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Abstract: Measurement of plant characteristics is still the primary bottleneck in both plant breeding
and crop management. Rapid and accurate acquisition of information about large plant populations
is critical for monitoring plant health and dissecting the underlying genetic traits. In recent years,
high-throughput phenotyping technology has benefitted immensely from both remote sensing and
machine learning. Simultaneous use of multiple sensors (e.g., high-resolution RGB, multispectral,
hyperspectral, chlorophyll fluorescence, and light detection and ranging (LiDAR)) allows a range
of spatial and spectral resolutions depending on the trait in question. Meanwhile, computer vision
and machine learning methodology have emerged as powerful tools for extracting useful biological
information from image data. Together, these tools allow the evaluation of various morphological,
structural, biophysical, and biochemical traits. In this review, we focus on the recent development
of phenomics approaches in strawberry farming, particularly those utilizing remote sensing and
machine learning, with an eye toward future prospects for strawberries in precision agriculture. The
research discussed is broadly categorized according to strawberry traits related to (1) fruit/flower
detection, fruit maturity, fruit quality, internal fruit attributes, fruit shape, and yield prediction; (2)
leaf and canopy attributes; (3) water stress; and (4) pest and disease detection. Finally, we present a
synthesis of the potential research opportunities and directions that could further promote the use of
remote sensing and machine learning in strawberry farming.

Keywords: artificial intelligence; Fragaria; machine learning; phenomics; phenotyping; plant breed-
ing; precision agriculture

1. Introduction

According to the Food and Agriculture Organization (FAO)’s Future of Food and Agricul-
ture: Alternative Pathways to 2050 report, the global population will reach almost 10 billion in
2050 [1], which mandates a continued increase in crop production. Meanwhile, agriculture
is under increasing resource constraints within the context of climate change, with decreas-
ing water and land resources. Precision agriculture is an important approach to help meet
this goal of a continuous increase in crop production. Precision agriculture is an opera-
tion and management system supported by information technology that makes targeted
measurements of plant growth, plant health, soil conditions, and other factors [2,3].

Through the integration of the Global Navigation Satellite System (GNSS), Geographic
Information System (GIS), and remote sensing technologies, precision agriculture can help
achieve a number of specific goals, such as (1) conduction of farmland surveys; (2) site-
specific precision application of fertilizers, pesticides, and irrigation management schemes;
and (3) fine-scale monitoring of crop status, soil moisture, diseases, and pests [2]. Imple-
menting informed and science-based decision-making protocols can increase profits and
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productivity, environmental sustainability, crop quality, and ultimately food security [4].
Recently, applications of precision agriculture have gradually spread throughout the world
as the adoption of auto-guidance systems, yield monitoring technology, and variable rate
technology (VRT) in agriculture has increased in both developed and developing countries
over the past 20 years [5].

Another important application of precision agriculture is in plant phenotyping, partic-
ularly within the context of breeding and genetic research. Phenotyping is broadly defined
as the acquisition and evaluation of complex plant traits, such as geometric structure,
abiotic stress tolerance, disease resistance, yield, and other physiological and biochemical
characteristics. The measurement of economically important traits is essential to plant
breeding [6]. With the combination of remote sensing, computer vision, and robotics,
high-throughput plant phenotyping platforms have been developed. These systems usu-
ally use multiple sensors to measure various traits, such as color, texture, plant height,
area, volume, degree of wilting, fresh weight, number of flowers/fruits, and quality of
fruits [7]. This information enables scientists to establish a connection between genotype
and phenotype, thus allowing them to select resilient varieties with high yield potential in
the target environment. Of course, the same technologies and similar approaches are also
valuable for crop management, specifically determination of nutrient needs, water, and
pesticide requirements, as well as the detection of weeds, pathogens, and pests [8].

At present, plant phenotyping is the primary bottleneck in both plant breeding and
crop management. Connecting phenotype to genotype in a set of target environments is
the basic goal [9]. Next-generation advances in DNA sequencing technology and genome
assembly methodology have dramatically increased the throughput and lowered the cost of
genotyping. However, connecting this mountain of genomic information to the expression
of traits is still a knotty problem [10]. The greatest challenge at present is to rapidly acquire
large-scale plant phenotyping data with high dimensionality, density, and accuracy from
single molecules to entire organisms. While new phenomics technology has significantly
relieved some bottlenecks, many questions remain on how to efficiently define and extract
complex traits as well as improve accuracy and throughput [11]. New advances in remote
sensing and machine learning have the capacity to solve many of these problems.

Strawberry (Fragaria × ananassa) is a very popular fruit among consumers by virtue of
its appealing appearance, flavor, and health benefits [12]. The latest statistics from the FAO
show that the world’s strawberry yield and cultivated area from 1961 to 2018 grew at annual
rates of about 1.82% and 2.44%, respectively (Figure 1). A large portion of the research
conducted during this period focused on the medical benefits of strawberries to human
health [6]. The high-value market for strawberries has significantly promoted the breeding
of new varieties worldwide, including in Europe, Asia, and North America [13], which is
now driving the need for high-throughput phenotyping techniques. Accurate and rapid
acquisition of heritable traits of interest is critical to improving the strawberry breeding
selection accuracy. Remote sensing and machine learning can greatly relieve the heavy
burden of manual work for strawberry phenotyping, such as plant height measurement
and fruit quality evaluation. How to effectively improve accuracy and throughput is a hot
research theme. On the other hand, strawberry is a highly perishable and labor-intensive
crop that can benefit greatly from precision agriculture approaches. The fruits have many
developmental stages and when ripe are very sensitive to environmental and management
conditions. Plant development and fruit production can continually cycle and change over
a 6-month period, depending on the growing region. Therefore, real-time and intelligent
monitoring of plant health and development as well as fruit quality assessment is essential
for crop management and strategy formulation. The combination of remote sensing and
machine learning is considered to have huge potential and a broad application space in
these areas.
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Figure 1. Global trends in strawberry yield and harvested area from 1961 to 2018 [14].

In this manuscript, we reviewed the use of remote sensing and machine learning in
agricultural applications, especially focusing on the latest advances in strawberry pheno-
typing and management. The manuscript also presented a synthesis of potential research
opportunities and directions that could further support strawberry farming. A rigorous
two-step approach was adopted to search and screen the literature related to remote sens-
ing and machine learning applications, with an emphasis on strawberry. Details of the
adopted approach and the number of articles on each topic are shown in Appendix A and
Figure A1, respectively.

2. Remote Sensing Platforms and Sensors

Remote sensing technology has developed rapidly in recent years, with sensors pro-
viding higher spatial, temporal, and spectral resolution images. Remotely sensed data
are acquired by mounting sensors on multiple platforms, including satellites, unmanned
aerial vehicles (drones), and ground-based vehicles. The unparalleled advantage of satellite
observation lies in its large area of coverage, which allows for collecting various types of
datasets, routinely on a global scale. A summary of agricultural data sources by Huang
et al. [15] presented 28 optical and synthetic aperture radar (SAR) satellites for plant veg-
etation studies, with spatial resolutions varying from 0.3 m to 1 km. Research on the
agriculture-related applications of satellite sensors focuses on several aspects, including
crop type classification [16], soil property determination [17–19], crop mapping and spatial
statistics [20], crop yield forecasting and canopy parameter estimation [21], and irriga-
tion/drought evaluation [19,22]. For example, Sentinel-2 remote sensing imagery was used
to retrieve various biophysical parameters of winter wheat, including the leaf area index,
leaf chlorophyll content, and canopy chlorophyll content, utilizing vegetation indices and
radiative transfer modeling [23]. A combination of two indices, enhanced vegetation index
(EVI) and vegetation optical depth (VOD), derived from optical (MODIS) and microwave
(Soil Moisture Active Passive Satellite, SMAP) remote sensors, respectively, was used to
make a prediction of the corn, soybean, and wheat yield on the county scale, with an
accuracy of over 76% [24].

