network; deep learning

1. Introduction

The hundred contiguously narrow bands of hyperspectral images (HSIs) feature the
hyperspectral remote sensing research fields [1]. HSIs make high-resolution spectral or
spectral-spatial information extraction possible on account of their ability to carry a high
volume of information [2]. Hyperspectral information extraction often involves noise
estimation, endmember extraction, spectral unmixing, classification, and target detection
phases based on hyperspectral data processing and analysis [3–6]. Hyperspectral remote
sensing image analysis has a great power to recognize the materials of the land surface at
a fine level compared to RGB (red, green, and blue) or multispectral image analysis [7,8].
However, it is unable to ignore that adjacent bands in high-dimensional hyperspectral
data might be highly correlated, resulting in the Hughes phenomenon (or called the curse
of dimensionality) [9], so desiring a large number of labeled samples [10,11]. And then,
varying spectral signature and limited training samples at hand would probably raise the
unanticipated dilemma that we have to solve the small sample classification problem [12].
When it comes to HSI classification tasks, the early-staged machine learning methods might
(1) heavily rely on the handcrafted spectral-spatial features [13], (2) fail to accurately learn
class conditional densities [2], (3) not accommodate limited training samples faced with the
high dimensionality of hyperspectral data [6]. In the above regard, Gao et al. (2014) propose
a subspace-based approach to reduce the dimensionality of the input space and facilitate
the exploitation of the limited training samples [14]. Yu et al. (2016) introduced a novel
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supervised classifier for HSI classification combining spectral and spatial information [15].
Gao et al. (2016) combined locality-preserving projection and sparse representation to
balance the high dimensionality of hyperspectral data and the limited training samples [16].
Yu et al. (2017) integrated the locality-sensitive discriminant analysis with the group sparse
representation for HSI classification [17]. Gao et al. (2017) presented an optimized kernel
minimum noise fraction transformation algorithm for the efficient feature extraction of
HSIs [18]. Yu et al. (2017) presented a multiscale super pixel segmentation method to
model the distribution of classes based on spatial information [19]. Henceforward, the deep
learning technique has been increasingly favored by the scientific community attributing
to its great power of abstracting representations to classify hyperspectral cubes into certain
land cover categories [20–23]. As a consequence, Cui et al. (2019) proposed a multiscale
spatial-spectral convolutional neural network (CNN) to integrate multiple receptive fields
fused features and multiscale spatial features at different levels [24]. Gao et al. (2019)
integrated t-distributed stochastic neighbor embedding with a CNN to capture the potential
assembly features of HSIs [25]. Yu et al. (2020) proposed a novel method to exploit local
spectral similarity and nonlocal spatial similarity by considering spatial consistency [26].
Liu et al. (2020) proposed a novel lightweight shuffled graph convolutional network (GCN)
to accelerate the training procedure through a limited number of training data [27]. Making
a mark on the latest, the recent novelties regarding graph representation learning have
attracted more and more attention from the community.

Graph neural networks (GNNs) are a class of deep learning methods designed to per-
form inference on data described by graphs [28]. Deep learning as a data-driven machine
learning technique has undoubtedly brought enormous prosperity in hyperspectral remote
sensing intelligent information extraction depending on the high-level representational
ability [29]. CNNs, as a kind of attractive representation of deep learning models, have
also achieved promising results in analyzing HSIs [1]. Particularly, the CNNs’ localized
kernels could efficiently recognize identical features beyond their spatial locations. Al-
though CNN has been successful on the domains with underlying grid-like structured
data, the CNN-based methods suffer from several intrinsic drawbacks summarized by
the previous studies [30,31], i.e., (1) only adapting to the regular squares regardless of the
geometric changes in object regions, (2) difficulty in capturing the valuable information of
class boundaries during convolving a punch of patches as the convolution kernels have
fixed shape, size, and weights, (3) often take a longer training time to fit huge parameters,
(4) incapable of modeling topological relations among samples whether local or nonlocal
feature extraction. In this regard, the graph-based convolutional neural networks appear
relatively promising to overcome the aforementioned defects and show excellent charac-
teristics, i.e., (1) competently process the irregular image regions in the non-Euclidean (or
non-grid) graph data structure, (2) multiple graph inputs can be dynamically updated
and refined with multiscale neighborhood [30]. It is worth mentioning that graph repre-
sentation learning represented by GCNs has received increasing attention in quantifying
nonlinear features in irregular graphs converted from hyperspectral data.

Inspired by the previous works on spectral graph-based CNN [31], its key compo-
nents have been employed to adapt the HSI classification task (see Figure 1). The main
contributions of this study are summarized below.

(1) The usual supervised setting regarding fitting the graph-based learning models
is designed through collecting the patch-based feature cubes and localized graph
adjacent matrices.

(2) The graph convolution layer is used to learn the spatially local graph representation
and to represent the localized topological patterns of the graph nodes.

(3) The experiments demonstrate that the presented study could achieve promising
classification performance based on the localized graph convolutional filter.
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Figure 1. The overview of hyperspectral image (HSI) classification with localized graph convolutional network (GCN).

The rest of this paper is organized as follows. We first reviewed the latest works
relevant to HSI classification with the graph-based methods in Section 2. Then, we provide
the preliminaries and definitions in Section 3. The technical details of our graph-based rep-
resentation learning method are presented in Section 4. Next, we analyze the experimental
results and discuss the derived findings in Section 5. Finally, the concluding remarks are
given in Section 6.

