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Abstract: Human–Computer Interfaces (HCI) deals with the study of interface between humans
and computers. The use of radar and other RF sensors to develop HCI based on Hand Gesture
Recognition (HGR) has gained increasing attention over the past decade. Today, devices have built-in
radars for recognizing and categorizing hand movements. In this article, we present the first ever
review related to HGR using radar sensors. We review the available techniques for multi-domain
hand gestures data representation for different signal processing and deep-learning-based HGR
algorithms. We classify the radars used for HGR as pulsed and continuous-wave radars, and both
the hardware and the algorithmic details of each category is presented in detail. Quantitative and
qualitative analysis of ongoing trends related to radar-based HCI, and available radar hardware
and algorithms is also presented. At the end, developed devices and applications based on gesture-
recognition through radar are discussed. Limitations, future aspects and research directions related
to this field are also discussed.

Keywords: hand-gesture recognition; pulsed radar; continuous-wave radars; human–computer
interfaces; deep-learning for radar signals

1. Introduction

In recent years, computing technology has become embedded in every aspect of our
daily lives and man–machine interaction is becoming inevitable. It is widely believed that
computer and display technology will keep on progressing further. A gateway which
allows humans to communicate with machines and computers is known as the human–
computer interface (HCI) [1]. Keyboard and mouse and touch-screen sensors are the
traditional HCI approaches. However, these approaches are becoming a bottleneck for
developing user friendly interfaces [2]. Contrary to this, human gestures can be a more
natural way of providing an interface between humans and computers. Short-range radars
have the ability to detect micro-movements with high precision and accuracy [3]. Radar
sensors have shown potential in several research areas such as presence detection [4], vital
sign monitoring [5], and Radio Frequency (RF) imaging purpose [6]. Choi et al. [7] used
an Ultra-Wideband (UWB) Impulse Radar for indoor people counting. Similar research
presented by [8] used milli-metric-wave radar for occupancy detection. In addition to
this, radar sensors have shown their footprints in hand-motion sensing and dynamic
HGR [9–19]. The interest in radar-based gesture recognition has surged in recent years.

Recently, radar sensors have been deployed in a network-fashion for the detection
and classification of complex hand gestures to develop applications such as the wireless
keyboard [9]. In the aforementioned study [9], in-air movement of the hand was recorded
with three UWB radars and a tracking algorithm was used to type 0–9 counting digits
in the air. Another study published by same authors presented a continuous alphabet
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writing based on the gestures drawn in front of two radars [20]. A work presented by
Ahmed and Cho [12] (2020) demonstrated a performance comparison of different Deep
Convolutional Neural Network (DCNN)-based deep-learning algorithms using multiple
radars. In addition to that, hand gesture recognition through radar technology also found
application in the operating room to assist medical staff in processing and manipulating
medical images [21].

Based on the transmitted signal, short-range radar sensors used for HGR can broadly
be categorized as pulsed radar and continuous-wave (CW) radar. This categorization has
been adopted previously in several radarprelated review articles for applications other
than HGR [22]. Pulsed radar, such as Ultra-Wideband Impulse-Radar (UWB-IR), transmits
short duration pulses, whereas continuous-wave radar, such as Frequency Modulated
Continuous Wave (FMCW) radar, transmits and receives a continuous wave. Both these
radars are widely used for HGR purposes.

1.1. Understanding Human Gestures

Prior to making HCI, an understanding of the term “Gestures” is important. Re-
searchers in [23] defined a gesture as a movement of any body part such as arms, hands
and face in order to convey information. This nonverbal communication constitutes up
to two thirds of all communication among the humans [24]. Amongst the different body
parts, hand gestures are widely used for constructing interactive HCIs (Figure 1) [25]. As
seen in Figure 1, 44% of studies focused on developing HCIs using hand, multiple hand
and finger movements. Hand gestures are an important part of non-verbal communication
in our daily life, and we extensively use hand gestures for communication purposes such
as pointing towards an object and conveying information about shape and space. Utilizing
hand movements as an input source instead of a keyboard and mouse can help people to
communicate with computers in more easy and intuitive way. HGR systems have also
found many applications in environments which demand contactless interaction with
machinery, such as hospital surgery rooms [26,27], to prevent the spread of viruses and
germs. As a result, contactless HCI can be a safe means of man–machine interaction in
epidemiological situations such as MERS and the recent and ongoing COVID-19 outbreaks.
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1.2. Hand-Gesture Based HCI Design

The system overview of hand-gesture-based HCI development is explained in Figure 2.
First, a neural spike is produced in the brain, which generates a signal that results in a
voluntarily motion of the hand. Various studies have tried to decode the brain signal
corresponding to hand movement and these signals can be seen through electrocorticogra-
phy [28,29]. To detect the hand movements, several sensors exist, such as camera, depth-
camera, and radio sensors. The signal at the output of these sensors is analyzed using
suitable algorithmic techniques to detect a predefined hand gesture. Researchers have either
used signal-processing-based techniques [30], or machine-learning- and deep-learning-
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based techniques [14]. After successfully recognizing the desired hand-movements, these
gesture-based systems can be used to build different applications such as gaming and
robot controllers.
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As shown in Figure 2, a wide range of sensors are available for acquiring signals
against the performed hand gesture, and radar sensor is one of the candidate solutions.
Traditionally, optical sensors (camera), and wearable sensors (gloves) are widely used.
These sensors can be classified as wearable and non-wearable. Table 1 summarizes the
comparison of existing wearable and non-wearable (wireless) sensors used for recognizing
hand gestures. It can be seen that both types of technology possess their own strengths and
weaknesses and can be selected according to the requirements of the application in consid-
eration. Both the radar and the cameras provide a wireless interface for gesture recognition.
Radar sensors have several benefits over camera-based recognition systems [11]. Radar is
not affected by lightning conditions and there are no related privacy issues. Users often do
not feel comfortable being watched by a camera.

At present, devices a have built-in radar for HGR, such as Google’s smart phone
Pixel 4, which contains a Soli radar chip [6], and was ubiquitously designed and developed
by Google Inc.
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Table 1. Comparison of wearable and non-wearable (wireless) sensors for sensing and measuring hand gestures.