In contrast to satellites, unmanned aerial vehicles (UAVs), or drones, can carry low-
cost sensors and can operate on a flexible on-demand schedule. Due to higher spatial
resolution, low cost, and high maneuverability, drones have become one of the most widely
used remote sensing platforms in agriculture. Yang et al. [7] investigated the current
progress and future prospects of UAVs as a remote sensing platform by reviewing 96
articles. Radoglou-Grammatikis et al. [25] further made a comprehensive survey of UAV
applications in precision agriculture. Currently, non-destructive crop monitoring and smart
spraying are two of the primary UAV applications. Moreover, the integration of UAVs,
wireless sensor networks (WSNs), and the Internet of Things (IoT) and the maturity of
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5th-generation (5G) technology can make several applications such as pesticide appli-
cation, irrigation, crop monitoring, and soil property analysis more precise, timely, and
efficient [26–29]. Compared with satellites and drones, ground-based platforms enable
close-range detection of plant characteristics and generally serve as ground truth informa-
tion sources for sensor calibration and data quality control. Ground-based platforms can
be categorized into sensors mounted on fixed platforms, such as towers or booms (fixed
scanning systems); handheld field measuring instruments; and sensors mounted on mobile
ground vehicles [30,31].

Currently, the main sensors used in remote sensing agricultural applications consist
of passive multispectral, hyperspectral, visible RGB (VIS), and near-infrared (NIR) sen-
sors, fluorescence spectroscopy and imaging sensors, light detection and ranging (LiDAR),
and synthetic aperture radar (SAR) [32]. High-resolution RGB images are widely used
in vegetation classification; identification of plant leaves, canopy, and fruits; and estima-
tion of geometric attributes. Multispectral and hyperspectral imaging provides spectral
information about various parameters related to physiological and biochemical attributes,
such as the leaf area index (LAI), crop water content, leaf/canopy chlorophyll content, and
nitrogen content [7,33]. These parameters are very useful for crop growth evaluation and
yield prediction. Fluorescence remote sensing is efficient in retrieving the chlorophyll and
nitrogen content, nitrogen-to-carbon ratio, and LAI [34]. LiDAR has the advantage of a
high point-cloud density, which is useful for obtaining horizontal and vertical structural
characteristics of plants [35]. A synthetic aperture radar can function in very low visibility
weather conditions (e.g., cloud cover). It has been extensively explored in crop classifi-
cation, crop growth monitoring, and soil moisture monitoring [36–38]. Specific uses of
different sensor types in different agricultural applications are elaborated by Yang et al. [7].

Strawberry is different from most agronomic crops like corn, soybeans, and wheat in
various aspects. It is clonally propagated, and a single plant is relatively small in size but
has a complex growth habit that includes several parts such as the crown, leaves, runners,
inflorescences, and fleshy fruits. Higher-spatial-resolution imagery is needed to reveal the
canopy structure and identify the fruits. Handheld sensors as well as sensors mounted on
UAVs and ground-based platforms have been used to study various strawberry pheno-
typing traits. Some commonly used UAV types for agriculture applications are elaborated
by Radoglou-Grammatikis et al. [25]. Ground-based platforms (e.g., tractors) were used
to collect high-quality images and generate a 3D point cloud for strawberry plants [39].
Handheld non-imaging spectrometers that cover a wide spectral range (350–2500 nm) and
provide continuous spectral reflectance could be used to study strawberry physiological
characteristics [40]. Additionally, many researchers designed various types of phenotyping
platforms for strawberry disease detection and fruit quality evaluation. Multispectral or
hyperspectral sensors mounted on various platforms have been used for specific purposes,
such as powdery mildew disease detection, fruit grading, and fruit 3D construction [41].
Some platforms and topics discussed in this review are shown in Figure 2.
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3. Machine and Deep Learning Analysis Methods

Machine learning (ML) is one of the most effective ways to process and analyze the
vast amounts of data obtained by today’s remote sensing techniques. In general, machine
learning used in the agricultural field can be grouped into four categories: (1) crop moni-
toring, including yield estimation, disease and weed detection, species recognition, and
crop quality assessment; (2) livestock management, such as animal welfare and livestock
production; (3) water regulation, for example, plant evapotranspiration estimation; and
(4) soil management, including the identification and prediction of soil temperature and
moisture content [42].

Traditional machine learning methods, such as support vector machines (SVMs),
artificial neural networks (ANNs), and random forests (RFs), require the extraction of key
features from image or LiDAR datasets that sufficiently represent the characteristics of
the studied objects or phenomena [43,44]. The quality of selected features is critical to the
classification or prediction performance [45]. However, finding the best feature subset can
be a time-consuming and subjective process, especially for highly dimensional datasets
and in problems with a complex domain (e.g., crop yield estimation) [46]. For example,
Sabanci et al. [47] extracted 12 features of wheat grains from high-resolution RGB images,
including grain dimension (length, width, perimeter, and area), spectral band (red, green,
and blue), and texture (contrast, correlation, energy, homogeny, and entropy) information.
These features were imported into an ANN model to classify the wheat into two types,
bread and durum, with an accuracy higher than 97%.

Deep learning (DL) has emerged as perhaps the most important branch of machine
learning. Deep learning refers to the extension of ANNs to accommodate neural networks
with a relatively large number of layers that enable hierarchical data representation [48,49].
Mainstream deep learning models at present include deep neural networks (DNNs) [50,51],
recurrent/recursive neural networks (RNNs) for sequence or time data processing [52], con-
volutional neural networks (CNNs) for image analysis [53,54], deep generative models [55],
and auto-encoder networks [56]. In contrast to conventional ML algorithms, DL models
can achieve optimal discrimination features by determining a set of parameters during
the training process; thus a specific step for feature extraction is not required [49,57]. The
main disadvantages of DL methods are the need for massive training datasets, computing
capacity, and training time [58].

Improving existing DL methods and creating novel algorithms have been the goals
of numerous studies involving agricultural applications. Kamilaris et al. [59] reviewed
the agricultural problems solved using DL, common DL models and frameworks, data
sources and corresponding preprocessing procedures, and the overall performance of DL
by summarizing 40 studies. They identified land cover classification, crop type estimation,
crop phenology, fruit and weed detection, and fruit grading as the current main applications
of DL in the agriculture field. DL may also have significant potential in seed identification,
soil and leaf nitrogen content determination, and irrigation management. In addition,
they identified the potential for long short-term memory (LSTM) or other RNN models in
yield prediction, disease management, and water needs assessment based on consecutive
observations. Overall, deep learning has experienced remarkable developmental progress
and already has a number of operational applications in agriculture.

4. Fruit Traits
4.1. Fruit/Flower Detection

Automated counting of fruits and flowers from images is a critical step in autonomous
robotic harvesting and yield prediction [60]. In recent years, numerous studies have been
conducted on this topic, mainly aimed at developing new image-based object detection and
localization algorithms to improve recognition accuracy. Traditional image segmentation
methods use morphological operations to generate binary images and separate fruits from
the background according to the similarity of color, spatial texture, and geometric shape.
For example, Feng et al. [61] introduced a strawberry stem detection and fruit classification
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workflow, which used the OHTA color space to segment the fruit from black-and-white
plastic sheets, extracted the principal inertia axis feature to define the stem position, made
a judgment of strawberry ripeness based on the hue intensity and saturation (HIS) color
space, and then selectively harvested strawberry fruits according to fruit ripeness and shape.
However, this segmentation method is not yet robust and stable enough for application
in commercial settings that have variable lighting conditions, observation angles, object
orientations, relative positions, and various clustering and occlusion situations.

Recently, CNNs have evolved to be the most powerful approach for solving target
identification and classification problems. The superiority of a CNN in image recognition
lies in its ability to extract increasingly complex visual concepts and features through
hierarchical structures. The first few layers can be used to learn simple local features, and
the deeper hidden layers can capture more complicated semantic information, such as
shape and texture. Koirala et al. [47] reviewed the use of deep learning in fruit detection
and yield prediction. The author elaborated on the applications of current state-of-the-art
DL frameworks in target recognition, including the faster regional convolutional neural
network (Faster RCNN), single-shot multibox detector (SSD), and you only look once
(YOLO), and in detectors, including the Oxford Visual Geometry Group network (VGGNet),
the Residual Network (ResNet), and the Zeiler and Fergus network (ZFNet). Fruit weight
and yield estimation were also discussed, which demonstrates the superiority of deep
learning in analyzing multi-dimensional remote sensing data.