2. Related Work

Graphs are a kind of universal representation of non-Euclidean structured data, which
could encode complex geometric structures [32]. The following studies regarding the
graph-based HSI classification approaches have gained significant attention in the last few
years. Therefore, we offer a glimpse of their scientific contributions. Hyperspectral data
usually reside on a nonlinear sub-manifold, causing the inefficiency of linear algorithms [1].
Manifold learning-based algorithms have been applied for the exploration of the nonlinear
structure of HSI [33]. Graph-based semi-supervised learning usually constructs a graph
from the labeled and unlabeled samples for manifold representation [2]. Ma et al. (2014)
presented a study of the local manifold learning to preserve the local geometry of each
neighborhood by finding the relationships between the nonlinear data points [34].

Sparse representation-based graph learning algorithms are good at obtaining the
adjacency relationships among the samples and weights [35]. Tan et al. (2015) constructed
a block sparse graph by combining sparse representation and the regularized collaborative
representation for HSI classification based on discriminant analysis [36]. Luo et al. (2016)
employed manifold learning based on sparse representation to illustrate the manifold
structure of HSI [37]. De Morsier et al. (2016) proposed a graph representation with the
kernel low-rank and sparse subspace clustering for the classification of his, assuming that
hyperspectral data lies on the union of manifolds [38]. Based on the previous works, Shao
et al. (2017) proposed a probabilistic class structure to estimate the probability relationship
between each sample point and each class of the whole data [39]. Hong et al. (2019)
proposed a graph-based semi-supervised learning method for analyzing the discriminant
behavior of the labeled samples to assess the class separability [40].

As spectral information alone is not useful for discriminating different classes, the
superior classification performance could be achieved through exploiting the spatial neigh-
borhood information along with spectral information [41]. Camps-Valls et al. (2007)
presented a graph-based composite kernel model for learning spectral-spatial informa-
tion in a semi-supervised way [42]. Gao et al. (2014) proposed a two-layer graph-based
framework to overcome the challenges of limited data and the compound distribution of
classes [43]. Martínez-Usó et al. (2014) proposed a transductive approach for graph-based
semi-supervised learning based on the probabilistic relaxation theory [44]. Wang et al.
(2014) classified newly introduced samples by constructing the spectral–spatial graph while
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the unlabeled samples could be randomly selected relying on the spatial information [45].
Luo et al. (2016) proposed a graph-based model considering both spatial and spectral
information [46].

The sparse representation-based graph semi-supervised learning technique combined
with spectral–spatial feature learning has been proven to be effective to boost the resultant
classification performance. Kruse et al. (2003) constructed a hypergraph model to explore
the high-order relationships among training samples and then performed a semi-supervised
hypergraph learning based on a locality constraint low-rank representation method [47].
Chen et al. (2017) conducted the double sparse graph discriminant analysis based on
mining the positive and negative relationships among the data points for the dimensionality
reduction in HSI in a semi-supervised manner [48]. Xue et al. (2017) adopted the sparse
graph regularization for getting a more accurate classification map [49]. Aydemir and
Bilgin (2017) used subtractive clustering to select training samples and extract the kernel
sparse representation features to fit a support vector machine (SVM) classifier [50].

In the latest literature, GCNs have been successfully applied in irregular (or non-
Euclidean) data representation learning [8]. The label information of each sample is
propagated to its neighboring samples until a global stable state is reached on the complete
dataset [2]. Earlier, the feature extraction and classification module has been assembled sep-
arately or executed step-by-step. As such, some scholars tried the spatial fusion technique
to extract the spectral–spatial features, and then the fused features are fed into a CNN
framework to learn the class distribution [12,51]. Cao et al. (2016) proposed a graph-based
convolutional neural network, which used the Schroedinger Eigenmaps algorithm by
incorporating a cluster potential matrix to encode spatial proximity and takes CNN as a
spectral-spatial classifier to predict the accurate labels of pixels [12]. Shahraki and Prasad
(2018) defined three spectral–spatial weighted affinities, (1) unsupervised adjacency matrix
by using the raw reflectance spectra, (2) supervised adjacency matrix through extracting
discriminative features using CNN, and (3) semi-supervised adjacency matrix via learning
the limited amount of labeled samples and extensive unlabeled samples, to demonstrate
the data resided on manifold structure (i.e., graph structure) [52]. Liu et al. (2020) ex-
tracted the extended morphological profiles and then conducted graph construction by the
k-neighbors method, then fed into a GCN framework [20].

Recent advances in HSI classification also tended to improve the traditional GCN-
based methods to inspire novelties in diverse learning paradigms [53]. As traditional GCNs
might fail to utilize spectral signatures without considering spatial structures embedded in
hyperspectral data, Qin et al. (2019) presented a semi-supervised spectral–spatial GCN
framework and claimed that a general backpropagation rule of error could benefit the final
classification performance [7]. Wan et al. (2019) made multiple graph inputs dynamically
updated and refined with a novel dynamic graph convolution operation, then multiple
graphs with different neighborhood scales could serve for extracting spectral–spatial
features in different scales [11]. Hong et al. (2020) introduce the mini-batch strategy to
improve GCN, which is capable of processing large-scale data and out-of-samples, and
then jointly fused CNN (to extract the spectral–spatial features) and GCN (to analyze the
relation representations) by testing three fusion schemes [10]. The deeply semi-supervised
learning models have drawn more attention depending on their peculiar advantages of
mining the unlabeled data to alleviate the annotating burden in the last couple of years [54].