Comparison Criterion Wearable Systems (Gloves, Wristbands, etc.) Wireless Systems (Radar and Camera)

Health-related issues
May cause discomfort to users, as they are
always required to wear gloves, or other

related sensors

Wireless sensor will not cause any
skin-related issue

Sensing/operational range Usually high, if wireless data transfer
is supported

Operates in a contained environment.
Line of sight is usually required
between hand and the sensors

Usage convenience Less convenient (for case of HCI): Users are
always required to wear a sensor

Users are not required to wear
any sensor

Simultaneous recognition of multiple
users/hands within a small area.

Can sense gestures from different users
simultaneously at one location

At one location, recognition capability
is often limited to a specific number of

users/hands
Sensitivity to background conditions

(such as noise) Often less sensitive to ambient conditions More sensitive than wearable devices

Device theft issues Can be lost or forgotten
No such concerns, since the sensor is

usually fabricated inside device or
installed at a certain location.

After data acquisition, the next step is processing the data and recognizing hand
gestures. This includes data representation, useful features extraction, and classification.
The classification can be performed by using signal-processing approaches, traditional
machine-learning approaches [12,15,16,19] or deep-learning approaches [14].

One of the earliest uses of radar for gesture recognition was introduced in 2009 [31].
This research primarily focused on activity classification along with gesture classification.
Zheng et al. [30], in 2013, presented hand gesture classification using multiple Doppler
radars. In the beginning, for detection and recognition, researchers relied heavily on tech-
niques based on the analysis and manipulation of the received radar signal and, later, the fo-
cus shifted towards machine-learning- and deep-learning-based classification techniques.

Figure 3 summarizes the overall workflow of HGR through radar. As shown in
Figure 3, based on the literature survey, it was observed that the task of radar-based HGR
can be further classified into three different sub-tasks:

1. Hand-gesture movement acquisition, where one of the available radar technologies
is chosen;

2. Pre-processing the received signal, which involves pre-filtering followed by a data
formatting which depends on step 3. For example, the 1D, 2D, and 3D deep Convolu-
tional Neural Network (DCNN) will, respectively, require data to be in a 1D, 2D or
3D shape;

3. The final step of hand-gesture classification is similar to any other classification
problem, where the input data are classified using a suitable classifier.

1.3. Main Contribution and Scope of Article

This article provides a comprehensive survey and analysis of the available literature
for HGR through radar sensors. Previously, Li et al. [32] discussed a couple of studies
related to the use of radar for gesture recognition while reviewing applications of portable
radars. However, to the best of the authors’ knowledge, there is no review article for HGR
through radar sensor. Researchers have previously reviewed camera- and optical-sensor-
based HGR systems only [25]. The main contributions and scope of analysis can be defined
as follows:

• We provide a first ever comprehensive review of the available radar-based HGR systems;
• We have discussed different available radar technologies to comprehend their sim-

ilarities and differences. All the aspects related to HGR recognition, including data
acquisition, data representation, data preprocessing and classification, are explained
in detail;
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• We explained the radar-recorded hand-gesture data representation techniques for 1D,
2D and 3D classifiers. Based on this data representation, details of the available HGR
algorithms are discussed;

• Finally, details related to application-oriented HGR research works are also presented;
• Several trends and survey analyses are also included.
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The remainder of this paper is organized as follows. Section 2 provides an overview
of the hand-gesture data acquisition with radar hardware, which includes a discussion
on the different types of radar technologies currently being used. In Section 2, we have
divided the radar hardware into two categories: pulsed radars and continuous-wave
radars. Section 3 defines the methods used to present radar-recorded hand-gesture data.
Section 4 deals with the HGR algorithms for different types of radar. In Section 5, we
present a summary of observed trends, limitations and future directions. Finally, Section 6
summarizes the paper.

2. Hand-Gesture Signal Acquisition through Radar

As stated above, based on the nature of transmitted signals, radar technologies can be
classified into two categories [32]:

• Pulsed Radar;
• Continuous-Wave (CW) Radar.

CW radars can further be classified as Frequency-Modulated CW (FMCW) radars and
single-frequency CW (SFCW) radars. Several studies also denote SFCW radars as Doppler
radars [33] since their detection mechanism relies heavily on the Doppler phenomenon.
SFCW radar sends a single-tone frequency signal and a shift in the frequency of the
received signal occurs when it encounters the hand. On the other hand, FMCW radar
transmits varying frequency signals. FMCW radar is also capable of implementing the
Doppler phenomenon.

Table 2 summarizes the use of the above-mentioned radars for HGR. Several re-
searchers have tried to make a customized hardware for gesture recognition. Here, we have
classified the available research based on the scope of the article. Since companies such
as Texas-Instrument (TI) Dallas, Texas 75243, USA are developing multi-purpose radars
suitable for several short-range applications [34], more effort has been devoted by the aca-
demic researcher to developing an HGR algorithm for existing commercial sensors rather
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than developing a new hardware. In addition to the mentioned radar categories, several re-
searchers have utilized other radio sensors to implement the phenomena of Radio Detection
and Ranging. For example, Islam and Nirjon [35], and Pu et al. [36] used the transmitted
and the corresponding reflected WIFI signals to sense different gesture movements.

Table 2. Use of different radars for HGR and research scope in terms of hardware and software design.

Research Focus Pulsed Radar
Single Frequency
Continuous Wave

(SFCW) Radar

Frequency Modulated
Continuous Wave

(FMCW) Radar

Radar Alike Hardware’s
(SONAR, etc.)

Hardware
designing [37–39] [40,41] [17,34,42–46] N/A

Algorithm
Designing [9,11–13,20,47–56] [14,21,30,31,33,57–67] [15,16,18,19,68–75] [27,35,36,76]

2.1. Pulsed Radars

Pulsed radars transmit an impulse-like signal which has a wide frequency spec-
trum. The transmission and reception systems based on pulsed signal are usually termed
the Ultra-Wideband (UWB) communication systems. These systems have a wider fre-
quency spectrum and usually have a lower Power Spectral Density (PSD) than noise signal
PSD. A modern UWB transmitter–receiver pair comprises nearly “all-digital” components
and has minimal radio frequency (RF) or microwave components. Consequently, radars
based on UWB technology will have a smaller size and can provide a compact portable
radar hardware.

As seen in Table 2, most of the research focused on algorithm development for HGR
for pulsed radars. However, several researchers have also tried to design a customized
pulsed radar hardware, dedicated only to hand gesture recognition purposes. For example,
Arbabian and co-workers from Stanford University, California 94305, USA [37], designed a
hardware architecture of pulsed radar transceiver intended specifically for gesture recogni-
tion and radar imaging applications. A single-chip radar was developed using the SiGe
BiCMOS process with 0.13 um technology. The proposed hardware is shown in Figure 4,
consisting mainly of a pair of transmit and receive antennas, quadrature mixers, a Phased
Lock Loop, Power Amplifier (PA), and Low-Noise Amplifier (LNA).