With regard to strawberry flower/fruit counting, Lin et al. [62] applied RCNN, Fast
RCNN, and Faster RCNN models for the identification of strawberry flowers from the
image, with an accuracy of 63.4%, 76.7%, and 86.1%, respectively. The Faster RCNN
framework demonstrated good performance even if strawberry flowers were occluded by
foliage, under shadow, and overlapped by other flowers. Another DL framework (SSD)
was implemented by Lamb et al. [63] for strawberry detection. The authors modified the
training images and network structure to optimize the detection precision and execution
speed. This system with a sparse CNN can run quickly on mobile low-power hardware
with an average precision of 84.2%. Yu et al. [64] further adapted a Mask-RCNN model for
mature strawberry detection in the RGB image and achieved an accuracy of 95.78% even in
a non-structural environment, particularly for overlapping and hidden fruits and those
under varying illumination. Zhou et al. [65] proposed a robust deep learning architecture
named improved Faster-RCNN, which adopted a transfer training technology based on
Faster RCNN and greatly reduced the number of strawberry images required for training
the network. The average fruit extraction accuracy was more than 86%.

4.2. Fruit Maturity/Ripeness

During strawberry ripening, the fruit surface color typically goes through green,
white, pink, and red stages, concurrent with the accelerated biosynthesis of pigments
(e.g., carotenoids and anthocyanins) over a period of up to 30 days. Fruit ripening is a
complicated process, with a variety of internal physical and chemical changes, which is
mainly controlled by the synthesis and action of hormones [66]. Azodanlou et al. [67]
found that as the fruit matures, there is an increase in volatile organic compounds (VOCs)
and sugars, as well as a decrease in acidity. Meanwhile, structural changes in cell wall
polysaccharides, especially the dissolution of pectin, contributes to fruit softening. The
state of ripeness at harvest directly determines fruit quality and shelf life. Unripe fruits
have lower nutrient values but are more resistant to physical injury. Overripe fruits are
more susceptible to the external environment and fungal infection [68]. Rahman et al. [69]
found that the shelf life of strawberry fruits picked at the 1/3rd maturity stage and the
full maturity stage were about 7.8 and 2.4 days, respectively, regardless of the genotype.
Therefore, early evaluation of fruit ripeness and the determination of optimal harvest time
are crucial to reducing waste in the supply chain and improving fruit quality [70].

Traditional strawberry ripeness assessment is implemented visually and subjectively
based on the appearance, aroma, color distribution and intensity, as well as texture [71,72].



Remote Sens. 2021, 13, 531 8 of 28

Standard maturity evaluation methods are quantitative, measuring the contents of internal
quality attributes, such as firmness, soluble solids content (SSC), titratable acidity (TA),
and total anthocyanins [73]. However, this technique is destructive, slow and requires
expensive specialized devices and expertise [74]. Researchers have spent considerable
efforts developing simple, non-invasive, and high-throughput ways to estimate the ripeness
stage of strawberry fruits. Most of the studies have focused on extracting spatial and
spectral information from representative wavelength bands (usually R, G, and NIR bands)
to discriminate between strawberries at different growth stages. Raut et al. [75] proposed
a direct color-mapping method to evaluate the redness of strawberries based on RGB
images and sort them into pre-mature, mature, and over-mature classes. Jiang et al. [76]
selected the wavelengths 535, 675, and 980 nm and introduced eight spectral indices to
automatically identify immature, nearly mature, and mature strawberries using the Fisher
linear discriminant (FLD) model, with a prediction accuracy over 95%. Guo et al. [77]
combined spectral reflectance and textural indicators (correlation, contrast, entropy, and
homogeneity) of 11 optimal wavelengths from hyperspectral images and used the SVM
algorithm to classify ripe, mid-ripe, and unripe fruits, with an accuracy higher than 85%.

Yue et al. [78] assessed strawberry maturity in the greenhouse using only a smart
phone equipped with 535 and 670 nm optical filters, which were chosen to capture antho-
cyanin and chlorophyll contents, respectively. Absorptance data for the two wavelengths
served as variables in three regression classification methods (multivariate linear, multi-
variate nonlinear, and SoftMax regression). The multivariate nonlinear model yielded an
identification accuracy of over 94%. Gao et al. [79] further used the AlexNet CNN deep
learning model to categorize the strawberry fruits into ripe and early-ripe stages using
hyperspectral datasets, achieving 98.6% classification accuracy. Recently, data collection
processes, feature extraction and classification algorithms have been integrated into a real-
time strawberry ripeness evaluation and decision-making system developed for harvesting
robots [80].

4.3. Fruit Quality and Postharvest Monitoring

Postharvest operations, including sorting, grading, and spoilage stage monitoring,
are of great significance for price determination, fulfillment of orders with specific quality
standards, and sales strategy formulation [81]. In terms of strawberry grading, manual
selection is widely based on the shape, size, color, maturity, and imperfection of the
fruits [82]. Compared with apples and citrus fruits, strawberries are more vulnerable to
damage due to their high moisture content, lack of exocarp protection, and susceptibility to
fungal infection [12]. From the moment of harvest, strawberry fruits begin to lose nutrition
and generally spoil after three days without cold storage, potentially generating toxins
harmful to human health [83]. Therefore, it is helpful to have a rapid and non-invasive
inspection method for postharvest strawberry monitoring.

As with ripeness evaluation, emerging computer vision and machine learning tech-
nologies have enabled the development of automatic, real-time, and non-destructive
fruit-grading systems. Liming et al. [84] designed an intelligent strawberry-grading sys-
tem by integrating conveyer belts, cameras, and other auxiliary devices and employing
multi-attribute decision-making theory to grade the strawberry fruit into three or four
classes based on color, shape (13 feature parameters), and size. The final accuracy was
above 90%. Mahendra et al. [85] compared seven types of features and used the SVM
classifier to categorize the fruits into two groups: good and damaged. They found that
the speeded-up robust features (SURF) were most effective in classification, with an accu-
racy of 90.73%. Sustika et al. [81] evaluated the capability of six CNN architectures (the
baseline CNN, AlexNet, GoogLeNet, VGGNet, Xception, and MobileNet) for the binary
classification (good or bad) of strawberry fruit and its classification into four grading levels
(1–4 ranking) using RGB images. The study indicated that VGGNet’s performance was
the best, producing 96.49% and 89.12% accuracy for the binary and the four-grade-level
classification, respectively.
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Péneau et al. [86] represented the consumer perception of freshness quantitatively by
establishing the relationship between the fruit’s physiochemical parameters (appearance,
odor, texture, and flavor) and consumer/expert ratings of freshness. Dong et al. [87]
used long-path Fourier-transform infrared spectroscopy (FTIR) technology to capture the
spectral characteristics of VOCs generated after different lengths of storage and then detect
changes in VOC (esters, alcohols, ethylene, etc.) abundance. A principal component
analysis (PCA) was implemented on the spectral data to distinguish fresh, slightly spoiled,
and spoiled strawberries. As for storage time estimation, Weng et al. [12] collected the
spectral data for strawberries from 0 to 60 h of storage with an interval of 6 h, using
hyperspectral imaging technology. SVMs and RFs were then used to classify strawberry
samples from different storage times with an accuracy of 100%. Partial least-squares
regression (PLSR) [88] analysis has also been used to estimate the storage time with a
prediction accuracy approaching 100%.

4.4. Internal Fruit Attributes

As discussed in the previous section, fruit quality is broadly assessed by many pa-
rameters associated with the external attributes of the fruit, including appearance, texture,
and flavor. However, the determination of internal fruit attributes (sugar content, juiciness,
acidity, color, etc.) is also very important. NIR spectroscopy and multiple/hyperspectral
imaging technology have been effective for evaluating internal fruit quality attributes in a
non-contact manner. A difference between spectroscopy and imaging is that the former
can only obtain single-point information, while the latter can provide spatial distribution.
The VIS/NIR spectral range is usually selected for internal fruit attribute studies because it
provides information about O–H, C–H, and N–H absorptions [89].

Spectroscopy and hyperspectral image data are highly redundant and require pre-
processing and analysis. Most research on the retrieval of internal fruit attributes adopts
the following steps: data pretreatment (spectral correction and noise reduction), optimal
sensitive wavelength selection, feature extraction, and prediction model construction. El-
Masry et al. [90] estimated the moisture content (MC), SSC, and pH of strawberry fruits
using hyperspectral images. Optimal wavelengths were selected for the MC, SSC, and pH,
using β-coefficients from partial least-squares models. Multiple linear regression (MLR)
models were then applied to retrieve fruit quality attributes using the spectral data of
optimal wavelengths, with prediction accuracies of 87%, 80%, and 92% for the MC, TSS,
and pH, respectively.