Relevant to this study, most related works pay attention to the graph-based semi-
supervised learning methods for HSI classification. The graph-based semi-supervised
technique makes the input data built on the full graph, which combines the labeled and
unlabeled nodes by employing a graph Laplacian regularizer when training and evaluating
node classification models. The unlabeled nodes are completely observed during training
or testing, whereas the standard formulation of semi-supervised learning requires the
independent and identically distributed assumption between the labeled and unlabeled
nodes [55]. In this case, the special concern of how to follow the usual supervised setting is
raised as a research problem associated with our scientific motivation in this study.
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3. Preliminaries
3.1. Graph Structure

An undirected graph is represented by G = (V, E, A). V is a finite set with |V| = n
vertices which signify both the labeled and unlabeled data samples. E is the edge set which
denotes the similarities among the labeled samples as well as the unlabeled samples from
the dataset. The A ∈ Rn×n is a weighted adjacency matrix (i.e., graph weights) encoding
the connection weight between two vertices. Note that, given a signal x defined on the
nodes of the graph, which can be regarded as a vector x ∈ Rn, xi is the value of x at the
ith node.

3.2. Adjacency Matrix

The graph adjacency matrix is usually calculated by measuring the similarity between
two spatial neighborhoods. The adjacency matrix can be denoted as A =

[
aij
]
∈ Rn×n,

which defines the relationships (or edges) between vertexes. Each element aij ∈ A can be
generally computed by using the following:

(1) the radial basis function ai,j = exp
(
−‖xi−xj‖2

σ2

)
[8] or the Gaussian similarity func-

tion ai,j = exp
(
−‖xi−xj‖2

2σ2

)
[2], where σ is a parameter to control the width of the

neighborhoods, the vectors xi and xj denote the spectral signatures associated to the
vertexes vi and vj, respectively;

(2) the distance function aij = ‖x‖p =

(
C
∑

c=1

∣∣xic − xjc
∣∣p) 1

p

, p ≥ 1 is defined between two

samples xi and xj, where p is an optional parameter, and C is the dimension of the
feature vector. When p is 1 or 2, it becomes Manhattan distance or Euclidean distance
(i.e., used in this study), respectively. The distance metric of all sample pairs can form
a symmetric distance matrix Am =

[
aij
]
∈ Rn×n. For example, aij at row i and column

j in the matrix Am denotes the distance between the ith pixel and the jth pixel [20].

3.3. Graph Laplacian

Once A is given, the corresponding graph Laplacian matrix L can be defined as
L = D−A, where D = diag(d1, d2, . . . , dN) is a diagonal matrix representing the degrees
of A, and di = ∑j aij is the degree of the node i. To enhance the generalization ability of the

graph, the symmetric normalized Laplacian matrix L̂ can be given as L̂ = D−
1
2 LD−

1
2 =

I−D−
1
2 AD−

1
2 , where I is an identity matrix [32].

3.4. Graph Fourier Transform

As L is a real symmetric positive semidefinite matrix, it has a complete set of or-
thonormal eigenvectors {ui} ∈ Rn known as the graph Fourier modes [31]. The associated
ordered real nonnegative eigenvalues {λi} ∈ Rn of the set of eigenvectors can be identified
as the frequencies of the graph. The Laplacian is further diagonalized by the Fourier
basis U = [ui] ∈ Rn×n, such that we could perform spectral decomposition on L. So, we
could have L = UΛU−1, where U = (u1, u2, . . . , un) is the set of eigenvectors of L and
Λ = diag([λ1, . . . , λn]) ∈ Rn×n. As U is the orthogonal matrix, i.e., UUT = E, the L can be
written as L = UΛU−1 = UΛUT . In this regard, there is a signal x ∈ Rn, its graph Fourier

transform can be defined as
ˆ
x = UTx ∈ Rn, and its inverse is x = U

ˆ
x [56]. Furthermore,

the given basis functions of F can be equivalently represented by a set of eigenvectors of
L [8]. Therefore, the F of f on a graph can be expressed as G(F[ f ]) = UT f , and the inverse
transform becomes f = UG(F[ f ]), G(F[]) or G([]) denotes an operator on the graph in the
Fourier domain.
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4. Proposed Method
4.1. Graph Construction

Whether the graph-based quasi-semi-supervised learning in the literature or the usual
supervised learning in this study, both require the construction of graph data from the
labeled and unlabeled samples using a graph Laplacian regularizer to smooth the classifi-
cation function for the data manifold [2]. Accordingly, the high-dimensional hyperspectral
data could be transferred into a low-dimensional subspace adapting to low-dimensional
modeling and computation. Here, a graph was constructed with nodes and edges, where
the nodes were specified by the unlabeled and labeled samples, whereas the edges speci-
fied the similarities among the labeled as well as the unlabeled samples. The effect of the
Laplacian regularizer depends upon the construction of the graph adjacency matrix. As il-
lustrated in Figure 2, the construction of the graph structure involved (1) the determination
of localized graph adjacency relationships and (2) the calculation of multiple graph weights
that have the number of samples. Finally, the correct label of land cover classes could be
assigned to each patch-based hyperspectral cube after fitting the deep graph representation
model in a standard supervised learning paradigm.

Figure 2. The presented graph representation learning framework for HSI classification with the localized graph convolu-
tional filter. Here, the localized feature cubes were created by using a principal component analysis (PCA) transformation.