In references [9,11,13,37], the signal transmitted by UWB radar, s(t) is considered to be
reflected back from several different paths. The received echoes from “N” different paths
are digitized as x[k] using an analog-to-digital converter (ADC), which can be represented
as [7]

x[k] =
Npath

∑
m=1

Ams[k − tm] + noise (1)

In Equation (1), k represents index of digitized sample and Npath and noise represent
multipath reflections and noise signal, respectively. When a signal reflected from the
hand is received, it contains unwanted information reflections from the objects in the
radar’s operational range, commonly termed as clutter. It was observed that all the articles
related to HGR using pulsed radar first performed clutter removal operation before further
processing, and a loop-back filter is a common choice [11,12,50,77] as it exhibits a simple
structure and the computational power is very minimal in comparison to other clutter-
reduction filters. The operation of this filter can be defined as

cn[k] = αcn[k − 1] + (1 − α) xn[k] (2)

where c represents the clutter term, x[k] represents the received signal as defined by
Equation (1), and alpha is a weighting factor. This clutter value is later subtracted from
(1) to obtain clutter-free reflections of the human hand, which are further exploited by
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pattern-recognition techniques to recognize the desired hand gesture. Other clutter removal
filters used for UWB radar are the based Singular Value Decomposition (SVD) filter and
Moving Target Indicator (MTI) filters.
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2.2. CW Radars

In this section, the two main types of CW radar used to sense hand movements are
presented together.

2.2.1. SFCW Radar

Single-frequency radars sense the target based on the change in frequency of the
transmitted and received pulse. In case of hand gestures, the Doppler shift frequency
caused by the motion of the hand and fingers is limited to ranges of several hertz [40].
Consequently, it is easier to design radar hardware to detect hand gestures, as the required
baseband devices and ADCs operate in a limited frequency.

Figure 5 show a Doppler radar hardware specifically designed for hand-gesture
acquisition, designed by [40]. The transmitter proposed in this work mainly consists of a
low-frequency crystal oscillator (denoted as fsub with a frequency of 6 MHz), mixed with a
local oscillator (LO), band pass filter, a power amplifier and a transmitting antenna. On the
other hand, upon reflection from the hand, the receiver signal is demodulated and passed
through a band-pass filter to obtain I phase I(t) and Quadrature-Phase Q(t), which can be
expressed as

I(t) = AI(t) cos
[
θ0 +

4πX(t)
λ

+ φ0

]
+ DCI(t)

Q(t) = AQ(t) sin
[
θ0 +

4πX(t)
λ

+ φ0

]
+ DCQ(t)

Here, “DC” represents the DC offset, Ai represents the in-phase amplitude, and Aq
represents the quadrature-phase amplitude of the received signal. Wavelength, phase noise
and phase delay are represented by λ, φ0 and θ0, respectively.

2.2.2. FMCW Radar

FMCW radar transmits varying frequency signals. At the beginning, a low frequency
signal is transmitted and, with the passage of time, the frequency is increased continuously
up to a certain bandwidth span. The time duration during which the signal continuously
spans from a low to high frequency is known as the chirp time.
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Figure 5. Block diagram of hand gesture sensing SFCW radar [40].

Figure 6a shows a typical FMCW radar hardware for hand-gesture sensing, designed
by Zhang et al. [15]. The front end of the radar is based on a BGT24MTR12 signal generator
and receptor chip developed by a company named Infinion technologies, and a Cyclone-3
FPGA chip developed by Altera technologies. The proposed radar operates in K-Band with
a center frequency of 24 GHz. As shown in Figure 6b, the transmitted signal frequency
constantly increases between fmin and fmax, with the bandwidth B, commonly known as
the chirp signal. The transmitted signal is expressed as

S(t) = ej2π (fct+ 1
2

B
T t2)

where fc is the carrier frequency, B, is the bandwidth of chirp. The corresponding received
signal will have a delay factor (t-τ) series of chirps, which are usually transmitted to sense
the target movement.

In Section 2, we described the basic radar hardware and corresponding data acquisi-
tion framework. After data acquisition, the next key step is the description of data.
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3. Hand-Gesture Radar Signal Representation

Capturing the finest details of human hand movement is a challenging task, since it
requires all the backscattered radar signals to be saved properly. As stated in the above
section, the data can be expressed in several formats:

• Time-Amplitude: The time-varying amplitude of the received signal is exploited
to extract a hand-gesture motion profile. The signal, in this case, is 1-Dimensional
(1-D), as represented in Figure 7a. For gesture-recognition, such types of signal
have been used as input for a deep-learning classifier such as 1-D CNN [51], where
several American Sign Language (ASL) gestures were classified, as shown in Figure 7a.
Additionally, this type of representation of hand-gesture signal can be utilized to
develop signal-processing-based simple classifiers as well [62];

• Range-Amplitude (Figure 7b): Intensity (amplitude) of reflections at different distance
is used to extract features, as mentioned in [75];

• Time-Range: Time-varying distance of received signal is used to classify hand ges-
tures. Against hand-gestures, the magnitude of variations in distance of hand is
recorded over time to obtain a 1-D [30] and 2-D signal [12]. For example, authors
in [38] used the Time-Range 2D gesture data representation scheme shown in Figure 7c.
For gesture recognition, authors have used 2-D and 3-D Time-Range signals to drive
2-D [13,20] and 3-D [12,38] CNN;

• Time-Doppler (frequency/speed): Time-varying Doppler shift is used to extract
features of hand gestures; for example, the authors in [54] used the change in Doppler
frequency over time as input to CNN for gesture classification;

• Range-Doppler frequency/Time-Doppler speed (Figure 7d): Rate of change of Doppler
shift with respect to distance is used to extract features of hand movements. Several
authors have used range and Doppler velocity to represent hand gestures [55];

• Time-Frequency (Figure 7f): change in frequency over time is observed to detect
hand-gestures [67].
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4. HGR Algorithms

In this section, the available HGRs for pulsed and continuous wave radars are dis-
cussed in detail. The scope of detail for each research work reviewed includes: (1) the
discussion on radar-recorded hand-gesture data format; (2) the dimensions of prepared
final data, which are supposed to present the hand movement profiles; (3) the details of
the used HGR algorithm; (4) the operating frequency of radar. All details and the scope
of these studies are summarized in separate table for each type of radar. Since each study
used their own set of gestures and hardware, the overall accuracy is not mentioned in
tables to avoid comparative confusion amongst the presented studies.