Unlike many researchers who only used the spectral information directly as input
variables, Weng et al. [91] extracted the spectral information about optimal wavelengths,
9 color features obtained from color histograms and moments, and 36 textural features
simultaneously from the hyperspectral images for the detection of soluble solid content
(SSC), pH, and vitamin C. Spectral and color features achieved the best prediction for
SSC, with an R2 coefficient of 0.94. In terms of pH, optimal prediction was obtained using
spectral features only, with an R2 of 0.85. A combination of spectral and textural features
helped improve the estimation of vitamin C, with an R2 of 0.88. At present, the main
parameters retrieved for the internal fruit quality of strawberry include firmness; vitamin
C (VC); phenolic compounds; TA; total water-soluble sugar (TWSS) content; concentrations
of glucose, fructose, and sucrose; SSC; pH; MC; and VC. A detailed summary of the
acquisition of these parameters using spectroscopy and imaging technology is shown in
Table 1.



Remote Sens. 2021, 13, 531 10 of 28

Table 1. Summary of articles addressing the estimation of internal fruit quality attributes of strawberry based on remote
sensing and machine learning.

Author Year Parameters * Data Feature Extraction

Optimal
Waveband
Selection

Method **

Regression
Model ***

Prediction
Accuracy
(R or R2)

Reference

Weng
et al. 2020 SSC, pH, and

vitamin C

Hyperspectral
imaging (range:

374–1020 nm;
spectral resolution:

2.31 nm)

All spectral
information, 9

color features, and
36 textural features

CARS, UVE PLSR, SVR,
LWR

R2: 0.9370 for
SSC, 0.8493
for PH, and
0.8769 for
vitamin C

[91]

Liu et al. 2019

TWSS,
glucose,

fructose, and
sucrose con-
centrations

Near-infrared
hyperspectral

imaging (range:
1000–2500 nm;

spectral resolution:
6.8 nm)

Spectral
information (range:

1085–1780 nm; 5
wavelengths for
fructose, glucose,

and sucrose; 7
wavelengths for

TWSS)

SPA SVR

R2: 0.589 for
fructose,
0.503 for
glucose,
0.724 for

sucrose, and
0.807 for

TWSS

[92]

Liu et al. 2019 Sugar
content

Hyperspectral
imaging (range:

391–1043 nm;
spectral resolution:

2.8 nm)

Spectral
information (range:

420–1007 nm; 76
wavelengths)

CCSD PLS R: 0.7708–
0.8053 [93]

Amodio
et al. 2017

SSC, pH, TA,
ascorbic acid
content, and

phenolic
content

Fourier-transform
(FT)-NIR

spectrometer
(range:

12,500–3600 cm−1;
spectral interval:

8 cm−1)

Spectral
information (range:

9401–4597 cm−1,
7507–6094 cm−1,
5454–4597 cm−1,
6103–5446 cm−1,

and
4428–4242 cm−1;

219 spectral)

Bruker’s
OPUS

software
PLSR

R2: 0.85 for
TSS, 0.86 for
pH, and 0.58

for TA

[94]

Li et al. 2015 SSC

Near-infrared
spectrometer

(range:
12,000–3800 cm−1;
spectral interval:

1.928 cm−1)

Spectral
information

(25 wavelengths)

CARS, SPA,
MC-UVE PLSR, MLR R2: 0.9097 [95]

Ding et al. 2015 SSC

Hyperspectral
imaging (range:

874–1734 nm;
spectral resolution:

5 nm)

Spectral
information (range:

941–1612 nm; 14,
17, 24, and 25
wavelengths

selected by four
methods); 20

spectral features by
PCA; 58 spectral

features by wavelet
transform (WT)

SPA, GAPLS
& SPA, Bw,

CARS
PLSR R: >0.9 for

SSC [96]

Liu et al. 2014 Firmness
and SSC

Multispectral
imaging system

(range:
405–970 nm; 19
wavelengths)

Spectral
information (range:
405, 435, 450, 470,
505, 525, 570, 590,
630, 645, 660, 700,
780, 850, 870, 890,

910, 940, and
970 nm; 19

wavelengths)

None PLSR, SVM,
BPNN

R: 0.94 for
firmness and
0.83 for SSC

[73]

Sánchez
et al. 2012 SSC and TA

Handheld
MEMS-based NIR
spectrophotometer

(range:
1600–2400 nm;

spectral intervals:
12 nm)

Spectral
information

MPLS, local
algorithm

MPLS, local
algorithm

R2: 0.48 for
firmness,

0.62 for MPC,
0.69 for SSC,
0.65 for TA,
and 0.40 for

PH

[97]
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Table 1. Cont.

Author Year Parameters * Data Feature Extraction

Optimal
Waveband
Selection

Method **

Regression
Model ***

Prediction
Accuracy
(R or R2)

Reference

Nishizawa
et al. 2009

SSC and
glucose,

fructose, and
sucrose con-
centrations

Near-infrared
(NIR) spectroscopy

Spectral
information (range:

700–925 nm)
SMLR SMLR

R2: 0.86 for
SSC, 0.74 for
glucose, 0.50
for fructose,
and 0.51 for

sucrose

[98]

Wulf et al. 2008
Phenolic

compound
content

Laser-induced
fluorescence

spectroscopy (LIFS)
(EX: 337 nm; EM:

400–820 nm;
spectral interval: 2

nm)

Spectral
information None PLSR

R2: 0.99 for
p-

coumaroyl-
glucose and
cinnamoyl-

glucose

[99]

ElMasry
et al. 2007 MC, SSC,

and pH

Hyperspectral
imaging in visible
and near-infrared

regions (range:
400–1000 nm; 826

wavelengths)

Spectral
information (8, 6,

and 8 wavelengths
for MC, TSS, and
pH, respectively)

β-
coefficients
from PLS
models

MLR

R: 0.87 for
MC, 0.80 for

SSC, and
0.92 for pH

[90]

Tallada
et al. 2006 Firmness

Near-infrared
hyperspectral

imaging (range:
650–1000 nm;

spectral resolution:
5 nm)

Spectral
information SMLR SMLR R: 0.786 for

firmness [100]

Nagata
et al. 2005 Firmness

and SSC

Near-infrared
hyperspectral

imaging (range:
650–1000 nm;

spectral resolution:
5 nm)

Spectral
information (3 and
5 wavelengths for
firmness and SSC,

respectively)

SMLR SMLR

R: 0.786 for
firmness,

and 0.87 for
SSC

[101]

Nagata
et al. 2004 Firmness

and SSC

Hyperspectral
imaging in visible

regions (range:
400–650 nm;

spectral resolution:
2 nm)

Spectral
information (5

wavelengths for
firmness)

SMLR SMLR R: 0.784 for
firmness [102]

* Parameters: SSC, soluble solid content; MC, moisture content; pH, acidity; TA, titratable acidity; TWSS, total water-soluble sugar;
MPC, maximum penetration force. ** Optimal waveband selection method: CARS, competitive adaptive reweighted sampling; UVE,
uninformative variable elimination; SPA, successive projection algorithm; MC-UVE, Monte Carlo–uninformative variable elimination;
GAPLS & SPA, genetic algorithm partial least squares combined with SPA; Bw, weighted regression coefficient; MPLS, modified partial
least-squares regression method; SMLR, stepwise multiple linear regression. *** Regression model: PLSR, partial least-squares regression;
SVR, support vector regression; LWR, locally weighted regression; MLR, multiple linear regression; SVM, support vector machine; BPNN,
back propagation neural network.