The high-dimensional data distribution might form an overlap of multiple mani-
folds [2]. The existing methods assume that hyperspectral data are a single manifold
(follows label smoothness assumption) or multiple well-separated manifolds (i.e., dissatisfy
label smoothness assumption). A graph can be constructed with k-nearest neighbor (k-NN)
edges. The nearby nodes are strongly connected and have similar labels. Therefore, the
original hyperspectral data are spectral vectors structured in regular grids requiring to be
converted into graphs in the irregular (or non-Euclidean) domain before deeply learning
graph representations, given hyperspectral data matrix X ∈ Rn×c, where n is the number
of samples, and c (e.g., 10) is the feature dimension. Because hyperspectral data contain
redundant information of a huge volume, feature reduction is one of the widely used
techniques in machine learning-based HSI processing [40,48]. In terms of deep learning
methods represented by CNNs, the contribution of using principal component analysis
(PCA) has been known to be limited. As for the presented GCN, we found the PCA
transformation was workable to enhance the classification performance. In this regard, we
tried the PCA preprocessing (note that the number of components was set as 10) to extract
unsupervised features and reduce the effects of intrinsic data correlation and noise. Finally,
the graph adjacency matrix could be constructed by the k-NN.
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The k-NN based graph construction method is most favored by the remote sensing
community [2]. The adjacent matrices (i.e., graph weights) of a k-NN graph are computed
by selecting k-connected neighbor nodes closest to the central node xi from the given
data. That is, to compute the weighted graph of k-neighbors for pixels in X ∈ Rn×c, a set
of localized weight matrices (i.e., adjacent matrices) {Ai}i=n will be normally calculated
among all labeled and unlabeled samples to participate in the classification procedure.
So, the neighbor nodes xi and xj have an associated weight (e.g., wij = 0 means no
connection). Notice that most graph construction methods use k-NN to generate adjacent
matrices (adjacent graph). Nevertheless, k-NN might fail to obtain sufficient discriminant
information.

4.2. Graph Convolution Filter

There are two strategies to define convolutional filters, either from a spatial approach
or from a spectral approach [31]. The convolution theorem defines convolutions as linear
operators diagonalized on the Fourier basis (represented by the eigenvectors of the Lapla-
cian operator) [57]. Given two basis functions f and g, then their convolution can be written
as f (t) ∗ g(t) =

∫ ∞
−∞ f (τ)g(t− τ)dτ, where t is an independent variable, τ is the shifting

distance, and ∗ denotes the convolution operator (or using ∗G or G(∗) denotes a convo-
lution operator on the graph). Through the well-known theorems presented in [58], the
convolution can be generalized to f ∗ g = F−1{F[ f ]× F[g]}, where × is the element-wise
Hadamard product, and F−1 denotes an inverse Fourier transform. Hence, the convolution
operation on a graph can be converted to define the Fourier transform F or find a set of basis
functions. According to the graph Fourier transform addressed before, the convolution
between f and g on a graph can be further expressed as G([ f ∗ g]) = U

{[
UT f

]
×
[
UT g

]}
.

4.3. Localized Graph Convolution

When it comes to the construction of localized graph convolution operators, spatial
approaches provide filter localization via setting the finite size of the kernel, and spectral
approaches, such as spectral filtering, could provide a well-defined localization operator on
graphs via convolutions with a Kronecker delta implemented in the spectral domain [56,59].
In this regard, spectral filtering would be an effective approach to construct a graph
convolution filter. Assume that by imposing an additional spectral filter gθ on the Fourier
transform of a graph, we could have G([ f ∗ gθ ]) = gθ(L) f = gθ

(
UΛUT) f = Ugθ(Λ)UT f ,

where gθ(Λ) is the function of the eigenvalues Λ of L with respect to the variable θ. The
parameter θ ∈ Rn is a vector of Fourier coefficients. As gθ is a non-parametric filter, so

gθ(Λ) = diag(θ) . And then, we find that UT g could be equivalently written as gθ(Λ) or
gθ . That is, the convolution on a graph can be formulated as G([ f ∗ gθ ]) = UgθUT f .

The non-parametric filters might have an intrinsic deficiency to be localized in node
space and have a higher learning complexity [31]. In this case, the polynomial filters are

introduced to parameterize the localized filters and defined as gθ(Λ) =
K−1
∑

k=0
θkΛk, where

the parameter θ = [θi] ∈ RK is a vector of polynomial coefficients. The value at the vertex
j of the filter gθ centered at the vertex i is given by

(
gθ(L)δj

)
j = (gθ(L))i,j = ∑k θk

(
Lk
)

i,j
,

where the kernel is localized via the convolution with a Kronecker delta function δi ∈ Rn.
The K relates to the minimum number of edges connecting two vertices on the graph (i.e.,
the shortest path distance). As a result, spectral filters represented by kth order polynomials
of the Laplacian are exactly K-localized enclosing K parameters.

When the graph convolution filter is localized with respect to K, the cost to filter a
graph signal might be relatively high because of the multiplication with the Fourier basis
U. A practical solution is to parameterize gθ(L) as polynomial functions [31], e.g., the kth

order truncated expansion of Chebyshev polynomials [60] and Lanczos algorithm [61],
which can be computed recursively from L. Therefore, the localized graph convolution
filter can be parameterized as the truncated expansion of the Chebyshev polynomial
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G([ f ∗ gθ ]) ≈
K−1
∑

k=0
θ′kTk(L) f and gθ(Λ) =

K−1
∑

k=0
θk
′Tk(

~
Λ), where θ′ ∈ RK is a vector of the

Chebyshev coefficients [4]. The Tk(
~
L) ∈ Rn×n and Tk(

~
Λ) ∈ Rn×n can be evaluated at the

scaled Laplacian
~
L = 2L̂/λmax − I and

~
Λ = 2Λ̂/λmax − I, respectively. L̂ and Λ̂ denote the

normalized L and Λ, respectively. The λmax denotes the largest eigenvalue of
~
L.