4.1. HGR Algorithms for Pulsed Radar

Table 3 presents the overall summary of all the pulsed radar studies reviewed in
this paper. Early works to recognize hand gestures mainly relied on signal-processing
techniques [37], where the received radar signals are manipulated to recognize and classify
hand gesture. Most of the Pulsed-radar-based research shown in Table 3 used machine-
learning-based techniques for HGR. As stated in the previous section, one of the early pieces
of research into pulsed-radar-based HGR [37] mainly focused on customized hardware
development. In [49], six different gestures were captured and the overall 86% success
rate was reported using simple conditional statements based on the distance and direction
of performed hand gestures. A simple 1-D distance-based thresholding technique was
employed to differentiate the gesture. The technique worked well for the defined gestures
and since only one parameter was used to differentiate the gestures, it may not work well
for gestures other than the ones defined by the authors. Park and Cho (2016) [50] captured
five gestures and used a Support Vector Machine (SVM) to classify hand gestures. The
authors exploited PCA as a feature set for the SVM classifier and an accuracy of 99% was
reported. Khan and Cho. (2017) [48] performed a classification of five gestures using a
neural network driven by three features, namely, distance variations, magnitude variance
and surface area variance. Another similar study in [47] implemented HGR inside a car
using a UWB radar. The five gestures used in this study consist of three small gestures
where only the fingers are moved, and two big gestures where the full hand is moved. An
additional empty gesture was also added. The authors used only the three-feature-driven
unsupervised clustering algorithm and reported an accuracy of 97%. All the gestures
were performed inside a car. Kim et al. [51] used a pulsed radar to classify six dynamic
gestures from American sign language (S,E,V,W,B, and C), and reported a 90% accuracy
rate. The authors utilized a CNN-based feature extraction and classification algorithm
on five different hand gestures. Ahmed and coworkers [11] used a six-layered CNN to
classify the finger-counting gestures. This study reported a high accuracy of 96%. For
UWB Pulsed radars, this was the first study that presented a complete methodology to
implement deep-learning in UWB radars. The authors also provided a technique to convert
the UWB radar signal into an image for CNN architecture. In [38], a team of researchers
from Sweden used ResNet-50 to classify 12 hand gestures and demonstrated a classification
accuracy of 99.5%.

Table 3. Summary of HGR algorithms for Pulsed Radar.

Study
and Year

Data
Representation and
Data Dimensions

Algorithmic
Details Frequency No. of

Gestures

Distance
Between Hand

and Sensor

Participants
and

Samples Per
Gesture

Number
of Radars

Arbabian et al.
[37] (2013) N/A

Hardware
only, no

algorithm
proposed

94 GHz N/A Not mentioned Tested hand
tracking only 1

Park and Cho
[50] (2016) Time–Range (2D) SVM 7.29 GHz 5 0–1 m 1,

500 1
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Table 3. Cont.

Study
and Year

Data
Representation and
Data Dimensions

Algorithmic
Details Frequency No. of

Gestures

Distance
Between Hand

and Sensor

Participants
and

Samples Per
Gesture

Number
of Radars

Ren et al. [49]
(2016) Time–Amplitude (1D) Conditional

statements 6.8 GHz 6 1 m 1,
50 1

Khan and Cho
[48] (2017) Time–Range (2D) Neural

Network 6.8 GHz 6 Not
specified

1,
10 s

(Samples not
specified)

1

Kim and
Toomajian [54],

(2016)
Time–Doppler (3D-RGB) DCNN 5.8 GHz 10 0.1 m 1,

500 1

Khan et al. [47]
(2017) Time–Range (2D matrix)

Unsupervised
clustering.
K-means

6.8 GHz 5 ~ 1 m
approx

3,
50 1

Kim et al. [51]
(2017) Time–Amplitude (1-D) (1-D) CNN Not

mentioned 6 0.15 m 5,
81 1

Kim and
Toomajian [56],

(2017)
Time–Doppler (3D-RGB) DCNN 5.8 GHz 7 0.1 m 1,

25 1

Sang et al. [55],
(2018)

Range–Doppler image
features (2D; constructed

greyscale image
from data)

HMM
300 kHz
(active

sensing)
7 Not

specified
9,
50 1

Ahmed et al.
[11], (2019)

Time–Range (2D;
constructed greyscale

image from data)

Deep-
Learning 7.29 GHz 5 0.45 m 3,

100 1

Fhager et al. [38],
(2019) Time–Range envelop (1D) DCNN 60 GHz 3 0.10–0.30 m 2,

180 1

Heunisch et al.
[39], (2019) Range–RCS (1D)

Observing
backscat-

tered
waves

60 GHz 3 0.25 m Note specified,
1000 1

Ghaffar et al.
[13] (2019)

Time–Range (2D;
constructed greyscale

image from data)

Multiclass
SVM 7.29 GHz 9 Less than 0.5 m 4,

100 4

Leem et al. [9]
(2019)

Time–Range (2D;
constructed greyscale

image from data)
CNN 7.29 GHz 10 0–1 m 5,

400 3

Ahmed and Cho.
[12], (2020)

Time–Range (3D-RGB
data)

GoogLeNet
framework 7.29 GHz 8 3–8 m 3,

100 1 & 2

Leem et al. [53],
(2020)

Time–Range (2D;
constructed greyscale

image from data)
DCNN 7.29 GHz Drawing

gesture
Not

Specified
5,

Not specified 4

Khan et al. [20],
(2020)

Time–Range (2D;
constructed greyscale

image from data)
CNN 7.29 GHz

Performed
digit

writing
0–1 m 3,

300 4

As stated in the introduction section, researchers in [9] used multiple radars to design
a wireless digit-writing application. The authors used both a radar-tracking algorithm
and deep learning to classify the hand movement used to write digits. First, the hand
movement was tracked in a 2D plane, and then the tracked trajectory was fed as input
to a CNN algorithm. The work presented in [13] showed a feature-based SVM classifier
to classify simple pointing gestures. The feature extraction technique used in this study,
named the histogram of gradients (HOG), was adopted directly from the image-processing
field. Heunisch and coworkers (2019) [39] used a transmitter and receiver pair to make
a pulsed radar. They used a wavelet signal as series of pulses instead of transmitting