4.5. Fruit Shape

Fruit shape is a critical parameter affecting the esthetic appearance and marketability
of strawberries. Basic shape descriptors, such as length, width, and aspect ratio, can be
manually measured with, for example, a vernier caliper. However, this method is not
only labor intensive and time consuming but also limited in capturing the complex and
multi-dimensional aspects of shape and uniformity. Currently, most shape classification
studies are based on 2D digital images. Ishikawa et al. [103] extracted four types of
shape descriptors from RGB images taken by a digital camera: (1) measured values,
including contour line length, fruit length and width, and fruit width/length ratio; (2)
ellipse similarity (ES) index, including the optimum ellipse area ratio and the boundary
length ratio, which indicate the ellipse similarity of fruits; (3) elliptic Fourier descriptors
(EFDs); and (4) chain code subtraction (CCS). Random forest analysis was conducted
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to categorize strawberry fruit shape into nine types: reniform, conical, cordate, ovoid,
cylindrical, rhomboid, obloid, globose, and wedged. The recall ratio was used for accuracy
evaluation since Kappa coefficients were not able to classify more than three types. The
recall ratio ranged from 0.52 to 1, depending on shape type. Oo and Aung [104] proposed a
simpler but efficient method for strawberry size estimation and shape classification based
on RGB images. Only three parameters (diameter, length, and apex angle) were imported
into a three-layer neural network for four classes. The estimation accuracy of diameter and
length was 94% and 93%, respectively, for strawberries without calyx occlusion and 94%
and 89% for those with calyx occlusion. The classification was between 94% and 97%.

Feldmann et al. [105] further extracted 68 strawberry fruit shape features of four types
(linear and geometric descriptors, outline-based descriptors, landmark-based descriptors,
and binary-image-pixel-based descriptors) from digital images and introduced a method
called principal progression of k clusters (PPKC), which can automatically discover po-
tential shape classes. Relationships between four shape categories and features were built
and used for the classification. The accuracy varied from 68% to 99%. Zhou et al. [65] used
the length-to-width ratio of the minimum external rectangle obtained from RGB images to
assess the plumpness of strawberry fruits. Strawberries were classified into three types
based on this ratio: plump (0–0.5), approximately plump (0.5–0.8), and fully plump (0.8–1).
However, this approach applies only for strawberries of globose type.

Although 2D images can only reflect one dimension or plane characteristics, they
are sufficient to determine shape properties to some extent. Today, imaging technology
can obtain three-dimensional information. A 3D-shape-measuring system equipped with
cameras, a rotation table, and an operation system was designed by He et al. [106], which
generated 3D point clouds of strawberry fruits using photos from various angles and
heights using structure from motion (SfM) methods. The errors were less than 0.6 mm
for 90% and 0.3 mm for 80% or more of the strawberry fruits [107]. Construction of 3D
strawberry architecture can provide information beyond basic descriptors. For example,
uniformity is a key shape factor that is directly tied to fruit quality and sales volume. Li
et al. [108] defined eight uniformity variables calculated from the 3D architecture of the
strawberry fruit and evaluated the importance of each variable for manual uniformity
assessment. The results showed that circularity of the maximum circumference had the
closest predictive relationship with the manual uniformity score. A regular shape genetic
locus was detected and found to be related to three uniformity parameters.

4.6. Strawberry Yield Prediction

Strawberry harvesting can extend for many months depending on the growing system
and environment, with dramatic variation in weekly yields. Forecasting strawberry yield
ahead of time can help growers formulate labor/equipment allocation strategies during
the harvesting period. Since weather fluctuation is a key factor, many studies have been
conducted on how weather parameters (e.g., solar radiation, wind, temperature) influence
strawberry yield [109]. These significant influential factors were combined with other yield-
associated traits as input for statistical models and machine learning methods to predict
strawberry yield. For example, Misaghi et al. [110] applied three neural network models
(multilayer perception (MLP), generalized feedforward neural network (GFNN), and mod-
ular neural network) for strawberry yield prediction using vegetation indices (normalized
difference vegetation index (NDVI) and Soil Adjusted Vegetation Index (SAVI)) and soil
characteristic parameters, with up to 94% final accuracy. MacKenzie and Chandler [111]
built a relational expression between flower counts, temperature data, and strawberry total
weight, with a coefficient of determination of 0.84. Various meteorological parameters (e.g.,
net radiation, vapor pressure, relative humidity) were examined by Pathak et al. [109] for
strawberry yield forecast using a principal component regression model, achieving 70%
yield prediction accuracy.

Hassan et al. [112] used hyperspectral remote sensing imagery to obtain LAI parame-
ters and six vegetation indices (VIs) to explore the relationship between these parameters
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and yield under different growing conditions (organic and conventional). The prediction
accuracy (R2) was higher than 0.7 except in the treatment using the black plastic mulch
conventional system (<0.6). The result also showed that six VIs worked better than LAI as
yield estimators. Maskey et al. [113] utilized predictive principal component regression
(PPCR), neural network (NN), and random forest (RF) models to forecast strawberry yield
using 26 parameters related to leaf and canopy properties, soil characteristics, and weather
conditions. Each of the selected weather parameters was highly correlated with strawberry
yield, and the neural network (NN) analysis provided the best prediction accuracy (95%).
Nevertheless, these prediction models were generally spatially confined and need to be
validated in field experiments. Another method for strawberry yield forecasting is to
count fruit numbers and determine size and maturity using remote sensing images. Deep
learning can play a crucial role in accomplishing this task. Using the Faster RCNN model,
Chen et al. [114] predicted strawberry yield by identifying and counting strawberry flowers
and immature and mature fruits from UAV high-resolution images obtained at two heights
(2 m and 3 m). The results showed that the mean average precision was higher at 2 m (83%)
than at 3 m (72%).

5. Leaf and Canopy Traits

Leaf and canopy traits are generally divided into two types: architectural and biophysi-
cal/biochemical characteristics. Architectural traits refer to external geometric morphology,
such as leaf length and width; leaf area; leaf inclination angle; leaf azimuth; and canopy
height, width, size, and shape. These parameters affect the penetration of light through
the canopy, light utility efficiency (LUE), and, ultimately, photosynthesis efficiency. Bio-
physical/biochemical parameters describe internal physiological characteristics of leaves
and are highly associated with crop growth dynamics, nutritional status, and photosyn-
thetic capacity. These parameters include the green area index (GAI), green fraction (GF),
above-ground biomass (AGBM), LAI, leaf/canopy water content, leaf/canopy chlorophyll
content, leaf/canopy nitrogen content, and leaf/canopy temperature, etc.

At present, SfM analysis and LiDAR are two methods used to generate 3D point-cloud
data and obtain 3D structural properties of leaves and canopies with desirable accuracy.
SfM is a computer vision technique that aims to recover the three-dimensional geometry
of objects by analyzing overlapping images taken from different perspectives [115]. The
workflow involves several steps: (1) Image feature extraction and matching is performed,
where matching algorithms are used to detect conjugate features or tie points between
overlapped images. (2) Camera location and orientation estimation is done using the
conjugate features in the images. A bundle-block adjustment process is then implemented
to estimate the position and orientation of each camera at the exposure moment. (3)
Orthoimage and 3D point-cloud production [116] is then conducted using more dense
conjugate points detected through image matching. The point cloud can be rasterized to
produce a digital surface model, which is used to generate ortho-rectified image mosaics.
Light detection and ranging (LiDAR) is an active remote sensing method that utilizes
laser to generate 3D point-cloud datasets [35]. Most LiDAR systems send laser pulses
and compute the distance between the LiDAR source and the point where the LiDAR
pulse hits an object (e.g., plant leaf) using the laser pulse travel time. Other navigation
sensors are then used with the measured distance to compute the 3D location of the point.
Dense 3D points can be created this way to accurately depict the surveyed objects. One of
the major differences between LiDAR- and SfM-based datasets is the significantly higher
cost associated with LiDAR measurements. LiDAR, however, is capable of producing 3D
points along the LiDAR laser path, which can reveal some under-canopy information. Both
methods have been widely used to extract height, size, and shape of various crop plants,
such as blueberry, maize, and soybean [117–119].

Two main approaches have been commonly used to retrieve biophysical characteristics
and related parameters: statistical modeling and radiative transfer modeling (RTM). The
former aims to establish the relationship between features obtained from remote sensing
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and field measurements using traditional statistical modeling (e.g., regression analysis) and
machine learning methods. Commonly used image features include spectral (e.g., band
values and vegetation indices) and textural information. More than a hundred VIs could
be calculated using different light spectra combinations extracted from UAV hyperspectral
imagery, supplying abundant information about vegetation vigor and health [120]. It is
worth noting that the red edge region, which is defined as the wavelength position of the
inflection point on the red-NIR reflectance slope, has raised wide interest among researchers
for LAI and chlorophyll content estimation [121]. As an alternative to statistical modeling,
RTM considers the physical process of interactions between the vegetation canopy and
solar radiation. Through the simulation of canopy reflectance, canopy parameters can be
retrieved by RTM as long as other input parameters (radiation intensity, observation angle,
soil conditions, etc.) are known [122,123]. Kattenborn et al. [124] revealed how canopy
reflectance is linked with functional traits using the PROSAIL radiative transfer model
(combination of PROSPECT leaf optical properties model and SAIL canopy bidirectional
reflectance model). Recently, several scholars have compared and combined these two
approaches to implement leaf/canopy property retrieval [81,124,125].