4.4. Graph-Based CNN

Regarding the architecture of the graph-based CNN (see Figure 3), we have the fol-

lowing propagation rule for fitting a designed GCN Hl+1 = h
(

D
− 1

2 AD
− 1

2 HlWl + bl
)

[8],

where
~
A = A + I and

~
Di,i = ∑j

~
Ai,j are defined as the renormalization terms of A and D,

respectively. Moreover, Hl denotes the output in the lth layer and h(·) is the activation func-

tion (e.g., ELU in this study) with respect to the weights
{

Wl
}p

l=1
and the biases

{
bl
}p

l=1
of all layers (l = 1, 2, . . . , p). Particularly, the computational efficiency of the presented
method is further improved using the Chebyshev approximation addressed by Rhee et al.
(2017) [62].

Figure 3. The architecture of the proposed convolutional neural network (CNN) and graph convolutional network (GCN).
Here, Si {i = 1, 2} denotes the key sub-flows, and Pj {j = 1, 2, 3} represents several sets of parameter settings. Note that the
CNN and GCN are completely independent networks.

Moreover, the lth output feature map of the sample s is given by ys,l =
Fin
∑

i=1
gθi,l (L)xs,i ∈

Rn, where xs,i are the input feature maps, and the Fin × Fout vectors of Chebyshev coef-
ficients θi,l ∈ RK are the layer’s trainable parameters [31]. When training multiple con-
volutional layers with the backpropagation algorithm, every one of them needs the two

gradients ∂E
∂θi,j

=
S
∑

s=1
[xs,i,0, . . . , xs,i,K−1]

T ∂E
∂ys,j

and ∂E
∂xs,i

=
Fout
∑

j=1
gθi,j(L)

∂E
∂ys,j

, where E is the loss of

energy over a mini-batch of S samples. Each of the above three computations boils down
to K sparse matrix–vector multiplications and one dense matrix–vector multiplication. At
the top of the graph neural networks, the objective function will be formulated to minimize



Remote Sens. 2021, 13, 526 9 of 20

the training loss and to ensure robustness in terms of convergence. Finally, the unlabeled
samples could be classified into different known land cover categories.

5. Experiments and Analysis
5.1. Datasets and Settings

Four real hyperspectral datasets (see Figure 4 and Table 1) with different spatial
resolutions were used for the experiments. The Indian Pines-A (IA), Salinas Valley-A (SA),
Salinas Valley (SV), and Pavia University (PU) datasets are openly accessible online (http:
//www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes).

Table 1. The division of ground truth samples for the Indian Pines-A (IA), Salinas Valley-A (SA),
Salinas Valley (SV), and Pavia University (PU) datasets.

Datasets Codes Classes Total Training Test Validation

IA

C0 Not-ground truth 1534 0 0 0

C1 Corn-notill 1005 60 885 60

C2 Grass-trees 730 60 610 60

C3 Soybean-notill 741 60 621 60

C4 Soybean-mintill 1924 60 1804 60

SA

C0 Not-ground truth 1790 0 0 0

C1 Brocoli_green_weeds_1 391 60 271 60

C2 Corn_senesced_green_weeds 1343 60 1223 60

C3 Lettuce_romaine_4wk 616 60 496 60

C4 Lettuce_romaine_5wk 1525 60 1405 60

C5 Lettuce_romaine_6wk 674 60 554 60

C6 Lettuce_romaine_7wk 799 60 679 60

SV

C0 Not-ground truth 56,975 0 0 0

C1 Brocoli_green_weeds_1 2009 60 1889 60

C2 Brocoli_green_weeds_2 3726 60 3606 60

C3 Fallow 1976 60 1856 60

C4 Fallow_rough_plow 1394 60 1274 60

C5 Fallow_smooth 2678 60 2558 60

C6 Stubble 3959 60 3839 60

C7 Celery 3579 60 3459 60

C8 Grapes_untrained 11,271 60 11,151 60

C9 Soil_vinyard_develop 6203 60 6083 60

C10 Corn_senesced_green_weeds 3278 60 3158 60

C11 Lettuce_romaine_4wk 1068 60 948 60

C12 Lettuce_romaine_5wk 1927 60 1807 60

C13 Lettuce_romaine_6wk 916 60 796 60

C14 Lettuce_romaine_7wk 1070 60 950 60

C15 Vinyard_untrained 7268 60 7148 60

C16 Vinyard_vertical_trellis 1807 60 1687 60

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


Remote Sens. 2021, 13, 526 10 of 20

Table 1. Cont.

Datasets Codes Classes Total Training Test Validation

PU

C0 Not-ground truth 164,624 0 0 0

C1 Asphalt 6631 60 6511 60

C2 Meadows 18,649 60 18,529 60

C3 Gravel 2099 60 1979 60

C4 Trees 3064 60 2944 60

C5 Painted metal sheets 1345 60 1225 60

C6 Bare Soil 5029 60 4909 60

C7 Bitumen 1330 60 1210 60

C8 Self-Blocking Bricks 3682 60 3562 60

C9 Shadows 947 60 827 60

Figure 4. The pseudo-color images and ground truth data for four real hyperspectral datasets, i.e., (a) the IA dataset, (b) the
SA dataset, (c) the SV dataset, and (d) the PU dataset.