Remote Sens. 2021, 13, 527 12 of 24

square impulses. A normal-square pulse was generated using a commercial chip (Agi-
lent: N4906B) and fed as input to an in-house wavelet function generator. The authors
successfully classifie three postures, instead of dynamic gestures. Previously, Shahzad and
Cho [12] presented a classifier for hand gesture recognition and classification based on the
GoogLeNet architectures shown in Figure 8. Rather than linearly increasing layers only,
the structural variations were also performed to form a very deep CNN algorithm using
the inception modules. The deep network comprising seven inception-modules is shown
in Figure 8, where the data from two radars were first converted into 3D Red, Green and
Blue (RGB) images and fed as input to a feature-extraction block of the deep-network. The
research presented in [53] used a drawn pattern of hand movement as gesture, and pro-
posed a remote authentication application. The paper provided two-stage authentication,
first by recognizing a pattern in air, followed by a drawn midair signature using a tracking
algorithm (i.e., Kalman filter). A recent study published by Khan and coworkers [20]
implemented continuous writing using multiple radars and CNN. In this study, based on
the pattern drawn in air, continuous letters were recognized using CNN.
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Table 3 shows that, for the classifiers based on deep-learning algorithms, the 2D and
3D data representation shown in Figure 7c–f is commonly used. For example, the researcher
work presented in [54] constructed an RGB image by observing the change in Doppler
frequency over a specific time duration, and used this image as input to a three-layerd
DCNN algorithm, resulting in 87% accuracy with 10 hand gestures.

4.2. HGR through CW Radar

In this section, HGR through CW is discussed in detail for both the SFCW and the
FMCW radar.

4.2.1. HGR through SFCW (Doppler) Radar

Table 4 summarizes all SFCW-radar-based studies that are considered in our review
paper. One of the initial studies that used an SFCW radar for HGR was reported by
Kim et al. in 2009 [31], which used a multi-class SVM classifier to recognize seven different
activates. As mentioned in Table 4, the radar data were represented as a 3D image by taking
the Short-Time Fourier-Transform (STF) of 6 s raw radar returns. The extracted features
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used in this this study were based on the Doppler characteristics of a signal reflected
from hand. Rather than using the machine-learning technique, another study [31] used
a differentiate and cross-multiply (DACM)-based signal processing technique to classify
seven hand gestures. Similarly, several studies [21,58,63], used k-Nearest Neighbor kNN
for gesture recognition. In [63], the authors used Doppler frequency and time features,
along with several additional features based on variations in physical attributes, while
performing the gesture, such as the direction and speed of hand movement.

In early years, a lot of attempts were made to extract rich features from the radar-
recorded hand gesture signals. However, nowadays, rather than extracting features, the
input de-noised data are represented in a suitable format, and a deep-learning-based
classifier is used. For example, a radar assembly shown in Figure 9, presented by Skaria
et al. [14], used DCNN on the raw time–Doppler (Frequency) signals. The commercial
radar sensor, consisting of two antennas, was used to acquire data, which were converted
into an image using the STFT algorithm. These frequency domain image data were passed
to a DCNN architecture for convolutional features’ extraction. Finally, the classification
operation is performed. It can be observed that, over the past decade, for the same kind
of sensor data, the trend is shifting from feature-based classification [31] to deep-learning-
based classification [14]. The rest of the studies are summarized in Table 4.

Table 4. Summary of HGR algorithms for SFCW (Doppler) radar.

Study
and Year

Data
Representation

and Data
Dimensions

Algorithmic
Details Frequency No. of

Gestures

Distance
Between

Hand
& Sensor

Participants
and Total

Samples Per
Gesture

Number
of Radars

Kim et al. [31]
(2009)

Time–Frequency
(3D; radar signal

was passed
through a STFT)

SVM 2.4 GHz
7

(including
activities)

2–8 m 12,
Not specified 1

Zheng et al. [30]
(2013)

Time–Range (1-D;
hand motion

vector)

Differentiate and
Cross-Multiply N/A Not

applicable
0–1 m

(tracking)
Not applicable
(tracked hand) 2 and 3

Wan et al. [63]
(2014)

Time–Amplitude
(1D)

kNN
(k = 3) 2.4 GHz 3 Up to 2 m 1,

20 1

Fan et al. [40]
(2016)

Positioning (2D;
motion imaging)

Arcsine
Algorithm,
2D motion

imaging
algorithm

5.8 GHz 2 0–0.2
m

Did not trained
algorithm

1
(with

multiple
antennas)

Gao et al. [62]
(2016)

Time–Amplitude
(1D; A barcode was

made based on
zero-crossing rate)

time-domain
zero-crossing 2.4 GHz 8 1.5 m, 0.76

m

Measured for 60 s
to generate the

barcode
1

Zhang et al. [61]
(2016)

Time–Doppler
frequency (2D) SVM 9.8 GHz 4 0.3

m
1,
50 1

Huang et al. [41]
(2017)

Time–Amplitude
(1D)

Range–Doppler
map (RDM)

5.1, 5.8,
6.5 GHz 2 0.2 m Not applicable

(hand-tracking) 1

Li. et al. [60]
(2018) Time-Doppler (2D)

NN Classifier
(with Modified

Hausdorff
Distance)

25 GHz 4 0.3 m 3,
60 1

Sakamoto et al.
[64] (2017)

Image made with
the In-Phase and

Quadrature signal
trajectory (2D)

CNN 2.4 GHz 6 1.2 m 1,
29 1

Sakamoto et al.
[65] (2018)

Image made with
the In-Phase and

Quadrature signal
trajectory (2D)

CNN 2.4-GHz 6 1.2 m 1,
29 1
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Table 4. Cont.

Study
and Year

Data
Representation

and Data
Dimensions

Algorithmic
Details Frequency No. of

Gestures

Distance
Between

Hand
& Sensor

Participants
and Total

Samples Per
Gesture

Number
of Radars

Amin et al. [58]
(2019)

Time–Doppler
frequency (3D RGB

image)
kNN with k = 1 25 GHz 15 0.2 m 4,

5 1

Skaria et al. [14]
(2019)

Time–Doppler (2D
image) DCNN 24 GHz 14 0.1–0.3 m 1,

250 1

Klinefelter and
Nanzer [67]

(2019)

Time–Frequency
(2D; frequency

analysis)

Angular velocity
of hand motions 16.9 GHz 5 0.2 m Not applicable 1

Miller et al. [21]
(2020)

Time–Amplitude
(1D) kNN with k = 10 25 GHz 5 Less than 0.5 m 5,

Continuous data 1

Yu et al. [57]
(2020)

Time–Doppler (3D
RGB image) DCNN 24 GHz 6 0.3 m 4,

100 1

Wang et al. [66]
(2020) Time–Doppler (2D) Hidden Gauss

Markov Model 25 GHz 4 0.3 m 5,
20 1
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Figure 9. Two antenna Doppler radar assembly and DCNN architectures for HGR [14].