Studies on phenotyping of strawberry leaves and canopies using remote sensing
techniques are relatively rare. Luisa et al. [126] investigated the relationship between 11
spectral response indices and nitrogen (N) content of young, mature, and old leaves. The
results showed that only green reflectance (550 nm) was responsive to N fertilization for
individual leaves. At the canopy level, green reflectance (550 nm), red reflectance (680 nm),
VI, and NDVI were highly correlated with N content, with an R2 of 0.5, 0.6, 0.56, and
0.56, respectively. Sandino et al. [127] adopted a basic computer vision method to estimate
strawberry leaf coverage from RGB images with an accuracy of 90%. Procedures such
as smoothing, dilatation, contour detection, threshold segmentation, and edge detection
operations were used. Similarly, a more complex algorithm was introduced by Jianlun
et al. [128] to segment the greenhouse strawberry leaf edge from the background noise in
the images, which integrated the scale space wavelet transformation, canny edge detection,
Otsu threshold segmentation, and morphological analysis approaches.

Guan et al. [129] extracted planimetric canopy area, canopy surface area, canopy aver-
age height, standard deviation of canopy height, canopy volume, and canopy smoothness
parameters from high-spatial-resolution RGB images (~0.5 mm) through SfM, object-based
image analysis (OBIA), and GIS analysis. Three of the variables were used to predict the
leaf area (R2 = 0.79) and dry biomass (R2 = 0.84) throughout the strawberry-growing season
using multiple linear regression analysis. Abd-Elrahman et al. [130] built on this study by
developing automated canopy delineation and canopy size metric extraction models to
predict strawberry biomass at greater throughput. Takahashi et al. [131] applied Kinect
(the depth sensor used in the Microsoft XBOX console) to detect plant height and leaf area
receiving direct sunlight at different leaf layers over time under different environments.
These parameters were compared to the yield, dry weight, and nitrogen content inside the
leaf. Kokin et al. [132] used a thermal camera to examine the difference between the straw-
berry leaf surface temperature and ambient air temperature under night frost conditions,
which reached a maximum of ~8 ◦C.

6. Abiotic/Biotic Stress Detection
6.1. Water Stress

Water deficit stress refers to the inhibition effect on plant growth caused by soil
water deficiency or high evaporation requirement in a low-humidity atmosphere. The
detection of the plant response to water stress is critical to irrigation management. Current
irrigation practices are generally based on indirect estimation of plant water demand
or evaporation calculated from soil moisture content and meteorological data [133,134].
Gutiérrez et al. [135] developed an automated irrigation system equipped with a distributed
wireless network of soil moisture and temperature sensors placed in the root zone of the
plants. Through irrigation control based on soil moisture and temperature threshold
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values, 90% saving was achieved in water consumption compared to traditional irrigation
practices. Morillo et al. [136] implemented precision drip irrigation for strawberries using
crop water requirement estimates and optimum irrigation pulse design. The method
incorporated soil water content and crop evapotranspiration data obtained from a local
meteorological station.

In contrast, monitoring physiological changes in plants due to water stress provides
a more direct and intuitive way to assess water demand. Under water stress, a plant’s
temperature increases due to stomatal closure and reduced transpiration. Severe water
scarcity can lead to wilting and loss of key pigments such as chlorophyll, which cause
irreversible damage to the photosynthesis process. Multiple remote sensors have been
used to detect pre-symptom changes. Commonly used sensors for this approach include
the thermal imager (TIR; 8–14 µm), VIS, NIR, shortwave infrared reflectance (400–2500 nm),
and sun-induced fluorescence (SIF; 685 and 740 nm). Thermal infrared imaging has
demonstrated advantages compared to other remote sensing spectral domains in crop
water stress detection. Through the analysis of information in different spectral ranges,
numerous indices sensitive to water stress were proposed, such as temperature-based
indices (stress degree day (SDD), crop water stress index (CWSI), and water deficit index
(WDI)) and leaf-water-content-related indices (water index (WI), leaf water index (LWI),
moisture stress index (MSI), and normalized difference water index (NDWI)) [137]. These
indicators can quantitatively reflect the water deficit of leaves or canopy to some extent.

As for strawberries, drought severely limits plant growth and reduces yield and
fruit quality. Extensive research has been done to investigate responses of strawberries to
water stress, including changes in yield and morphological, physiological, and biochemical
properties. Drought-tolerant cultivars have been selected according to their adaptability
to limited water supply [138]. Numerous parameters related to strawberry growth status,
such as leaf area, leaf size, leaf longevity, dry mass, number of leaves per plant, leaf
expansion rates, leaf chlorophyll content, chlorophyll stability index, leaf moisture content,
stomatal conductance, photosynthetic rate, transpiration rate, root development, and plant
height, exhibit a decreasing tendency under water stress [139–141]. Adak et al. [142] found
that water deficit increased some biochemical features of fruits, such as total phenolics,
total anthocyanins, antioxidant activity, and sugar content. Strawberry fruit weight and
yield per unit declined by 59.72% and 63.62%, respectively, under water stress as compared
to control conditions.

It is helpful in crop management to provide a real-time, accurate assessment of water
demand inside the strawberry plant. Peñuelas et al. [143] found that strawberry leaf
temperature and the CWSI obtained by a handheld infrared thermometer were very useful
in evaluating even mild water stress. Razavi et al. [144] used chlorophyll fluorescence to
identify drought stress in strawberries. Delalieux et al. [145] compared plant height, NDVI,
red edge inflection point (REIP), and pigment-specific simple ratio for chlorophyll b (PSSRb)
differences between strawberries under two irrigation scenarios (20% and 100%) using
the COmpact hyperSpectral Imaging (COSI) system. The study indicated that the growth
inhibition caused by water shortage could be detected using these spectral characteristics.
Li et al. [146] measured strawberry plant temperature, dry surface temperature (Tdry),
wet surface temperature (Twet) for a single point, and the whole plant area using a TIR
sensor. They found the CWSI to be significant in detecting strawberry water stress. More
indicators were examined by Gerhards et al. [147], including surface temperature (TS),
CWSI, sun-induced fluorescence (F687, F780), and TIR indices, as well as the visible and
near infrared (VNIR)/short-wave infrared (SWIR), photochemical reflectance index (PRI),
normalized difference vegetation index (NDVI), and moisture stress index (MSI). These
results illustrate the great potential of remote sensing in water stress detection.

6.2. Pest and Disease Detection

Strawberries are susceptible to many insects, mites, pests, and microorganisms (bacte-
ria, fungi, and viruses) that regularly cause reductions in total and marketable yield [148,149].
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Early diagnosis and control of strawberry pests and diseases is critical to avoiding yield
losses. The occurrence of plant diseases is a process of pathological and physiological
changes. Internal symptoms of diseased crops are eventually reflected as abnormal changes
in external morphological characters, such as necrosis, rot, and deformity of strawberry
roots, stems, leaves, flowers, and fruits. Visual identification of pathogen signs and plant
disease symptoms performed by trained experts is the common practice. Nevertheless,
this process is post-symptom, and its accuracy depends on the individual’s experience.
Microscopic methods are not feasible for large-scale commercial detection of pest and
disease problems [150].

Numerous studies have utilized remote sensing to recognize various strawberry
diseases, such as powdery mildew, anthracnose crown rot, verticillium wilt, and gray
mold (Figure 3). Reflectance at various spectral bands contains significant informa-
tion about plant biophysical and biochemical properties, such as leaf pigment content
(VIS: 400–700 nm), leaf internal structure and water content (NIR: 700–1100 nm), and the
composition of leaf chemicals and water content (SWIR: 1100–2500 nm) [139]. Consequently,
remote-sensing-based plant disease detection methods focus on the optical characteristics
of infected and healthy strawberry plants in the images acquired by one or more sensors.
The majority of the current research in this area focuses on differentiating between healthy
strawberries and those affected by a single disease. Machine learning (particularly deep
learning) plays an important role in analyzing images for disease detection. For exam-
ple, Park et al. [151] applied a CNN to classify healthy and diseased strawberry using
RGB images taken by a smart phone, with 89.7% accuracy. Chang et al. [149] extracted
40 textural indices from high-resolution RGB images and compared the performance of
three supervised learning classifiers, ANNs, SVMs, and K-nearest neighbors (KNNs), in
detecting the strawberry powdery mildew disease. The overall classification accuracy was
93.8% and 78.80% for the ANN and KNN classifiers, respectively. More studies addressing
strawberry disease detection are detailed in Table 2.