The Indian Pines (IP) scene was gathered by the 224-band AVIRIS sensor in the
wavelength range 400 to 2500 nm at a 20-m spatial resolution (i.e., 20 meters/pixel, or
abbreviated as 20 m/p), in north-western Indiana. The IA dataset was a subset of the IP
dataset, which consisted of 86 × 69 pixels and contained 200 spectral reflectance bands by
removing bands covering the region of water absorption. The SV scene was also collected
by the AVIRIS sensor (of which discarded 20 water absorption bands) over Salinas Valley,
which comprised 512 × 217 pixels and had 16 classes, but a 3.7 m/p spatial resolution.
Similarly, the SA scene was a small sub-scene of the SV scene, which comprised 86×83
pixels and had 6 classes. The PU scene was acquired by the ROSIS sensor over Pavia
University, northern Italy. The PU dataset consisted of 103 spectral bands after the 13
noisiest bands were discarded, which had a size of 610× 340 at a 1.3 m/p spatial resolution.
Meanwhile, there were 9 classes included in the ground truth map.

It is of importance to select qualified training samples for fitting and evaluating the
presented algorithm [63]. As listed in Table 1, the unlabeled training samples were coded
as class C0 with the white background color. As for all the datasets, the size of the training
set of all classes was set to 60, the same as the size of the validation set (i.e., nclass × 60).
Except for the samples included in the training and validation sets, all other samples
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were taken as the test set. The type of dataset might be a non-negligible factor in this
study. The PU dataset was collected over an urban area. The IA, SA, and SV datasets were
collected in a natural area. The IA and SA scenes belonged to simple datasets with low data
complexity, while the SV and PU scenes appeared relatively complex, whether in spatial
scale or landscape diversity. Moreover, the IA and SA datasets had a large proportion
of ground truth samples relative to the entire scene and the lower intra-class variability.
These intrinsic differences were crucial for investigating the representation ability of deep
learning models on simple or complex data.

The experimental platform was a laptop equipped with an Intel Core i7-9750 12-
core 2.60 GHz processor, a 256GB SSD, a 1T HDD, a 16 GB RAM, and an 8G GDDR6
NVIDIA RTX 2070 graphics card. The experimental procedures ran on the GPU aimed
to achieve a higher computational speed. As only small training data was used, the time
consumption of experiments could be controlled within a few minutes with the 5 and 10
independent runs and 200 epochs (or early stopping over 100 epochs) per run. It was
relatively fast and showed promising efficiency in terms of complex networks. To ensure
a complete comparison with CNN and to improve the traditional GCN, we tried to keep
the parameter settings of the network structure as similar as possible. In this regard, we
ran the experiments 5 and 10 times with each model for each dataset and kept the sizes
of the training and validation sets independent. These sets of samples were randomly
shuffled to reduce the possible influence of random effects, and the statistical accuracies
were recorded.

The training details incorporated the accuracy and loss of the training and validation
procedures. Many factors impacted these curves, which show whether a model is qualified
enough or its parameter configuration is appropriate for the subsequent parameter learning.
The experiments demonstrated that, for the simple datasets, i.e., the IA and SA datasets,
the CNN and GCN models appeared to converge gradually and showed good convergence
behavior. When it came to the complex datasets, i.e., the SV and PU datasets, the CNN
model stabilized much faster at ~10 epochs, while its validation loss curve (Val_loss)
appeared to have an abnormal behavior of convergence, and the corresponding GCN
model was getting better slowly (see Figure 5). As a whole, the GCN model showed a
better representation of the global convergence than the CNN model, though the GCN
model had some difficulties in handling the local portions, which might be influenced by
the learning rate.

Figure 5. Cont.
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Figure 5. The accuracy & loss curves of the CNN and GCN models in the 1st run for the SV and PU datasets, i.e., (a)
CNN-SV, (b) CNN-PU, (c) GCN-SV, (d) GCN-PU, corresponding to the experiment with five random runs.

Relative to deep learning models, the machine learning algorithms (i.e., support vector
machine (SVM)) often involve the training set (i.e., randomly selecting 60 samples of each
category for fitting the classifier) and the test set, without the specialized validation set. In
this study, we fine-tuned the hyperparameters (i.e., two parameters, the penalty parameter
of the error term and the kernel coefficient for “rbf”). The implementation of the SVM
classifier is based on “libsvm” with a one-vs.-one scheme. Moreover, all grid searches are
calculated using the five-fold cross-validation. For the IA, SA, SV, and PU datasets, the best
parameters obtained in the first independent run were: (1) the penalty parameter fixed at
10.0, 10.0, 100.0, and 100.0, respectively; and (2) the kernel coefficient for “rbf” determined
to be 0.1, 0.1, 0.1, and 0.1, respectively. Finally, the best score was 0.8875, 0.9861, 0.9292, and
0.8481, respectively.

5.2. Classification Maps

The presented experiments regarding HSI classification were achieved based on the
intensity values (i.e., not the reflectance values) distributed along with spectral bands.
After the training and evaluating procedures, all the unlabeled samples were classified into
the proper categories; then the classification maps would be particularly helpful to assess
the final classification results qualitatively. As the experiments using each algorithm for
different datasets had been randomly run 5 and 10 times, we first plotted the classification
maps of SVM, CNN, and the presented GCN for the IA dataset in the five running times
(see Figure 6). Subsequently, the classification maps of three algorithms in the 1st run for
all hyperspectral datasets were illustrated as well (see Figure 7).