Sakamoto and co-workers published two studies [64,65] using I-Q plot and CNN archi-
tectures. In the first study, only three gestures were used, whereas the second study demon-
strated the performance against six gestures with an accuracy above 90%. Sang et al. [55]
used a hidden Markov Model (HMM) and Range–Doppler image features to classify 96.34%
of seven gestures. These gestures were all based on finger movements rather than full hand
movements. According to the authors, their main focus was on developing a real-time
algorithm. Based on a comparison of computational expense, HMM was selected rather
than DCNN. Amin and coworkers [58] used kNN-based PCA features to classify 15 ges-
tures. The researcher in [14] implemented DCNN based on images captured by Short-Time
Fourier-Transform. A total of 14 gestures were exploited in this study. Miller et al. [21]
recently proposed a wearable sensor based on the Doppler radar, named RadSense, in-
tended for use in operation theaters. The sensor is pseudo-contactless and is supposed to
be worn on the chest. Four gestures were used, with an average accuracy of 94.5%. A study
published by [33] presented a features extraction method, followed by cross-correlation
and peak detector gesture classification. Another very recent study published by Yu and co-
workers [57] reported 96.88 % accuracy for Doppler-radar-based HGR using spectrograms
as input to the DCNN network. A summary of all these studies can be seen in Table 4.

4.2.2. HGR Algorithms for FMCW

In 2015, researchers from the NVIDIA group [45] developed an FMCW radar with one
transmitter and four receivers to classify three gestures. The same NVIDIA group published
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another study, aiming to provide gesture-based assistive interface to drivers using the
DCNN algorithm. The presented framework was based on three different sensors, namely,
(1) color camera, (2) depth camera and (3) FMCW radar. Prominent and ground-breaking
research was performed by Lien and coworkers, from Google, in which they launched a
project named Soli, a multipurpose FMCW radar [17]. This radar successfully recognized
micro-movements such as finger-tip movement and moving the thumb over a finger. The
process diagram and pipeline of the Soli radar is shown in Figure 10. The received signals
are first processed using Analog circuitry, followed by a digital signal-processing part,
where features are extracted and gesture recognition is performed. Soli demonstrated
several use cases, such as finger-movements-based slider design and volume controller.
This radar was later used in the Google smartphone as well.
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Other research mainly focused on designing HGR algorithms. For example, in refer-
ence [72], the researchers used HMM to classify hand gestures with FMCW and reported
82% accuracy for five different hand gestures. Researchers in [71] used the Soli radar
developed by Google [17] along with deep-learning to classify hand gestures. In a similar
way, another study, presented in [75], used Soli radar in their project, titled “RadarCat”, to
classify different objects and HCI for digital painting. Random forest algorithm was used
for gesture recognition purposes. Dekker and Geurts [43] used CNN and a low-powered
FMCW radar chip in their work. Another work in [46] used Doppler processing to classify
two different continuous gestures. A team of engineers from TI [34], USA, designed and
developed a multipurpose FMCW radar and demonstrated its use for car door opening



Remote Sens. 2021, 13, 527 16 of 24

and closing. Hazra and Santra [44], from Infineon Technologies AG, Neubiberg, Germany,
developed FMCW radar hardware along with a deep learning algorithm. Researchers
developed penny-sized FMCW radar chip titled “BGT60TR24”, which is available commer-
cially as well. Ryu et al. [42] used a quantum-inspired evolutionary algorithm (QEA) driven
by features extracted using Short Time Fourier Transforms (STFT) to classify seven different
gestures, and reported 85% classification accuracy. Suh et al. [70] developed a customized
hardware comprising of one transmitter and four receivers, and classified seven different
gestures. The study used Range Doppler Map (RDM) as input to the Long Short-Term
Memory (LSTM)-encoder-based Neural Network to classify hand gestures. Researchers
in [74] used kNN with k = 10 to classify seven hand gestures. They deployed RDM and
micro-Doppler to extract five features, namely, the number of chirp cycles, bandwidth of
Doppler signal, Median Doppler frequency, normalized STD, and ration between negative
and positive Doppler frequency components. Five cross-fold validation-based analysis
demonstrated 84% accuracy. In [69], the same authors published a conference paper with
similar specifications to those mentioned in the above study. In this study, an additional
Connectionist Temporal Classification (CTC) algorithm was also utilized to predict the
class labels by using unsegmented input streams.

Choi and co-workers [16] developed a real-time algorithm for HGR. The HGR frame-
work presented by Choi et al. [16] was based on an LSTM encoder with Gaussian Mixture
Model (GMM)-based clutter removal operation. The study first detected the gestures
using a well-known Constant False Alarm rate (CFAR) algorithm, followed by gesture
recognition based on LSTM. Ten different hand gestures were recognized and the proposed
algorithm is claimed to work well even in low-SNR conditions. Similar to the Pulsed and
Doppler radar, the details regarding use of the FMCW radar are summarized in Table 5
for convenience. Similar to Tables 3 and 4, which provide a summary of the Pulsed and
Doppler radar, the final classification accuracy is not mentioned in Table 5.

Table 5. Summary of HGR algorithms for FMCW radar.