Table 2. Summary of recent articles investigating strawberry diseases using remote sensing and machine learning.

Author Year Disease Description Reference

Mahmud et al. 2020 Powdery mildew

Mahmud et al. (2020) designed a mobile machine vision system for strawberry
powdery mildew disease detection. The system contains GPS, two cameras, a
custom image processing program integrated with color co-occurrence
matrix-based texture analysis and ANN classifier, and a ruggedized laptop
computer. The highest detection accuracy can reach 98.49%.

[41]

Shin et al. 2020 Powdery mildew

Shin et al. (2020) used three feature extraction methods (histogram of oriented
gradients (HOG), speeded-up robust features (SURF), and gray level
co-occurrence matrix (GLCM)) and two supervised learning classifiers (ANNs
and SVMs) for the detection of strawberry powdery mildew disease. The
classification accuracy was the highest, with 94.34% for ANNs and SURF and
88.98% for SVMs and the GLCM.

[152]

Chang et al. 2019 Powdery mildew

Chang et al. (2019) extracted 40 textural indices from high-resolution RGB
images and compared the performance of three supervised learning classifiers,
ANNs, SVMs, and KNNs, in the detection of powdery mildew disease in
strawberry. The overall classification accuracy was 93.81%, 91.66%, and 78.80%
for the ANN, SVM, and KNN classifiers, respectively.

[149]

De Lange, E. S.,
and Nansen C 2019 Arthropod pest

influence

De Lange and Nansen (2019) used hyperspectral imaging instruments to detect
the spectral response of three stress-induced changes on the strawberry leaves
from the influence of three arthropod pests. Large differences were observed
from the reflectance data.

[153]

Liu et al. 2019 Fungal
contamination

Liu et al. (2019) combined spatial-spectral information from hyperspectral
imaging and aroma information from an electronic nose (E-nose) to estimate
external and internal compositions (total soluble solids, titratable acidity) of
fungi-infected strawberries during various storage times. PCA was used to
extract the features from the hyperspectral images and aroma information.
These parameters were highly correlated with microbial content.

[154]
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Table 2. Cont.

Author Year Disease Description Reference

Cockerton et al. 2018 Verticillium wilt

Cockerton. et al. (2018) collected the high-resolution RGB and multispectral
images of strawberry based on the UAV platform to study verticillium wilt
resistance of multiple strawberry populations. The NDVI was linked to the
disease susceptibility.

[155]

Altiparmak et al. 2018 Iron deficiency or
fungal infection

Altiparmak et al. (2018) proposed a new strawberry leaf disease infection
detection and classification method based on only the RGB spectral response
value. First, a color-processing detection algorithm (CPDA) was applied to
calculate the red and green indices to extract the strawberry leaf from the
background and determine the infected area based on the threshold
segmentation. Secondly, the fuzzy logic classification algorithm (FLCA) was
used to determine the disease type and differentiate iron deficiency from
fungal infection.

[156]

Siedliska et al. 2018 Fungal infection

Siedliska et al. (2018) tried to detect whether strawberry fruits were infected by
the fungus using the VNIR/SWIR hyperspectral imaging technology. Nineteen
optimal wavelengths were selected by the second derivative of the original
spectra, and then the back propagation neural network (BPNN) [157] model
was used to differentiate between good and infected fruits, with an accuracy of
higher than 97%. The multiple linear regression model was used to estimate
the total anthocyanin content (AC) and soluble solid content (SSC). The AC
(681 and 1292 nm) and SSC (705, 842, 1162, and 2239 nm) prediction models
were tested and produced R2 = 0.65 and R2 = 0.85, respectively.

[158]

Lu et al. 2017 Anthracnose crown
rot

Lu et al. (2017) collected in-field hyperspectral data using a mobile platform on
three types of strawberry plants: infected but asymptomatic, infected and
symptomatic, and healthy. Thirty-two spectral vegetation indices were used to
train the model using stepwise discriminant analysis (SDA) [159], Fisher
discriminant analysis (FDA), and KNN algorithms. The achieved classification
accuracies were 71.3%, 70.5%, and 73.6% for these three models, respectively.

[160]

Wahab et al. 2017 Gray mold

Wahab et al. (2017) compared two systems of qPCR and spectroradiometer to
detect the gray mold pathogen Botrytis cinerea for infected and healthy
strawberry fruits. The results indicated that spectral analysis can effectively
detect the gray mold infection and VNIR spectra can distinguish healthy fruits
from infected strawberry fruits based on the difference of cellular pigments,
while the SWIR can classify infection degrees caused by the cellular structure
and water content.

[161]

Yeh et al. 2016 Foliar anthracnose

Yeh et al. (2016) classified the strawberry leaf images into healthy, incubation,
and symptomatic stages of the foliar anthracnose disease based on
hyperspectral imaging. Three methods, spectral angle mapper (SAM) [162],
SDA, and self-developed correlation measure (CM) [163], were used to carry
out the classification. Meanwhile, partial least-squares regression (PLSR) [88],
SDA, and CM were also used to select the optimal wavelengths. Wavelengths
of 551, 706, 750, and 914 nm were chosen, and the classification accuracy was
80%.

[164]

Yeh et al. 2013 Foliar anthracnose

Yeh et al. (2013) applied three hyperspectral image analysis methods to
determine whether strawberry plants were affected by foliar anthracnose: SDA,
SAM, and the proposed simple slope measure (SSM) method. The classified
statuses of the strawberry plants were healthy, incubation, and symptomatic.
The classification accuracies were 82.0%, 80.7%, and 72.7%, respectively.

[165]
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7. Discussion and Outlook

The primary aim of this manuscript was to present an overview of how remote sensing
and machine learning have been used in strawberry phenotyping and management. We
reviewed studies that have applied state-of-art technological breakthroughs in machine
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and deep learning techniques to detect strawberry fruits and flowers from images with
high accuracy. This work contributed greatly to autonomous robotic harvesting and yield
prediction applications. Statistical models and machine learning methods were explored
to evaluate strawberry fruit ripeness, estimate internal fruit attribute parameters, and
monitor postharvest fruit quality based on RGB, multispectral, and hyperspectral image
datasets. Various image-based fruit shape descriptors were suggested, such as fruit contour
line length, uniformity, and ellipse similarity indexes. Structures from motion algorithms
were used to generate 3D point clouds of strawberry fruits. Canopy and leaf images were
analyzed to build models relating the biochemical content of leaves and spectral indexes as
well as predict biophysical parameters, such as dry biomass and leaf area. Additionally,
studies related to the detection of abiotic and biotic stressors were developed. Table A1 lists
a categorized summary of the studies reviewed in this manuscript that were not presented
in tabular form.

Although remote sensing data acquisition and machine learning data analysis are
already advancing the prospects of strawberry precision agriculture and phenomics appli-
cations, there is still an urgent need for further exploration. For example, questions related
to how to expand the robustness and transferability of the statistical and machine learning
models connecting fruit quality to image-based spectral and geometrical information are
still active research topics. Deep learning is also very promising for further advances in
fruit quality assessment. A deep learning method may enable obtaining multiple fruit
quality parameters, such as shape, size, color, and internal attributes, simultaneously, which
can help build a comprehensive evaluation system for strawberries and promote the au-
tomation of postharvest grading processes. Strawberry yield forecasting can be improved
by integrating multiple variables such as weather condition, soil parameters, fruit/flower
counts, canopy metrics, and various spectral indices from hyperspectral images as input.
Many of these parameters, such as fruit and flower count and canopy size, can be extracted
directly from the images using deep learning networks, which may effectively increase
prediction accuracy and reduce manual work of feature extraction.