As shown in Figure 6, the classification maps obtained by the SVM algorithm appeared
as scattered spots, as the SVM is a pixel-level classifier essentially. The misclassifications
might often be caused by the high intra-class variability and the low inter-class variabil-
ity among different land cover classes. The similar results of different algorithms were
commonly seen in the different random runs. The subsequent accuracy statistics and the
corresponding probability maps also supported such an analysis. Referring to Figure 7,
the GCN model had promising outputs compared to the other two algorithms, i.e., SVM
and CNN. Furthermore, most errors of commission and omission occurred in the non-
homogeneous areas involving complex landscape structures or land surface materials. The
misclassifications might be mainly caused by some inherent uncertainties between classes.
It is obvious that the GCN model obtained fairly good results and surpassed the SVM and
CNN algorithms.
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Figure 6. The classification maps of the presented GCN and its competitors, i.e., SVM and CNN, in five times random run
for the IA dataset. The 1st, 2nd, and 3rd rows correspond to the (a) SVM, (b) CNN, and (c) GCN algorithms, respectively.
Meanwhile, the 1st, 2nd, 3rd, 4th, and 5th columns correspond to different random runs, respectively.

5.3. Classification Accuracies

Three widely used accuracy metrics, i.e., the Kappa index (K), overall accuracy (OA),
average accuracy (AA), were used to assess the classification results, which were derived
from the site-specific confusion matrix. As Table 2 illustrated, the presented GCN undoubt-
edly obtained the best classification performance for all the used hyperspectral datasets.
Concerning the CNN model for the SA and SV datasets, the resultant accuracies appeared
unanticipated. The reason is that we expanded the number of epochs from 50 to 200,
and the CNN model triggered the early stopping event when monitoring its validation
loss. The larger epochs might lead to a worse convergence and a decrease in performance
simultaneously. Meanwhile, such a result also disclosed that the differences between the
simple and complex datasets might have a significant impact on measuring performance.

To analyze the misclassifications of the GCN model, we drew the confusion matrices
for different datasets with the best performance based on the presented GCN model (see
Figure 8). As for the IA dataset, we got accuracies {K: 0.9644; OA: 0.9750; AA: 0.9796}; there
were 32 samples (0.04%) of Class 1 (Corn-notill) wrongly classified as Class 4 (Soybean-
mintill) while there were 58 samples (0.03%) of Class 4 (Soybean-mintill) wrongly predicted
as other classes, which might mean a potential inter-class negative influence. Because
the SA dataset was relatively simple, the corresponding derived accuracies appeared
almost saturated, i.e., {K: 0.9997; OA: 0.9998; AA: 0.9998}. For the SV dataset with accu-
racies {K: 0.9486; OA: 0.9539; AA: 0.9711}, most of misclassifications occurred in Class 8
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(Grapes_untrained) and Class 15 (Vinyard_untrained), which might mean a conspicuous
inter-class similarity between two classes. Looking at the PU dataset with accuracies {K:
0.9247; OA: 0.9436; AA: 0.9123}, more classes might get into the inter-class classification
errors, probably because the PU scene was located in an urban environment and with a
relatively complex landscape component.

Figure 7. The classification maps of the presented GCN (the 4th column) and its competitors, i.e., SVM (the 2nd column)
and CNN (the 3rd column), in the 1st run for four real hyperspectral datasets, i.e., (a) the IA dataset, (b) the SA dataset, (c)
the SV dataset, (d) the PU dataset, corresponding to the experiment with five random runs.
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Table 2. The statistical classification accuracies for four real hyperspectral datasets with 5 and 10 random runs. Note that
the experiments regarding a different number of random runs were carried out independently.

Alg. SVM CNN GCN

Dat./Acc. K OA AA K OA AA K OA AA

IA5 0.7646 ± 0.0174 0.8343 ± 0.0120 0.8574 ± 0.0136 0.8990 ± 0.0103 0.9294 ± 0.0076 0.9506 ± 0.0043 0.9550 ± 0.0064 0.9685 ± 0.0045 0.9692 ± 0.0062
SA5 0.9793 ± 0.0054 0.9836 ± 0.0043 0.9818 ± 0.0065 0.9477 ± 0.0153 0.9586 ± 0.0122 0.9701 ± 0.0079 0.9983 ± 0.0010 0.9987 ± 0.0008 0.9982 ± 0.0011
SV5 0.8370 ± 0.0076 0.8533 ± 0.0070 0.9229 ± 0.0027 0.7895 ± 0.0126 0.8101 ± 0.0115 0.8244 ± 0.0057 0.9360 ± 0.0099 0.9426 ± 0.0088 0.9614 ± 0.0090
PU5 0.7015 ± 0.0065 0.7651 ± 0.0051 0.8270 ± 0.0090 0.7238 ± 0.0235 0.7856 ± 0.0204 0.8423 ± 0.0121 0.9113 ± 0.0080 0.9336 ± 0.0059 0.8927 ± 0.0128

IA10 0.7671 ± 0.0156 0.8355 ± 0.0114 0.8613 ± 0.0106 0.8930 ± 0.0249 0.9250 ± 0.0182 0.9475 ± 0.0094 0.9579 ± 0.0104 0.9706 ± 0.0072 0.9702 ± 0.0075
SA10 0.9795 ± 0.0046 0.9837 ± 0.0036 0.9823 ± 0.0055 0.9637 ± 0.0074 0.9713 ± 0.0058 0.9783 ± 0.0038 0.9978 ± 0.0020 0.9982 ± 0.0016 0.9977 ± 0.0021
SV10 0.8389 ± 0.0080 0.8551 ± 0.0073 0.9224 ± 0.0037 0.7896 ± 0.0069 0.8105 ± 0.0064 0.8234 ± 0.0098 0.9405 ± 0.0136 0.9465 ± 0.0123 0.9663 ± 0.0063
PU10 0.7038 ± 0.0168 0.7674 ± 0.0148 0.8274 ± 0.0088 0.7218 ± 0.0314 0.7836 ± 0.0267 0.8424 ± 0.0152 0.9079 ± 0.0153 0.9309 ± 0.0117 0.8916 ± 0.0185

Figure 8. The confusion matrices of the presented GCN for different datasets, corresponding to the experiment with five
random runs. (a) The IA dataset was at the 5th random run, (b) the SA dataset was at the 3rd random run, (c) the SV dataset
was at the 3rd random run, and (d) the PU dataset was at the 2nd random run.