Study
and Year

Data Representation
and Data

Dimensions

Algorithmic
Details

Frequency
and BW

No. of
Gestures

Distance
Between Hand

and Sensor

Participants
and

Samples Per
Gesture

Number
of Radars

Molchanov
et al. (NVIDIA)

[45] (2015)
Time–Doppler (2D) Energy

estimation 4 GHz Not
specified

Not
specified

Performed hand
tracking

1 (and 1
depth

sensor)

Molchanov
et al. (NVIDIA)

[73] (2015)
Time–Doppler (2D) DCNN 4 GHz 10 0–0.5 m

3,
1714 (total
samples in

dataset)

1

Lien eta al.
(Google) [17]

(2016)

Range–Doppler,
Time–Range and

Time-Doppler (1D
and 2D

representation)

Random
Forest 60 GHz

4 (performed
several

tracking
tasks too)

Limited to 0.3 m
[71]

5,
1000 1

Malysa et al.
[72] (2016)

Time–Doppler,
Time–velocity (2D) HMM 77 GHz 6 Not specified 2,

100 1

Wang et al.
[71] (2016)

Range–Doppler (3D
RGB image) CNN/RNN 60 GHz 11 0.3 m 10,

specified 251 1

Yeo et al. [75]
(2016)

Range–Amplitude
(1D)

Random
forest 60 GHz Not

applicable 0–0.3 m Tracked the hand 1

Dekker et al.
[43] (2017)

Time–Doppler
velocity (3D RGB

image)
CNN 24 GHz 3

3,
1000 samples in

total
1

Peng et al. [46]
(2017)

Range–Doppler
frequency (3D RGB

image)

Did not
performed

the
classification

5.8 GHz 3 Not specified
2,

Not applicable 1
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Table 5. Cont.

Study
and Year

Data Representation
and Data

Dimensions

Algorithmic
Details

Frequency
and BW

No. of
Gestures

Distance
Between Hand

and Sensor

Participants
and

Samples Per
Gesture

Number
of Radars

Rao et al. (TI)
[34] (2017)

Range–Doppler
velocity (3D RGB

image)

Demonstrated
the potential

use only.
77 GHz

1
(car trunk

door
opening)

0.5 m Not specified 1

Li and Ritchie
[59]

(2017)

Time–Doppler
frequency (3D RGB

image)

Naïve Bayes,
kernel

estimators
NN, SVM

25 GHz 4 0.3 m
3,
20 1

Hazra and
Santra [44]

(2018)

Range–Doppler (3D
RGB image) DCNN 60 GHz 5 Not

specified

10,
150 later used

5 other individuals
for testing.

1

Ryu et al. [42]
(2018)

Range–Doppler (2D
FFT) QEA 25 GHz 7 0–0.5 m Not specified,

15 1

Suh et al. [70]
(2018)

Range–Doppler (2D
greyscale image)

Machine
learning 24 GHz 7 0.2–0.4 m

2,
120 (140 additional

samples
for testing.

1

Sun et al. [74]
(2018)

Time–Doppler
frequency (2D;
features were

extracted from an
image)

kNN 77 GHz 7, performed
by car-driver

Not
specified

6,
50 1

Zhang et al.
[15] (2018)

Time–Range (3D
RGB image)

Deep
learning
(DCNN)

24 GHz 8 1.5, 2, and 3 m 4,
100 1

Zhang et al.
[69] (2018)

Time–Range (3D
RGB image)

Deep-
Learning
(DCNN)

24 GHz 8 Not specified
Authors

mentioned
80 seconds

1

Choi et al. [16]
(2019)

Range–Doppler. 1D
Motion profiles

generated using 3D
range–Doppler map

(1D)

LSTM
encoder. 77–81 GHz 10 Not specified 10,

20 1

Liu et al. [18]
(2019)

Time–Range and and
time–Velocity (2D)

Signal
processing-

based
technique

77–81 GHz 6 Not specified
Mentioned

869 total samples
only.

1

Wang et al.
[19] (2019)

Range–Doppler
velocity

Deep-
Learning 77–79 GHz 10 Not specified Not specified,

400 1

A summary of all algorithms presented in this article related to HGR using radar can
be seen in Tables 3–5.

5. Summary
5.1. Quantitative Analysis

In this section, we have summarized the trends and choice preference of researchers
related to the selection of technology and algorithms for HGR. Figure 11a represents the
publications related to HGR with portable radars per year. Figure 11a suggests that the
trend is constantly increasing per year and the maximum number of papers was seen
in 2019. It can be predicted that, ultimately, 2020 will have the largest amount of research.
Similarly, Figure 11b show the trend in used radar technology for HGR. It can be seen the
CW radar is mostly used for gesture recognition. The trends also suggest that both Doppler
and FMCW radars are equally and widely used.
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5.2. Nature of Used Hand Gestures and Application Domain Analysis

Several studies for camera-based gesture recognition have focused on the detection
and recognition of standard hand gestures such as American Sign Language (ASL) recog-
nition. However, in the case of radar sensors, most of the studies presented in Table 2
primarily demonstrated the effectiveness of their presented HGR algorithm using arbitrary
author-defined gestures. The main reason for this is that radar is more proficient for rec-
ognizing dynamic gestures instead of static-hand gestures, and there is no standardized
gesture-vocabulary for dynamic gestures. It was observed that hand-swiping gestures such
as left-to-right, right-to-left, up-to-down and down-to-up swipes are the most widely used
hand-gestures. With few exceptions, these four gestures are mostly present in the gesture
vocabulary when evaluating the effectiveness of HGR algorithms. Additionally, the hand
gestures can be categorized as (1) micro-gestures and (2) macro-gestures. Micro-gestures
include minimal movement such as finger movements [11], whereas macro-movements
are large movements where the whole hand is displaced from one position to another.

As stated above, most of the research used arbitrary author-selected gestures to
evaluate accuracy. Contrary to that, several authors developed algorithms for specific
applications, such as in-air digit-writing [9], digital painting [75], and scroll function
implementation using finger swipes [17]. Table 6 outlines the details of HCI applications
built using radar sensors. Leem et al. [9] demonstrated an implementation of wireless
keyboard by using (UWB) impulse radar to write digits in the air. Three radars were
deployed to track the hand movement. Another study shows the implementation of digital
painting using an FMCW radar [75]. Ahmed and co-workers [11] used the count of raised
fingers as input to a single (UWB) Impulse Radar to control devices inside a car. Google
Soli demonstrated several actions based on hand movement detection, including scroll
function implementation with finger movement, virtual dial tool with finger rotation, and
slider tool implementation in two different zones of RCS. In [48], researchers demonstrated
the use of a pulsed UWB radar to provide HCI inside vehicles. The remainder of studies
are mentioned in Table 6.
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Table 6. Summary of developed applications using Radar Sensors.

Study Implemented Application(s)

[9] In-air digit-writing virtual keyboard using multiple UWB Impulse Radars
[75] Digital painting.
[17] Scroll and dial implementation using finger sliding and rotation
[11] Finger-counting-based HCI to control devices inside car
[73] A multisensory HGR system to provide HCI to assist drivers
[48] HGR inside car using pulsed radar, intended for vehicular applications.