Continuous, real-time observations of leaf and canopy phenotyping traits are critical to
monitoring the growth and nutritional status of the plants. With the advancement of remote
sensing technology, UAVs and updated ground-based platforms are being used extensively
in agriculture. Sensors that are expensive and hard to access, like LiDAR and hyperspectral
cameras, are gradually becoming more affordable. Thus, an increasing number of studies
are being conducted on using remote sensing and machine learning to obtain structural
(e.g., leaf width/length, leaf inclination angle, and canopy height and width), biophysical
(e.g., LAI and biomass), and biochemical (e.g., chlorophyll and nitrogen content) traits of
agronomic crops, fruit trees, and vegetables. Strawberry fruit shape is mostly depicted and
evaluated by features extracted from 2D and 3D information facilitated by SfM and LiDAR
technologies. As those technologies become more ubiquitous, more fruit descriptors and
novel assessment systems can be developed based on the 3D architecture of strawberries.
Although SfM methods were applied to high-spatial-resolution RGB images [129,130] to
calculate several strawberry canopy parameters (e.g., canopy area, average height, volume,
and smoothness), LiDAR could be used to obtain detailed information about a strawberry
plant’s structural properties. For example, Jiang et al. [166] analyzed LiDAR data and
proposed various quantification factors for the bush architecture of blueberries, including
bush morphology (height, width, and volume), crown size, and shape descriptors (path
curve λ and five shape indices). This type of research can be readily transferred to the
strawberry domain.

Besides, there is a great deal of progress to be made in predicting strawberry bio-
physical parameters and the photosynthesis process, and there is much to learn from
other crops. Paul et al. [167] applied Gaussian process regression and the SVM model to
estimate the canopy-averaged chlorophyll content of pear trees based on convolutional
auto-encoder features of hyperspectral data. Li et al. [168] summarized the development
of remote sensing imaging technologies for retrieval and analysis of information about
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various nutrition parameters, such as nitrogen, phosphorus, potassium, calcium, iron, and
magnesium. The study showed that a leaf or canopy nutritional distribution map can
be generated, and the coefficient of determination (R2) of nitrogen even reached 0.91. Lu
et al. [169] found that the total emitted solar-induced chlorophyll fluorescence (SIF) is more
effective than top-of-canopy (TOC) SIF in the prediction of forest photosynthesis. Dechant
et al. [170] further revealed the canopy structure is dominant in the relationship between
SIF and gross primary production (GPP) for rice, wheat, and corn. Studies like these in
strawberry are few. Multispectral and hyperspectral datasets, radiative transfer modeling,
and machine learning analysis may be comprehensively applied to study strawberry’s
biophysical properties and photosynthesis processes. Furthermore, in a general sense,
there is still room for model and algorithm development and the fusion and application of
multiple types of remote sensing images.

At present, several studies have assessed the feasibility of different methods or param-
eters in the detection of biotic and abiotic strawberry stresses, focusing on single stressors
at discrete time points. These works have tried to distinguish between healthy plants
and those with a single disease, improving discrimination accuracies where possible, as
shown in Table 2. For future high-throughput disease detection, there is a need to integrate
multiple sensors and multiple time points to identify field areas and plants under stress
automatically and rapidly, diagnose the stressor type and evaluate its severity, compre-
hensively assess plant health through time, and model and predict plant responses to
management strategies.

8. Conclusions

Strawberry is different from most agronomic crops like corn, soybean, and wheat in
various aspects. It is generally grown on raised-bed structures instead of flat ground and
is also grown in hydroponic systems and under greenhouse and plastic tunnel structures.
Strawberry is clonally propagated and has a complex growth habit that includes several
plant parts, such as the crown, leaves, runners, inflorescences, and fleshy fruits. The
fruits have many developmental stages and when ripe are very sensitive to environmental
and management conditions. Plant development and fruit production can continually
cycle and change over a six-month period, depending on the growing region. These
characteristics make phenotyping considerations complex for strawberry. Therefore, the
methods developed in major row crops must be creatively adapted to strawberry.

The development of ground-based devices, UAVs, and emerging field robotics is
advancing the potential for monitoring strawberry growth throughout the entire growing
cycle, from planting to final harvest. Remote sensing can provide massive amounts of
data about crop condition and health via plant and fruit characteristics. This deepens our
knowledge about the crop itself and allows more advanced management practices. Remote
sensing may also be useful for postharvest evaluation of strawberry fruits. Spectral and
textual information obtained from multiple sensors can capture both external and internal
fruit traits. Further, available artificial intelligence options include an expanding array
of deep learning techniques and computer vision analysis methods. This combination of
advances in sensors and data extraction and analysis will continue to accelerate the use of
precision agriculture in strawberry production and phenomics technology in strawberry
breeding and genetics.
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Appendix A

A two-step approach was adopted to search and screen the literature related to
remote sensing and machine learning applications, with an emphasis on strawberry. In
the first step, refereed articles about remote sensing, machine learning, phenotyping,
and strawberries were collected from the IEEE Xplore, ScienceDirect, Web of Science,
and Google Scholar scientific database portals. The following query was used, which
included the keywords implemented in the search: [“machine learning” OR “deep learning”
OR “computer vision” OR “remote sensing” OR “phenotyping” OR “phenomics”] AND
[“strawberry”]. In the second step, we screened a total of 79 papers resulting from the
search, of which 60 dealt with strawberry phenotyping and 19 were related to strawberry
management during growth and development. The number of articles on each topic is
shown in Figure A1.
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Table A1. Summary of research articles on strawberry phenotyping and management using remote sensing and machine
learning.

Strawberry: Part
of Interest Phenotyping Traits Data Method and Model Reference

Fruit

Fruit/Flower detection
Mostly RGB

images with high
spatial resolution

Traditional morphological segmentation; CNNs
(SSD, RCNN, Fast RCNN, Faster RCNN,

Mask-RCNN, etc.)
[60–65]

Ripeness and postharvest
quality evaluation

RGB, multispectral,
and hyperspectral
images, especially
for R, G, and NIR

bands

1) Feature extraction (spectral and textural indexes)
+ classifier (FLD, SVM, multivariate linear,

multivariate nonlinear, SoftMax regression, etc.)
2) CNN classifier (AlexNet, CNN, etc.)

[12,73–87]

Internal attributes’ retrieval
(SSC, MC, pH, TA, vitamin C,

TWSS, MPC, etc.)

NIR, multispectral,
and hyperspectral
spectroscopy and

images

Feature extraction (spectral and textural features) +
prediction model (PLSR, SVR, LWR, MLR, SVM,

BPNN, etc.)
[73,90–102]

Shape description Mostly RGB
images

Shape descriptors extracted from 2D images; the
SfM method was for generating 3D point clouds. [103–108]

Yield prediction

RGB, multispectral,
and hyperspectral
images; weather

parameters

1) Feature extraction (fruit number, vegetation
spectral indexes, LAI, weather condition

parameters) + prediction model (MLP, GFNN,
PPCR, NN, RF, etc.) for strawberry total weight

2) Strawberry detection and count of the number

[109–114]
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Table A1. Cont.

Strawberry: Part
of Interest Phenotyping Traits Data Method and Model Reference

Canopy and
Leaf

Structural properties
(planimetric canopy area,

canopy surface area, canopy
average height, standard

deviation of canopy height,
canopy volume, and canopy

smoothness parameters)

RGB images with
high spatial
resolution

SfM and Arcgis analysis [127–131]

Biophysical
features

Dry biomass
and leaf area of

canopy

RGB and NIR
images

Feature extraction (canopy geometric parameters,
including canopy area, canopy average height,

etc.) + prediction model (MLR)
[129,130]

Nitrogen
content of

leaves

RGB and NIR
images

Feature extraction (green and red reflectance (550
and 680 nm), VI, and NDVI) + regression analysis [126]

Leaf
temperature Thermal images [132]

Water stress

Chlorophyll
fluorescence,
thermal, and
hyperspectral

images

Leaf temperature and spectral characteristics
(CWSI, NDVI, REIP, PSSRb, PRI, MSI) were

extracted for water stress detection.
[143–147]

Pest and
disease stress

Powdery
mildew,

anthracnose
crown rot,

verticillium
wilt, gray
mold, etc.

RGB, multispectral,
and hyperspectral

images

Various types of color and texture features were
imported to supervised classifiers for disease

detection.

[41,149,152–
156,158,160,
161,164,165]
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