5.4. Probability Maps

Probability density has been taken as an effective indicator to indicate the confidence
of the classification output [63]. In this regard, the label assignment depends on the credible
predictions with the maximum predicted probabilities and determines the final output
maps. Probability maps are often utilized to observe the probability density and to find
weak predictions. Therefore, we graphed the probability maps of each algorithm to show
that the GCN model had clear advantages over the popular CNN model, and an apparent
distinction could be reflected in the probability maps (see Figure 9).
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Figure 9. The probability maps of the presented GCN and its competitors in the 1st run for four
real hyperspectral datasets, i.e., (a) the IA dataset, (b) the SA dataset, (c) the SV dataset, (d) the PU
dataset, corresponding to the experiment with five random runs. Note that the deeper the color, the
weaker the prediction.

Weak predictions in a holistic scene regarding the HSI classification task have been
reported by scholars previously [63]. Figure 9 indicates the typical but not noticeable differ-
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ences between the CNN and GCN models. That is, the maximum predicted probabilities
of each hyperspectral cube whose central pixel was located at the edge of a category were
relatively low. It seems that the GCN might be better at illustrating the boundaries among
different land cover categories. Moreover, weak predictions might be more likely to occur
in the cross areas and the areas covered by non-ground truth samples.

5.5. Time Consumption

The statistics of time cost are related to deep learning network structures. So, the
efficiency of deep learning models can be approximately deduced as per the scales of
network parameters. In practice, the training and test times are often recorded based on the
clock setting of the computer operating system (see Table 3). The processing time with CPU
plus GPU may depend on many possible factors, i.e., the randomness in neural networks,
the efficiency of memory storage, and the difference of computational environment. Note
that we tried to make the network structures of the presented CNN and GCN as comparable
as possible, thus facilitating further improvement and contrastive analysis.

Table 3. Total network parameters and time consumption (i.e., the average time of 5 and 10 random runs). Note that
the numbers in parentheses regarding datasets and models indicate the number of samples and the number of network
parameters, respectively.

Alg. (Para.)/Dat.
(Num.)/Time (s)

IA (86 × 69 × 200) SA (83 × 86 × 204) SV (512 × 217 × 204) PU (610 × 340 × 103)

Training
(240)

Test
(3920)

Training
(360)

Test
(4628)

Training
(960)

Test
(52209)

Training
(540)

Test
(41696)

SVM5 1.00 ± 0.04 0.01 ± 0.01 2.22 ± 0.01 0.02 ± 0.01 17.35 ± 0.25 1.29 ± 0.05 5.77 ± 0.01 0.55 ± 0.04
CNN5

(1.22 × 105)
14.65 ± 4.47 0.31 ± 0.01 17.07 ± 3.33 0.39 ± 0.02 18.49 ± 0.27 5.00 ± 0.14 15.03 ± 0.94 3.21 ± 0.05

GCN5

(2.50 × 105)
13.22 ± 1.22 0.24 ± 0.00 20.41 ± 0.72 0.31 ± 0.00 43.39± 0.48 3.61 ± 0.07 28.10 ± 0.59 3.03 ± 0.06

SVM10 1.05 ± 0.06 0.01 ± 0.00 2.24 ± 0.03 0.02 ± 0.01 17.47 ± 0.20 1.27 ± 0.03 5.80 ± 0.10 0.56 ± 0.04
CNN10

(1.22 × 105)
12.69 ± 2.98 0.33 ± 0.03 14.79 ± 2.34 0.37 ± 0.01 18.06 ± 1.16 4.79 ± 0.31 13.72 ± 0.85 3.04 ± 0.04

GCN10

(2.50 × 105)
13.50 ± 4.12 0.24 ± 0.01 21.52 ± 1.31 0.32 ± 0.01 50.04 ± 2.85 4.08 ± 0.13 35.08 ± 2.69 3.62 ± 0.14

The differences between the presented CNN and GCN models relied on the differences
between the convolution layer with a batch normalization layer and the graph convolu-
tion layer, under a comparable paradigm of network architecture design. From another
perspective, both network structures had approximately the same network complexity,
as we expected. Then by observing Table 3, except for the simple datasets, the presented
GCN model cost ~2 times the training time than the CNN model. Such a finding could be
further confirmed by the number of their network parameters (i.e., CNN: 1.22 × 105; GCN:
2.50 × 105).

6. Conclusions

Deep learning models have been extensively employed for HSI classification and
have attracted increasing attention for their strong representation ability. Particularly, the
nascent graph representation learning has shown good goodness for resolving the graph-
structured data. In this study, we not only reviewed the recent publications related to
the graph-based representation learning methods for HSI classification but also presented
a novel graph-based spectral filtering approach that has promising benefits. It is worth
mentioning that we found that the presented GCN model indeed has the advantage of
illustrating the boundaries of different land cover classes by observing the weak predictions
derived from the probability maps. In short, graph representation learning might represent
future directions to enhance the research field of HSI classification. Future work would
involve (i) testing the n-dimensional datasets where the number of components less than
10, and (ii) using the explained variance ratio for the PCA preprocessing.
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