[36,63] Smart Home applications

5.3. Real-Time HGR Examples

This section highlights a few of the many real-time HGR algorithms. Many successful
attempts have been made to recognize hand gestures in real time [9,15,16,18,20,57,70]. The
authors of [18] in developed a real-time solution for HGR using the chips from different
vendors. The sensing radar was adopted from TI (AWR1642), and the signal processing
block (AurixTM TC397 microcontroller) was adopted from Infineon technologies, Am
Campeon 1-15 85579 Neubiberg, Germany. The processing times for feature extraction
and gesture classification were 0.26 and 0.01 milliseconds, respectively. Another study [70]
connected a custom radar with the computer using parallel interface and reported a
processing time of less than 200 milliseconds. Leem et al. [9] demonstrated in-air writing
with a Novelda radar connected to intel Core i5 PC (with 8 GB ram), and reported a
processing time of 50 milliseconds. Without implementing a real-time solution, the authors
of [15] mentioned that their system can be used in real-time.

5.4. Security and Privay Analysis of Radar-Based HGR System

As stated in the introduction section, unlike the camera, radar sensors do not carry
serious privacy concerns. Only the user’s hand movements are recorded for gesture
recognition, instead of filming the users. However, one may raise concerns related to the
security of radar-based gesture-recognition devices. The research works reviewed in these
articles did not cover the issues related to the security of radar systems.

5.5. Commercially Available Radars for HGR

Since a lot of studies used commercially available radars, this section provides addi-
tional details of these commercial solutions. Table 7 lists a few examples of commercially
available radars that can be used for gesture recognition. For all these radars, a reference
example is also included.

5.6. Ongoing Trends Limitations and Future Direction

Figure 1 suggests that hand gestures are the most widely used gestures for making
HCIs. Additionally, the trends shown in Figure 11a represent that, in the last decade,
the use of radar sensors for gesture recognition has increased rapidly. The last few years
have shown a particularly huge growth. The types of radar used for HGR are (1) pulsed
radar (Ultra-Wideband Impulse radars) and (2) CW radar. The trend can be summarized
as follows:

1. Continuous-wave radars (FMCW and Doppler radar) are the most widely used radars
for HGR;

2. All the research presented in this paper used a single hand for gesture recognition.
No research work has been done to detect gestures performed by two hands simul-
taneously. The detection of gestures using two hands simultaneously has yet to
be explored;

3. With few exceptions [11,17,71], macro-movements that include full-hand motions are
usually considered when selecting gestures. Here, the term macro corresponds to
full-hand movement instead of part of the hand being moved;
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4. The most commonly used machine learning algorithms for gesture classification are
(kNN), Support vector machine (SVM), CNN, LSTM;

5. For pulsed radar, raw-data-driven deep-learning algorithms are mostly used for HGR.
In comparison to CW radars, less work has been done on feature extraction;

6. For FMCW and SFCW radars, various feature-extraction techniques exist. Contrary
to this, for pulsed radar, we observed that most of the studies used deep-learning
approaches, and hand-crafted features for classification are often not considered.
There is a need for a strong set of features for Pulsed UWB radars. All the machine-
learning-based classifiers were utilized supervised learning only;

7. Experimentation is normally performed in a controlled lab environment, and scalabil-
ity to outdoor spaces, large crowds and indoor spaces needs to be tested. Real-time
implementation is another challenge, particularly for deep-learning-based algorithms.
Several studies performed offline testing only. Usually, the gesture set used is limited
to 12–15 gestures only, and each gesture is classified separately. Classifying a series of
gestures and continuous gestures remain open issues;

8. Soli radar was seen to be used in Smart Phone and smart watches. However, most
of the research did not suggest any strategy to make gesture recognition radars
interoperable with other appliances;

9. Researchers focused on training algorithms using supervised machine-learning con-
cepts only. The un-supervised machine-learning algorithms have a great potential for
gesture-recognition algorithms in future;

10. The security of radar-based HGR devices has yet to be explored.

Table 7. Summary of developed applications using Radar Sensors.

Radar Hardware Company Studies

Bumblebee Doppler radar Samraksh Co. Ltd., Dublin OH 43017,
Ireleand [54,56]

Xethru X2 Novelda, Oslo, Gjerdrums vei 8
0484 Oslo, Norway [47]

NVA6100 (Novelda) Novelda, Oslo, Gjerdrums vei 8
0484 Oslo, Norway [49]

NVA6201 (Novelda) Novelda, Oslo, Gjerdrums vei 8
0484 Oslo, Norway [51]

MA300D1-1 (Transducer only)
Murata Manufacturing,

Nagaokakyo-shi, Kyoto 617-8555,
Japan

[55]

X4 (Novelda, Norway) Novelda, Oslo, Gjerdrums vei 8
0484 Oslo, Norway [9,12,13,20,53]

MAX2829 (transceiver only) Maxim Integrated, California, 95134
United States. [40]

Ancortek SDR-kit 2500B Ancortek Radars, Fairfax, VA 22030,
United States [66]

BGT23MTR12 Infineon Technologies, Neubiberg
Germany [45]

BGT24MRT122 Infineon Technologies, Neubiberg
Germany [15]

77 GHz FMCW TI Texas-Instrument (TI) Dallas,
Texas 75243, USA [34,72]

Soli Google and the Infineon
Technologies, Neubiberg, Germany [71,75]

BGT60TR24 Infineon Technologies, Neubiberg,
Germany [44]

TI’s AWR1642 Texas-Instrument (TI) Dallas,
Texas 75243, USA [19]

Acconeer Pulsed coherent radar Acconeer AB, Lund, Sweden [38]
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6. Conclusions

A huge upsurge and rapid advancement of radar-based HGR was witnessed in the
past decade. This paper reviewed some of the research related to HGR applications using
radars. Currently, the researchers rely heavily on the commercially available radars made
by tech companies such as Infenion, Novelda and Texas Instrument. With these systems
being on chips, much attention has been paid to develop the gesture detection and recog-
nition algorithms. In recent years, interest is shifting from signal-processing-based HGR
algorithms to deep-learning-based algorithms. Particularly, variants of CNN have shown
promising applicability. Although radar sensors offer several advantages over the other
HGR sensors (i.e., wearable sensors and cameras), the adoption of radar-based HGR in our
daily lives is still lagging behind these competing technologies. Attention must be paid to
miniature hardware development and real-time recognition algorithms’ development.
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